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The aim of our work is to provide a proof of the nonlinear gravita-
tional stability of the Minkowski space-time. More precisely i t

accomplishes the following goals:

1. It provides a constructive proof of global, smooth, nontrivial, so-
lutions to the Einstein Vaccum Equations which look, in the large,
like the Minkowski space-time. In particular, these solutions are
free of black holes and singularities.

2. It provides a detailed description of the sense in which these solu-
tions are close to the Minkowski space-time, in all directions, and
gives a rigorous derivation of the laws of gravitational radiation
proposed by Bondi.

3. It obtains these solutions as dynamic developments of all initial
data sets, which are close, in a precise manner, tô the initial data
set of the Minkowski space-time, and thus establishes the global
dynamic stability of the latter.

4. Though our results are established only for developments of initial
data sets whi°ch are uniformly close to the trivial one, they should
in fact be valid in the complement of the domain of influence of
a sufficiently large compact subset of the initial manifold of any
"strongly asymptotically flat "initial data set. We plan in fact to
prove such a theorem in the future.
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According to Einstein the underlying geometry of space-time is that
given by a pair (M,g) where M is a 3+1 dimensional manifold and g is
an Einstein metric on M , that is, a smooth, nondegenerate, 2-covariant
tensor field with the property that at each point one can choose 3+1
vectors such that g(eo,e/3) = TJa¡3; a,,3 = 0,1, 2, 3 where
17 is the diagonal matrix with entries -1,1, l,1. The Einstein metric
divides the nonzero vectors X in the tangent space at each point into
time-like, null or space-like vectors according to whether the quadratic
form  X, X &#x3E;= is, respectively, negative, zero or positive.

The set of null vectors form a double cone, called the null cone of
the corresponding point. The set of time-like vectors form the interior
of this cone. It has two connected components whose boundaries are
the corresponding components of the null cone. The set of space-like
vectors is the exterior of the null cone, a connected open set. Any
physically meaningful space- time should be time orientable, that is,
one can choose in a continuous fashion a future directed component of
the set of time-like vectors. This allows us to specify the causal future
and past of any point in space-time. More general, the causal future of
a set S C M, denoted by J+(S), is defined as the set of points q which.
can be reached by a future directed causal curve 1 which initiates at S.
Similarly J-(S) consists of the set of all points q which can be reached,
from S, by a past directed causal curve.

The boundaries of past and future sets of points in M are null
geodesic cones, often called light cones. Their specification defines the
causal structure of the space-time which, up to a conformal factor,
uniquely determines the metric.

A hypersurface M in M is said to be space-like if its normal direction
is time-like at every point on M. We denote by g the Riemannian metric
induced by g on M. The covariant differentiation on the space-time M
will be denoted by D, while that on M will be written with the symbols
D or V. Similarly we denote by R, resp. R, the Riemann curvature
tensors of M, resp. M. Recall that for any given vectorfields X,Y,Z on
(M,g), ’

1 A differentiable curve a(t) whose tangent at every point is a future directed
time -like or null vector
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or, in components, relative to an arbitrary frame ea, a = 0,1, 2, 3,

The extrinsic curvature, or second fundamental form, of M in M
will be denoted by l~. Recall that , if T denotes the future directed unit
normal to M we have,

with e~ i==1~3, an arbitrary frame on M.
We will use the notation to express the components of the

volume element dpm relative to an arbitrary frame. Similarly, if ei,

i== 1,2,3 is an arbitrary frame on M, then are the components
of the volume element of M, with respect to the frame eo =

°

The Riemann curvature tensor R of the space-time satisfies the
following,

Bianchi Identities

The traceless part of the curvature tensor is

where the 2-tensor Rot1 and scalar R are respectively the Ricci tensor
and the scalar curvature of the space-time. We call this the conformal
curvature tensor of the space-time. We notice that the Riemann cur-
vature tensor has twenty independent components while the conformal
curvature and Ricci tensors have ten components each.

The conformal curvature tensor is a particular example of a Weyl
tensor. These refers to arbitrary four tensors W which satisfy all the
symmetry properties of the curvature tensor and in adition are traceless.
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We say that such W’s satisfy the Bianchi equation if, with respect to
the covariant differentiation on M,
Bianchi Equation

For a Weyl tensorfield W the following definitions of left and right
Hodge duals are equivalent;

where are the components of the volume element in M. One can

easily check that, *W = W* is also a Weyl tensorfield and *(*W) =:

-W. Given an arbitrary vectorfield X, we can define the electric-

magnetic decomposition of W to be the pair of 2-tensors formed by
contracting VV with X according to the formulas,

These new tensors are both symmetric, traceless, and orthogonal to X.
Moreover, they completely determine W, provided that X is not null
(see ).

