SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

V. M. PETKOV

Les singularités du noyau de l'opérateur de diffusion pour des obstacles non-convexes

Séminaire Équations aux dérivées partielles (Polytechnique) (1989-1990), exp. nº 8, p. 1-12

http://www.numdam.org/item?id=SEDP 1989-1990 A10 0>

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1989-1990, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

CENTRE DE MATHEMATIQUES

Unité de Recherche Associée D 0169

ECOLE POLYTECHNIQUE

F-91128 PALAISEAU Cedex (France) Tél. (1) 69.41.82.00 Télex ECOLEX 601.596 F

Séminaire 1989-1990

ÉQUATIONS AUX DÉRIVÉES PARTIELLES

LES SINGULARITES DU NOYAU DE L'OPERATEUR DE DIFFUSION POUR DES OBSTACLES NON-CONVEXES.

V.M. PETKOV

Exposé n°VIII 23 Janvier 1990

Soit $\Omega \subset \mathbf{R}^n$, $n \geq 3$, n impair, un domaine connexe de la frontière C^{∞} notée $\partial \Omega$, et soit

$$K = \mathbf{R}^n \setminus \Omega \subset \{x; |x| \le \rho_0\}.$$

L'opérateur de diffusion S associé à l'équation des ondes dans $\mathbf{R} \times \Omega$ avec la condition de Dirichlet sur $\mathbf{R} \times \partial \Omega$ est un opérateur unitaire

$$S:L^2(\mathbf{R}\times S^{n-1})\to L^2(\mathbf{R}\times S^{n-1}).$$

Le noyau de l'opérateur S-Id a la forme

$$s(t - t', \theta, \omega) \in \mathcal{S}'(\mathbf{R} \times S^{n-1} \times \mathbf{R} \times S^{n-1}).$$

Pour $\theta, \omega \in S^{n-1}$ fixés, on a

(1)
$$s(t,\theta,\omega) = C_n \int_{\partial\Omega} \partial_{\tau}^{n-2} \, \partial_{\nu} w(\langle x,\theta \rangle - t, x; \omega) dS_x \,,$$

où $w(\tau, x; \omega)$ est la solution du problème

$$\begin{cases} (\partial_{\tau}^{2} - \Delta_{x})w &= 0 \text{ dans } \mathbf{R} \times \Omega, \\ w \mid_{\mathbf{R} \times \partial \Omega} &= 0, \\ w \mid_{\tau < -\rho_{0}} &= \delta(\tau - \langle x, \omega \rangle), \end{cases}$$

 ν est la normale de $\partial\Omega$, orientée vers Ω , dS_x est la mesure induite sur ∂K , $\langle \, , \, \rangle$ est le produit scalaire dans \mathbf{R}^n , et $C_n=(-1)^{(n+1)/2}2^{-n}\pi^{1-n}$.

L'étude des singularités de $s(t,\theta,\omega)$ est important pour les problèmes inverses de diffusion. Pour $\theta \neq \omega$ fixés, on a

$$\max \operatorname{sing\,supp\,} s(t,\theta,\omega) = \max_{x \in \partial K} \langle x, \theta - \omega \rangle$$

(cf. Majda [6], Soga [18], Petkov [12]). Le problème de la description de toutes les singularités de $s(t, \theta, \omega)$ est plus difficile. On se propose d'examiner ce problème pour des obstacles K génériques et aussi pour des directions θ génériques.

1. La relation de Poisson pour $s(t, \theta, \omega)$.

On suppose dans la suite que $\theta \neq \omega$ soient fixés. On considère les bicaractéristiques généralisées de l'opérateur $\Box = \partial_t^2 - \Delta_x$ dans l'ensemble caractéristique $\Sigma \subset T^*(\mathbf{R} \times \overline{\Omega})$ de \Box . On renvoie à [8] pour la définition des bicaractéristiques de \Box . On suppose les bicaractéristiques paramétrées par le temps et on utilise la notation $\mathbf{R} \ni \sigma \mapsto \delta(\sigma) = (\sigma, x(\sigma), 1, \xi(\sigma))$.

Si $\delta(\sigma_0)$ est un point hyperbolique de \square , alors $\xi(\sigma)$ n'est pas continue en σ_0 et les limites

$$\lim_{\substack{\sigma \to \sigma_0 \\ \pm (\sigma - \sigma_0) > 0}} \xi(\sigma) = \xi(\sigma_0 \pm 0)$$

existent.