Given a vectorfield X and a Weyl field W, Lx W is not, in general,
a Weyl field, since it fails to be traceless. To compensate for this we
define its modified Lie derivative,

where 7r is the deformation tensor of X i.e.,
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’ 

One can associate to the conformal curvature tensor or, more gen-
eral, to any Weyl tensorfield W, a 4-tensor which is quadratic in W
and plays precisely the same role, for solutions of the Bianchi equa-
tions, as the energy-momentum tensor of an electromagnetic field plays
for solutions of the Maxwell equations.

Bell-Robinson Tensor

Q is fully symmetric and traceless, moreover it satisfies the positive
energy condition, namely Q(X,Y,X,Y) is positive whenever X,Y are
future directed time-like vectors( see [Ch-KI] , for a proof of the above
properties of Q). Moreover,

whenever ~V satisfies the Bianchi equations. This remarkable property
of the Bianchi equations is intimately connected with its conformal
properties. Indeed they are covariant under conformal isometries. That
is, if 4&#x3E; : M - M is a conformal isometry of the space-time, i.e

ç5* g = Ç22g for some scalar Q, and W is a solution then so is 

It is well known that the causal structure of an arbitrary Einstein
space time can have undesirable pathologies. All these can be avoided
by postulating the existence of a Cauchy hypersurface in M, i.e. a

h:ypersurface L with the property that any causal curve intersects it at
precisely one point.2 Einstein space-times with this property are called
globally hyperbolic. Such space-times are in particular stable causal, i.e.
they allow the existence of a globally defined differentiable function t
whose gradient, Dt is everywhere time-like. We call t a time function
and the foliation given by its level surfaces a t- foliation. We denote
by T the future directed unit normal to the foliation.

Topologically, a space-time foliated by the level surfaces of a time
function is diffeomorphic to a product manifold R x E where E is a three

2In particular E is a space-like hypersurface
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dimensional manifold. Indeed the space-time can be parametrized by
points on the slice t=0 by following the integral curves of Dt. Moreover,
relative to this parametrization the space-time metric takes the form,

where x = (xl, x2, x3) are arbitrary coordinates on the the slice t=O.
The function 0(t,x) = is called the lapse function of the

foliation, gij its first fundamental form. We refer to 1.0.1 as the

canonical form of the space-time metric with respect to the foliation.
The foliation is said to be normalized at infinity if

Normal Foliation Condition

The second fundamental form of the foliation, i.e. the extrinsic curva-
ture of the leaves is given by,

We denote by V the induced covariant derivative on the leaves ~t and
by Rs~ the corresponding Ricci curvature tensor. Relative to an or-

thonormal frame el, e2, e3 tangent to the leaves of the foliation we have
the following formulas:

where DTes denotes the projection of DTei to the tangent space of the
foliation. It is convenient to calculate relative to a frame for which

DTei = 0~.

3called Fermi propagated
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Since Et is three dimensional, we recall that the Ricci curvature

Rij completely determines the induced Riemann curvature tensor 
according to the formula,

where R is the scalar curvature gZ.7 Rije The second fundamental form k,
the lapse function 0 and the Ricci curvature tensor Rij of the foliation
are connected to the space-time curvature tensor according to
the following,
The Structure Eqts. Of The Foliation

Bvhere ât denotes the partial derivative with respect to t and 

RmTij are the components T) and respectively, R(9m? T, 8j )
of the space-time curvature relative to arbitrary coordinates on S. The
equations 1.0.3a are the second variation formulas, while 1.0.3b and

1.0.3c are the classical Gauss-Codazzi and, respectively, Gauss equa-
tions of the foliation.

In view of 1.0.3c, the equation 1.0.3a becomes,

Taking the trace of the equations 1.0.3c, 1.0.3b and 1.0.3a respec-

tively, we derive,

where Ikl2 = 

By contrast to Riemannian geometry where the basic covariant
équations one encounters are of elliptic type, in Einstein geometry the
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basic equations are hyperbolic. The causal structure of the space-time
is tied to the evolutions feature of the corresponding equations. This is
particularly true for the Einstein field equations where the space-time
itself is the dynamic variable.