Définition 1.— On dit que γ est un (ω, θ) -rayon dans $\overline{\Omega}$ si γ est la projection sur $\overline{\Omega}$ d'une bicaractéristique généralisée $\delta(\sigma)$ de \square telle qu'il existe $T_1 < T_2$ pour lesquels

$$\xi(\sigma) = \begin{cases} -\omega & \text{si } \sigma \leq T_1, \\ -\theta & \text{si } \sigma \geq T_2. \end{cases}$$

On dit que $\delta(\sigma)$ est uniquement prolongeable si pour tout $\sigma \in \mathbf{R}$ il n'y a qu'une bicaractéristique de \square passant par $\delta(\sigma)$. On dit que (ω, θ) -rayon γ est uniquement prolongeable si γ est la projection d'une bicaractéristique uniquement prolongeable.

Soit
$$\gamma = \{x(\sigma) : -\infty < \sigma < +\infty\}$$
 un (ω, θ) -rayon. On pose $\sigma_+ = \max\{t \in \mathbf{R} : x(\sigma) \notin \partial K \text{ pour } \sigma < t\},$ $\sigma_- = \min\{t \in \mathbf{R} : x(\sigma) \notin \partial K \text{ pour } t < \sigma\}$

et on note ℓ_{γ} la longueur de la géodésique (généralisée) $\widetilde{\gamma} = \{x(\sigma) ; \sigma_{+} \leq \sigma \leq \sigma_{-}\}$. Alors on introduit le temps de séjour T_{γ} de γ par l'expression

$$T_{\gamma} = \langle x(\sigma_{+}), \omega \rangle - \langle x(\sigma_{-}), \theta \rangle + \ell_{\gamma}.$$

Soit $\mathcal{L}_{\omega,\theta}(\Omega)$ l'ensemble de tous les (ω,θ) -rayons dans $\overline{\Omega}$. On a le

Théorème 1 [2].— Soit $\theta \neq \omega$ fixés. Si chaque $\gamma \in \mathcal{L}_{\omega,\theta}(\Omega)$ est uniquement prolongeable, on a

(2)
$$\operatorname{sing supp} s(t, \theta, \omega) \subset \{-T_{\gamma}; \gamma \in \mathcal{L}_{\omega, \theta}(\Omega)\}.$$

Remarques.

1) On appelle (2) la relation de Poisson. Pour un domaine borné K on considère la distribution

$$\sigma(t) = \sum_{j=1}^{\infty} \cos \lambda_j t \in \mathcal{S}'(\mathbf{R}),$$

où $\{\lambda_j^2\}_{j=1}^{\infty}$ sont les valeurs propres du problème

$$\begin{cases} -\Delta u = \lambda^2 u & \text{dans } K \\ u = 0 & \text{sur } \partial K. \end{cases}$$

On a la relation (cf. [1], [13]):

sing supp
$$\sigma(t) \subset \{0\} \cup \{\pm T_{\gamma}; \gamma \in L_K\}$$
,

où L_K est l'ensemble des géodésiques périodiques dans K, et T_{γ} désigne la longueur (période) de γ .

- Guillemin [4] a introduit le temps de séjour des rayons réfléchissants et il a suggéré l'inclusion (2). Sous des restrictions sur les rayons entrant avec direction ω, la relation (2) a été démontrée dans [11]. Pour d'autres cas particuliers on renvoie à [16], [17], [9], [10].
- 3) Dans les cas suivants chaque bicaractéristique de

 est uniquement prolongeable :
- (i) $\partial\Omega$ est une variété réelle analytique,
- (ii) il n'y a pas de points $y \in \partial \Omega$ et de directions $\xi_x \in T_x(\partial \Omega)$ tels que la courbure de $\partial \Omega$ en x le long de ξ_x s'annule à l'ordre infini,
- (iii) $K = \bigcup_{i=1}^{m} K_i, K_i \cap K_j = \emptyset, i \neq j$, où les $K_i, i = 1, ..., m$ sont convexes.