The Einstein field equations were proposed by Einstein as a unified
theory of space-time and gravitation. As mentioned above the space-
time (M ,g) is the unknown; one has to find an Einstein metric g such
that,

Einstein Field Equation

where GjlV is the tensor with R~~ the Ricci curvature
of the metric, R its scalar curvature and T jlV the energy momentum

tensor of a matter field (e.g. the Maxwell equations). Contracting twice
the Bianchi identities = 0 we derive

Contracted Bianchi Identities

which are equivalent to the divergence equations of the matterfield,

In the simplest situation of the physical vacuum, i.e. T=0, the Einstein

equations take the form,

Einstein-- Vacuum Equations

In view of the four contracted Bianchi identities mentioned above, the
Einstein-Vacuum equations, or shortly E-V, can be viewed as a system
of 10-4=6 équations for the 10 components of the metric tensor g. The
remaining 4 degrees of freedom correspond to the general covariance
of the equations. Indeed if 4l : : M - M is a difeomorphism then
the pairs (M,g) and (NI, represent the same solution of the field
equations.
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Written explicitely in an arbitrary system of coordinates the E-V
equations lead to a degenerate system of equations. The well posedness
of the Cauchy problem , which we discuss below, was proved however
by Y.Choquet-Bruhat in harmonic coordinates(see [Br]), yet as she has
pointed out later these are unstable in the large. This problem of find-
ing globally stable, well posed coordinate conditions is the first major
dificulty one has to overcome in the construction of global solutions to
the Einstein equations.

To emphasise the dynamic character of the E-V equations it is help-
ful to express them in terms of the parameters of an arbitrary
t- foliation. Thus, assuming that the space-time (M,g) can be foliated
by the level surfaces of a time function t, and writing g in its canonical
form 1.0.1, the E-V equations are equivalent to the following,
Constraint Equations for E- V

Evolution Equations for E- V

Indeed the equivalence of the equations 1.0.5a, 1.0.5b, 1.0.6a, 1.0.6b

with the E-V is an immediate consequence of 1.0.4a , 1.0.4b and
1.0.5a.

Also, 1.0.4c becomes;

Given a t-foliation we denote by E,H the electric-magnetic decom-
position of the curvature tensor R of an E-V manifold with respect
to T, the future oriented unit normal to the time foliation. Clearly E,H
are symmetric traceless 2 tensors tangent to the foliation. In view of

these definitions the equations 1.0.3b and 1.0.3c become .
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Remark that the total number of unknowns in the Evolution Equa-
tions 1.0.6a and 1.0.6b is 13 while the total number of equations is only
12. This discrepancy correponds to the remaining freedom of choosing
the time function t which defines the foliation. To emphasize the crucial
importance of making an appropriate choice of time function we note
that the natural choice 0 =1, corresponding to the temporal distance
function from an initial hypersurface, leads to finite time break-down.
This can be seen from the equation 1.0.7 which becomes in this case,
in view of 1.0.5b,

We also remark that, in view of the twice contracted Bianchi identi-
ties, if g, k satisfy the Evolution Equations, then the Constraint Equa-
tions 1.0.5a and 1.0.5b are automatically satisfied on any Et provided
they are satisfied on a given initial slice Eto. Therefore they can be
regarded as constraints on given initial conditions for g and k. Ac-

cording to this an initial data set for E-V is defined to be a triplet
(~, g, ~) consisting of a three dimensional manifold E together with a
Riemannian metric g and covariant symmetric 2-tensor k which satisfy
the constraint equations 1.0.5a, 1.0.5b on E.

A development of an initial data set consists of an Einstein-Vacuum
space-time (M,g) together with an embedding 2 : E 2013~ M such that
g and k are the induced first and second fundamental forms of E in M.
The central problem in the mathematical theory of E-V equations is
the study of the evolution of general initial data sets.

The simplest solution of E-V equations is the Minkowski space-time
R3+l, the i.e the space R4 together with a given Einstein metric , &#x3E;
and a canonical coordinate system (x°, xl, x2, x3) such that

The issue we want to adress in our work is that of the global nonlin-
ear stability of the Minkowski space-time. More precisely we want to
investigate whether Cauchy developments of initial data sets which are
close, in an appropriate sense, to the trivial data set lead to global,
smooth, geodesically complete solutions of the Einstein-Vacuum equa-
tions which remain close, in an appropriate, global sense, to the Minkowski
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space-time. We like to stress the fact that at the present time it is not
even known whether there are, apart from the Minkowski space-time,
any smooth, geodesically complete solution which becomes flat at in-
finity on any given space-like direction. Any attempt to significantly
simplify the problem by looking for solutions with additional symme-
tries fails as a consequence of the well known results of Lichnerowitz
for static solutions 4, @ and Birkhoff for spherically symmetric solutions.
According to the first, a static solution which is geodesically complete
and flat at infinity on any space-like hypersurface must be flat. The
Birkhoff theorem asserts that all spherically symmetric solutions of the
E-V equations are static. Thus, disregarding the Schwartzschild solu-
tion which is not geodesically complete, the only such solution which
becomes flat at space-like infinity, is the Minkowski space-time.

The problem of stability of the Minkowski space-time is closely re-
lated to that of characterizing the space-time solutions of the Einstein-
Vacuum equations which are globatly asymptotically i.e., as defined
in the physics literature, space-times which become flat as we approach
infinity in any direction. Despite the central importance that such
space-times have in General Relativity, as corresponding to isolated
physical systems, it is not at all setled how to define them correctly,
consistent with the field equations. Attempts to develop such a notion
have been made however in the last 25 years (see [Ne-To] for a survey)
beginning with the work of Bondi([Bo-Bu-Me], [Bo])( see also Sacks
[Sa]) who introduced the idea to analyze solutions of the field equations
along null hypersurfaces. The present state of understanding was set
by Penrose([Pe2] , who formalized the idea of asymptotic flatness
by adding a boundary at infinity attached through a smooth confor-
mal compactification. However it remains questionable whether there
exists any nontrivial ’ solution of the field equations which satisfy the
Penrose requirements. Indeed his regularity assumptions translate into
fall-off conditions of the curvature which may be too stringent and thus
may fail to be satisfied by any solution which would allow gravitational
waves. Moreover, the picture given by the conformal compactification

4A space-time is said to be stationary if there exists a one parameter group of
isometries whose orbits are time-like curves. It is said to be static if, in addition,
the orbits of the group are orthogonal to a space-like hypersurface

5 Namely a nonstationary solution.
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fails to adress the crucial issue of the relationship between conditions
in the past and behavior in the future.

We believe that a real understanding of asymptotically-flat spaces
can only be accomplished by constructing them from initial data, and
studying their asymptotic behaviour. This is precisely the objective we
set up to achieve.

To make our discussion more precise we have to introduce the no-
tion of an asymptotically-flat initial data set. By this we understand
an initial data set (E, g, k) with the property that the complement of a
finite set in E is diffeomorphic to the complement of a ball in R3 (i.e.
~ is diffeomorphic to R3 at infinity) and the notion of energy, linear
and angular momentum are well defined and finite. These can be un-
ambiguously defined for the following class of initial data sets which we
will refer to as Strongly asymptotically flat.

We say that an initial data set (~, g,1~) satisfies the S.A.F. condi-
tion if g,k are sufficiently smooth and there exists a coordinate sys-
tem (xl, x2, x3) defined in a neighborhood of infinity such that, as

r = l~i=1 3 (x i l l21 J 1/2
S.A.F. Irtitial Data 

We shall call the leading term, (1 + 2Mlr)b¡j, in the the expansion
1.0.9a the Schwartzschild Part of the metric g. 7

Given such a data set the ADM (Arnowitt, Deser and Misner) defi-
nitions of energy E, linear momentum P and angular momentum J are
given by,

6A function f is said to be om(r-k), resp. as r -~ oo if 

o(r-k-l), resp. for any 1 = 0,1... m, where 01 denote all the partial
derivatives of order 1 relative to the coordinates 

71t is the same as that of a space-like hypersurface, ortogonal to the Killing
vectorfield of a Schwartzschild space-time
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where ,Sr is the coordinate sphere of radius r, N is the exterior unit
normal to it and dA its area element. Clearly the limits on the right
hand side of the formulas defining E and P exist and are finite.To check
that J is well defined one has to remark that the difference between the

integrals on two different spheres rl, r2, can be written as a volume
integral of an expression which involves, as higher order term, 
86(trk) = + o(r -9/2) . The assertion follows then with
the help of the constraint equations 1.0.5a.

Moreover, due to our conditions 1.0.9a and 1.0.9b we have

Thus, the S.A.F. condition implies that the initial data set is in a

center of mass frame. In view of the positive mass theorem M must be
a positive number vanishing only if the initial data set is flat.

The definition of the energy - momentum (E, Pl, P2, P3) and the
angular momentum Ji, J2, J3 are independent of the particular choice
of the coordinates xl, x2, x3 in the definition of S.A.F initial data sets.8
vloreover, they are preserved by the evolution equations 1.0.6a and

1.0.6b of a normally foliated(see definition on page 6) E-V space-time.
This can be easily checked by taking the time derivatives of the expres-
sions defining E,P,J.

We believe that the question we are investigating here, namely the
stability of the Minkowski space-time, requires initial data sets with
finite energy, linear and angular mometum.