Soit $\rho(t) \in C_0^{\infty}(\mathbf{R})$, $\rho(t) = 1$ pour $|t| \leq \frac{1}{2}$, $\rho(t) = 0$ pour $|t| \geq 1$. Pour $0 < \delta \leq 1$ on pose

$$\rho_{\delta}(t) = \rho(\frac{t}{\delta}), \ \rho_{\delta}^{k} = \frac{\partial^{k}}{\partial t^{k}} \rho_{\delta}.$$

Etant donné $t_0 \notin \bigcup_{\gamma \in \mathcal{L}_{\omega,t}(\Omega)} \{T_\gamma\}$, l'étude de sing supp $s(t,\theta,\omega)$ se ramène à l'étude de l'asymptotique de l'intégrale

$$J_{\delta}(\lambda) = \left(s(t, \theta, \omega), \rho_{\delta}(t + t_{0})e^{-i\lambda t}\right)$$
$$= \sum_{k=0}^{n-2} c_{k}(-i\lambda)^{-n-2-k} \int_{\mathbf{R}} \int_{\partial K} e^{i\lambda(t - \langle y, \theta \rangle)}$$

$$\cdot \rho_{\delta}^{(k)}(\langle y, \theta \rangle - t + t_0) \frac{\partial w}{\partial \nu}(t, y; \omega) dt dS_y,$$

où $c_k = \text{const.}$

On peut supposer que $\omega = (0, 0, \dots, 0, 1)$.

Soit $Z_1 = \{x \in \mathbf{R}^n ; x_n = \tau\}$, où $\tau < -\rho_0$ est fixé.

Soit $\sum_{j=1}^{\infty} \varphi_j(x') = 1$, $\varphi_j \in C_0^{\infty}(\mathbf{R}^{n-1})$ une partition d'unité sur Z_1 et soit v_j la solution du problème

$$\begin{cases} \neg v_j = 0 & \text{dans} \quad \mathbf{R}_{\tau}^+ \times \mathbf{R}^n, \\ v_j \mid_{t=\tau} = \varphi_j(x')\delta(\tau - x_n), \\ \frac{\partial v_j}{\partial t} \mid_{t=\tau} = \varphi_j(x')\delta'(\tau - x_n) \end{cases}$$

avec $\mathbf{R}_{\tau}^+ = \{t \in \mathbf{R}; t \geq \tau\}$. On prolonge convenablement v_j dans l'intérieur de K et aussi on prolonge $v_j \mid_{\mathbf{R}_{\tau}^+} = h_j$ comme 0 pour $t < \tau$. On introduit la solution w_j du problème

(3)
$$\begin{cases} \Box w_j = 0 & \text{dans} \quad \mathbf{R} \times \Omega, \\ w_j + h_j = 0 & \text{sur} \quad \mathbf{R} \times \partial \Omega, \\ w_j \mid_{t < \tau} = 0. \end{cases}$$

Le point essentiel est l'étude de l'asymptotique de l'intégrale

$$I_{\delta,j}(\lambda) = \iint e^{i\lambda(t - \langle y, \theta \rangle)} \rho_{\delta}(\langle y, \theta \rangle - t + t_0) \left(\frac{\partial}{\partial \nu} - \langle \nu, \theta \rangle \frac{\partial}{\partial t} \right) w_j dt dS_y$$

pour δ assez petit.

On fixe un compact $F_0 \subset Z_1$ tel que les rayons passant par $u \in Z_1 \setminus F_0$ de direction ω ne coupent pas K. On considère les solutions w_j pour lesquelles supp $\varphi_j \cap F_0 \neq \emptyset$. Etant donné $u_0 \in F_0$, on pose

$$C_t(u_0) = \{(t, x, 1, \xi) \in T^*(\mathbf{R} \times \overline{\Omega});$$

il existe une bicaractétistique sortante $\delta(\sigma)$ de \square telle que

$$\delta(\tau) = (\tau, u_0, 1, -\omega),$$

$$\delta(t) = (t, x, 1, \xi) \}.$$

Soit $|t_0| \le T$, T > 0 fixé. On a deux cas possibles :

- (A) Pour tout $\sigma > \rho_0 + T + 1$ nous avons $C_{\sigma}(u_0) \cap \{(\sigma, x, 1, -\theta) \in T^*(\mathbf{R} \times \overline{\Omega}); \, \rho_0 \leq |x| \leq \tau_1 + \sigma + 1\} = \emptyset,$
- (B) Il existe $\sigma_0 > \rho_0 + T + 1$ tel que $C_{\sigma_0}(u_0) \cap \{(\sigma_0, x, 1, -\theta) \in T^*(\mathbf{R} \times \overline{\Omega}); \ \rho_0 \le |x| \le \tau_1 + \sigma_0 + 1\} \ne \emptyset,$ où $\tau_1 = -\tau + \rho_0$.