In its least precise version our main result asserts the following,

First Version of the Main Theorem

Any Strongly Assymptotically Flat initial data set which satisfies, in

addition, a Global Smallness Assumption, leads to a unique, globally
hyperblic, smooth and geodesically complete development, solution of

’Indeed, first remark that the definitions are invariant under rigid transforma-
tions of the coordinates xl, ~2, x3. It thus sufices to show that the variations of the

integrals defining E,P,J, with respect to one parameter groups of diffeomorphisms
generated by vectofields = 03 (1) as r - oo, vanish in the limit.
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the Einstein- vacuum Equations. Moreover, this development is glob-
ally asymptoticatly flot, by which we mean that its Riemann curvature
tensor approaches zero on any causal or space-like geodesic, as the cor-
responding parameter tends to infinity.

The main difhculties one encounters in the proof of our result are
the following:

1. The problem of coordinates.

2. The strongly nonlinear hyperbolic features of the Einstein equa-
tions.

3.~ The logarithmic divergence of the light cones.

1. The problem of coordinates is, as we have mentioned above the first
major difhculty one has to overcome when trying to solve the Cauchy
problem for the Einstein equations. Our strategy is based on two ideas.
First, we describe our space-time by specifying, instead of full coordi-
nate conditions, only a time function whose level hypersurfaces are

More precisely we impose, in addition to the equations
1.0.5a, 1.0.5b, the constraint

With this choice we remove the indeterminacy of the evolution equa-
tions 1.0.6a, 1.0.6b and obtain the following determined system of
equations for the maximal foliation of an E-V space-time:

Constraz*nt Equations of a Maximal foliation

9In Einstein geometry a maximal hypersurface is one which is space-like and
maximizes the volume among all possible compact perturbations of it.
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Evolution Equations of a Maximal foliation

Lapse Equation of.a Maximal foliation

Remark that the time function t is defined by specifying the level sets
only up to a transformation of the form t --~ f o t with f any, ori-
entation preserving, diffeomorphism of the real line. However we can
specify a unique t by requiring that, regarded as a parameter on an in-
tegral curve rx of T which passes through a point x of So, it converges
to the arclength on T~ as x tends to infinity on Eo. This is equiva-
lent to the condition that 0 tends to 1 at infinity on each Et, which
is precisely the normal foliation condition introduced above. Indeed,
with the exception of the Minkowski space-time, the above definition
specifies a unique time function. This is due to the fact that, when the

energy E is non-zero, there is a unique maximal foliation with
respect to which the linear momentum P vanishes. In physical terms,
this foliation constitutes the center of mass frame of the corresponding
isolated system.

Thé second idea is to make use in a fundamental way of the Bianchi
identities of the space-time and the Bell-Robinson tensor introduced
below. The basic observation is that, once we have good estimates for
the curvature tensor R, all the parameters of the foliation, i.e. g, l~, cP,
are determined purely by solving the elliptic system,

together with the lapse equation 1.0.13. The equations 1.0.14a,
1.0.14b are immediate consequences of, respectively, 1.0.8b, 1.0.8a
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with =E1 Thus, all the evolution features of the Einstein
equations are contained in the Bianchi identities, which have the great
advaJntage of being covariant.
2. The other major obstacle in the study of the Einstein equations
consists in their hyperbolic and strongly nonlinear character. The only
powerful analytic tool we have in the study of nonlinear hyperblic equa-
tions, in the physical space-time dimension, are the energy estimates.
Yet the classical energy estimates are limited to proving estimates which
are local in time. The difficulty has to do with the fact that, in order
to control the higher energy norms of the solutions, one has to con-
trol the integral in time of their bounds in uniform norm. In recent

years however, new techniques were developed, based on modified en-
ergy estimates and the invariance property of the corresponding linea.°
equations, which were applied to prove global or long time existence
results for nonlinear wave equations (see [K13], [Kll]). More precisely,
one uses the Killing and conformal Killing vector fields generated by the
conformal group of the Minkowski space-time to define a global energy
norm which is invariant relative to the linear evolution. The precise
asymptotic behaviour, including the uniform bounds mentioned above,
are then an immediate consequence of a global version of the Sobolev
inequalities (see [K13], (K12~, [Ho] ).

The relevant linearized equations for the E-V field equations are
the Bianchi equations (see page 4) in Minkowski space-time. As a first
preliminary step in our program, we have analyzed the complete asymp-
totic properties of the Bianchi equationsl° in Minkowski space-time by
using only energy estimates and the conformal invariance properties of
the equations in the spirit of the ideas outlined above(see [Ch-I(l]).

However to derive a global existence result one also needs to inves-
tigate the structure of the nonlinear terms Il. It is well known that

arbitrary quadratic nonlinear perturbations of the scalar wave equa-
tion, even when derivable from a Lagrangean, could lead to formation
of singularities unless a certain structural condition, which we have
called the Null condition, is satisfied( see [Ch], [Kll]). It turns out that

loIn [Ch-I(l] they were called Spin-2 equations
llgenerated each time we commute the Bianchi Identities with a one of the vec-

torfields used in the definition of the global energy norm.
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the apropriate, tensorial version of this structural condition is satisfied
by the Einstein equations. One could say that the troublesome non-
linear terms, which could have led to formation of singularities are in
fact excluded due to to the covariance and algebraic properties of the
Einstein equations. This is in sharp contrast with the basic nonlin-
ear hyperbolic equations of classical mechanics. Indeed the equation
of Nonlinear Elasticity [John] or Compressible fluids [Si], in four space
and time dimensions, form singularities even for arbitrary small initial
conditions.

3. In implementing the strategy outlined in (1) and (2) one encounters
a very serious technical difficulty. The mass terrn which appears in
the Schwartzschild part of an (S.A.F.) initial data set, 1.0.9a, has
the long range effect of distorting the asymptotic position of the null
geodesic cones. They are expected to diverge logarithmically from their
corresponding position in flat space-time. In addition to this their

asymptotic shearl2 differs drastically from that in the Minkowski space-
time. This difference reflects the presence of gravitational radiation
in any nontrivial perturbation of the Minkowski space-time. To take
this effect into account one has to appropriately modify the Killing
and conformal Killing vectorfields used in the definition of the basic
energy norm. We achieve this by an elaborate construction of an optical
function whose level surfaces are outgoing null hypersurfaces related by
a translation at infinity. By an optical function we mean a solution u
of

Eikonal Equation

The construction of the optical function and the approximate Killing
and conformal Killing vectorfields related to it requires more than half
of our work. The most demanding part in the construction is taken
by the angular momentum vectorfields 13. These are particularly im-
portant to our construction as they are crucial in circumventing the

12 the traceless part of their null second fundamental form
13 i.e the vectorfields which can be viewed as deformation of nij = xiâj - xjai,

for i,j=1,2,3, of Minkowski space-time.
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problem of slow decay at infinity of the initial data set. Thus, we do
not estimate directly R from the Bianchi identities but only its Lie
derivatives with respect to these vectorfields. This allows us to consider

higher weighted norms than will be possible for R. Yet, as it turns out,
the latter can be easilly estimated in terms of the former. 14 Similarly,
we use the approximate Killing vectorfield T, the unit normal to the
foliation, to allow higher weighted norms for the Lie derivatives of the
curvature tensor with respect to T 15.

As outlined above, our construction requires initial data sets which
satisfy, in addition to the constraint equations, the maximal condition
trk = 0. We will refer to them as maximal in what follows.

To make the statemant of our main theorem precise we need also
to define what we mean by the global smallness assumption. Before

stating this condition, we assume the metric g to be complete and
introduce the following quantity:

where do(x) = d(x(o), x) is the R,iemannian geodesic distance between
the point x and a given point x(o) on E, b a positive constant, IRicl2 =
Rij Rij, V’ denote the 1 covariant dervatives and B is the symmetric,
traceless 2-tensor tensor ls,

14th1S fact seems entirely plausible in view of the Birkhoff theorem.
l5in view of the Lichnerowitz theorem, this procedure allows us to obtain infor-

mation about R itself. 
’

"Remark that B, called the Bach tensor, is dual to the tensor = 

i7 j R;k + whose vanishing characterizes locally conformally
flat three dimensional manifolds (see [Eisen]). Thus, up to lower order terms, the
Schwartzschild part of g does not affect it.
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The symmetry and tracelessness of B follow immediately from the twice
contracted Bianchi identities = 0. In fact we can write;

A .... 1where Rij is the traceless part of Rij, Rij = Rij + 3’ Rgij.
We say that an S.A.F. initial data set, (~, g, k), satisfies the global

smallnes assumption if

The Global Smallnes Assumption
The metric g is complete and there exists a sufficiently small positive E
s. t.

Second Version of the Main Theorem 17

Any Strongly Assymptotically Flat, Maximal, initial data set which sat-
isfies the Global Smallness Assumption 1.0.15, leads to a unique, glob-
ally hyperblic, smooth and geodesically complete solution of the Einstein-
Vacuum Equations foliated by a normale, maximal time foliation. More-
over, this development is globally asymptotically fiat. 18

Remark: In view of the scale invariance property of the Einstein-
Vacuum equations any initial data set for which Q(xo, b)  E
can be rescaled to the new initial data set E, g’,1~’ with g’ = b-2g,
~’ - for which Q(xo, 1)  E. The global existence for the new
set is equivalent to global existence for the original set. This is due
to thé fact that the develpments g, g’ of the two sets are related by
g’ = b-2g. It thus suffices to prove the theorem under the global
smallness assumption

17 The first version of the Theorem is not an immediate consequence of the second.
It can be proved however by, first, devloping the initial data set locally in time and
then, imbedding in it a maximal hypersurface. Imbedding results of the type one
needs were obtained by Bartnik (see [Bal]).

precise statement of the asymptotic behaviour for the curvature tensor R
and also for the lapse function 0 and second fundamental form k of the foliation
will be given in the third version of the theorem.
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We next indicate how to construct maximal initial data sets which
are asymptotically flat and satisfy 1.0.15. This is based on the ob-
servation that the constraint equations l.O.lla and 1.0.llb are con-
formal invariant. More precisely they are invariant with respect to the
transformation, gij 2013 and kij --; Thus, given arbitrary
solutions g, k to the equations,

where B7 denotes the covariant differentiation with respect to the metric

g, we infer that gij = ip4gij are solutions to the same

equations for arbitrary function To satisfy also the equation 1 .0. l lc
we have to subject (b to the Lichnerowitz equation

In practice one does not solve directly the Lichnerowitz equation. The
standard approach is to look for (b of the where Q and
~ are the conformal factors corresponding to transformations which
take, first, an arbitrary solution of the equations 1.0.16a, 1.0.16b to a
solution of the same equations and then, take to the desired

solution g,k. The first conformal factor f2 is chosen so that the Ricci
curvature R of j vanishes identically. Thus, Q has to be a solution of
the linear equation equation,

The second conformal factor W is chosen such that the transformed

variables g,k satisfy R = Ik12. For this to happen ’l1 has to be a solution
to the equation, 

~

Remark that, by virtue of the maximal principle, the equation 1.0.17c

has allways a smooth solution, W &#x3E; 1, with - 1 as x - o0 on £.
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On the other hand a sufhcient condition so that the equation 1.0.17b
have a positive solution with the same property is that the norm

of the negative part of R be sufhciently small. Therefore (E, g, k) is an
initial data set satisfying the S.A.F. conditions 1.0.9a, 1.0.9b provided
that the corresponding solutions g, k of 1.0.16a, 1.0.16b verify,

and the negative part of R satisfy the smallness condition mentioned
above. Moreover, g,k satisfy the Global Smallnes Assumption of the
Theorem provided that the metric g is complete and there exists a small
positive E such that,

where do(x) denotes the Riemannian geodesic distance relative to j
between the point x and a given point x«» on S.

It remains to discuss whether the equations 1.0.16a, 1.0.16b have
solutions verifying the above properties. This can be done using the or-
thogonal, York, decomposition, of any symmetric, traceless 2-covariant
tensor h, on a three dimensional Riemannian manifold (~, g), into a
divergence free part À and the traceless part of the deformation tensor
of a vectorfield X, 

-

The vectorfield X has to be a solution of the York equation,

where,

One can show that Lj is injective on spaces of vectorfields X with ap-
propriate decay at infinity. It is also onto for appropriate spaces of
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vectorfields. Thus, for given j = bij + a4(r-32), 1 we select an appro-
priate k by decomposing any symmetric traceless tensor h = 
according to the definition above, where X is a solution to the York
equation. For details of how to achieve this we refer to [Ch-Mu]. We
also remark that the corresponding tensor k is of order 03 (r-5/2) if the
principal term in the expansion of solutions X at infinity, namely the
term of order r-1, vanishes. This is so if and only if the linear momen-
tum P; of the corresponding initial data set is zero.

The proof of the Main Theorem hinges on an elaborate compari-
son argument with the Minkowski space-time at the level of the three
geometric structures with which this is equiped.

le. The canonical space-like foliation of Minkowski space-time is given
by any choice of a one parameter family of parallel space-like hy-
perplanes, the level sets of the time function t = x° = const.

~ The null structure of the Minkowski space-time is specified by
one family of future null cones and another of past null cones
with vertices on a time-like geodesic orthogonal to to the canon-
ical space-like foliation. These families are the level sets of the
optical functions u = r - t and respectively, v = r + t, where
r = IXiI2)1/2 The null vectors e+ = 8t + 8r and e- = Ot - 8r
are parallel to their respective gradients and span all the asymp-
totic null directions.

0 The conformal group structure is given by the 15 parameter group
of translations, Lorentz rotations, scaling and inverted transla-
tions. The corresponding infinitesimal generators of the group
are,

1. The 4 generators of translations,

2. The 6 generators of the Lorentz group,
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3. The scaling vectorfield,

4. The 4 inverted translation vectorfields,

We recall that the vactorfields in the first two groups are Killing while
all the others are conformal Killing. 19 In particular the deformation
tensors of S and Ko are given by,

As small perturbations of the Minkowski space-time, the solutions of
the E-V which we want to construct will mirror the structures outlined

above. In other words we construct them together with the following:

e A maximal space-like foliation, of the type described above, given
by the level surfaces of a time function t.

a An appropriately defined optical function u whose level surfaces
describe the structure of future null infinity.

e A familly of almost Killing and conformal Killing 20 vectorfields
tied to the definition of t and u.

The intersection between a t-slice £t f and a u- null hypersurface Cu
is a 2-surface St,u. Thus, the (t,u) foliations of the space-time define
a codimension 2 foliation by 2-surfaces. This foliation is crucial in

our work, the asymptotic behaviour of the curvature tensor R and the
hessians of t and u can only be fully described by decomposing them to
components tangent to St,u . We achieve this by introducing null pairs
consisting of two future directed null vectors e4 and e3 orthogonal to
St,u, with e4 tangent to Cu and

19 A vectorfield S in a space-time (M,g) is called Killing, resp. conformal Killing,
if its deformation tensor ~~Y~~ = is zero, resp. proportional to g

20 Dy almost conformal Killing we mean vectorfields whose trace-less part of their
deformation tensors are small in an appropriate fashion.
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The null frame can be standardized by picking e4 such that  e4, T &#x3E;=

-1. Onother possible choice is to take e4 = 1, e3 = 1 with

We call this the 1-null pair of t,u. A null pair together with an orthonor-
mal frame el , e2 on St,u forms a null frame. The null- decomposition
of a tensor relative to a null frame e4, e3, e2, el is obtained by taking
contractions with the vectorfields e4, e3. For example, the null decom-
position of the Riemann curvature tensor of an Einstein-Vacuum space-
time consists of twn S-tangent2l symmetric traceless22 tensors ~, a, two
S-tangent 1-forms fl, fl and two scalars p, ~. They are defined by;

As part of our Main Theorem we deduce the following asymptotic
properties for the null components of the curvature tensor,

where T_ _ (1 + u 2)1/2@ 7-_4_ = (1 + V2)1/2 with v = 2r - u and r = r(t, u)
defined by requiring that the area of a surface St,u is equal to 47rr 2.

21 A space-time tensorfield is called S-tangent if, at every point is tangent to the
St,u 2-surface passing through that point.

22This is an immediate consequence of the trace zero condition of the Einstein
equations
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Note that the "peeling property", connected to the smoothness of the
conformal compactification, fails to be satisfied for the component a.
Nevertheless our results confirm the picture given by the conformal
compactification in its main outlines.

The proof of the Main Theorem relies on a continuity type argu-
ment. Using an adequate version of the local existence theorem we
assume our space-time to be maximally extended up to a value t* of
the t-function. Starting with the "last slice" ~t, we then define an ap-
propriate optical function u. We use u and t to define a time-translation
vectorfield T, which is simply the future directed unit normal to the
t-foliation, an inverted time-translation23 vectorfield Ko , a scaling vec-
torfield S and angular momentum operators (a)o. These vectorfields are
used, in conjunction with the Bell-Robinson tensor associated to R, to
define the basic quantities Q2(t);

A 

3 
A

where Q(àoR) = 
In linear theory24 the time derivatives of the corresponding quan-

tities would be zero in flat space-time, in our case they give rise to
cubic error terms which depend linearly on the deformation tensors of

(a)f2 , and quadratic with respect to R and its covariant and Lie
derivatives in the direction of T, S, (a)Q. The crucial point of our overall

23This is the analogue of the vectorfield Ka = ~t2 + + 2txi8¡ in Minkowski
space-time

24 By this we mean the replacement of the curvature tensor of the space-time with
an arbitrary Weyl tensor verifying the Bianchi equations
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strategy is to control the time integral of these error terms. This de-
pends on the one hand on the asymptotic behaviour of all components
of R and its covariant derivatives, on the other hand on the asymptotic
behavior of the deformation tensors of the vectorfields, and fina,lly, due
to the general covariance of the equations, on the cancellations of the
"worst possible " cubic terms. The asymptotic behaviour of R and its
covariant derivatives can be traced, due to global Sobolev and Poincaré
inequalities and the Bianchi identities, back to the basic quantities Qi,
2 ~5 .. The same is true for the deformation tensors of T, S, 
we show this by elaborate estimates for the lapse function g5, the sec-
ond fundamental form of the t-foliation and the components of the
Hessian of the optical function u. We are thus able to control the time
integral of the error terms and show that Q1, Q2 cannot exceed a con-
stant multiple of their values at t = 0. This fact allows us to continue
our space-time beyond t~.
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