Dans le cas (A) on utilise la

Proposition 2.— Supposons qu'on ait

(4) $WF(w_j) \cap \{(t, x, 1, -\theta) \in T^*(\mathbf{R} \times \overline{\Omega}); \rho_0 \le |x| \le \rho_0 + 1, \tau \le t \le \rho_0 + T + 1\} = \emptyset.$ Alors

(5)
$$I_{\delta,j}(\lambda) = O(|\lambda|^{-m}) \quad \text{pour tout} \quad m \in \mathbf{N}.$$

Remarquons qu'en choisissant supp φ_j suffisamment près de u_0 on peut arranger (4) grâce à la continuité de $C_t(u_0)$ par rapport à t et u_0 .

Esquisse de la preuve de la proposition 2. Soit $\beta(x) \in C_0^{\infty}(\mathbf{R}^n)$, $\beta(x) = 1$ pour $|x| \leq \rho_0$, $\beta(x) = 0$ pour $|x| \geq \rho_0 + 1$. Soit $F_{t \to \lambda}$ la transformation de Fourier par rapport à t. On pose $\widetilde{w}_i(x,\lambda) = F_{t \to \lambda}(\beta w_i)$,

$$\Box(\beta w_j) = F_j, \widetilde{F}_j = F_{t \to \lambda}(F_j), \widetilde{h}_j = F_{t \to \lambda}(h_j).$$

Tenant compte de (4) on obtient

(6)
$$WF(F_j) \cap \{t, x, 1, -\theta\} \in T^*(\mathbf{R} \times \overline{\Omega}); \ \tau \le t \le \rho_0 + T + 1\} = \emptyset.$$

D'autre part, \widetilde{w}_i satisfait au problème

$$\begin{cases} (\Delta + \lambda^2)\widetilde{w}_j = \widetilde{F}_j & \text{dans } \Omega, \\ \widetilde{w}_j + \beta \widetilde{h}_j = 0 & \text{sur } \partial \Omega, \\ \widetilde{w}_j & \text{est } (-i\lambda)\text{-sortante.} \end{cases}$$

La dernière condition est une conséquence du fait que $\widetilde{w}_j = 0$ pour $|x| \ge \rho + 1$. D'autre part, la condition $w_j \mid_{t < \tau} = 0$ implique que pour tout $\xi \in S^{n-1}$ on a

$$w_j(|x|\xi,\lambda) = \frac{e^{i\lambda|x|}}{|x|^{(n-1)/2}} \left(a(\xi,\lambda) + O\left(\frac{1}{|x|^{(n+1)/2}}\right) \right)$$

pour $|x| \to \infty$. En utilisant la représentation \widetilde{w}_j par la fonction $(-i\lambda)$ -sortante de Green et le fait que $\widetilde{w}_j = 0$ pour $|x| \ge \rho_0 + 1$ on obtient

$$\begin{split} \int_{\partial K} e^{i\lambda\langle x,\theta\rangle} \left[\frac{\partial \widetilde{w}_j}{\partial \nu}(x,\lambda) - i\lambda\langle \nu,\theta\rangle \widetilde{w}_j(x,\lambda) \right] dS_x \\ &= \int_{\Omega} e^{i\lambda\langle x,\theta\rangle} \widetilde{F}_j(x,\lambda) dx \,. \end{split}$$

On en déduit

$$I_{\delta,j}(\lambda) = \int_{\mathbf{R}} \int_{\Omega} e^{i\lambda(t - \langle x, \theta \rangle)} \rho_j(\langle x, \theta \rangle - t + t_0) F_j(t, x) dt dx$$
$$= O(|\lambda|^{-m}) \quad \text{pour tout} \quad m \in \mathbf{N}$$

car l'intégration par rapport à t se fait sur l'intervalle $\tau \leq t \leq \rho_0 + T + 1$ et on peut profiter de (6).

Afin de traiter le cas (B) on applique la

Proposition 3.— Supposons qu'il existe $\varepsilon > 0$ tel qu'on ait

$$WF(w_i) \cap \{(t, x, 1, -\theta) \in T^*(\mathbf{R} \times \overline{\Omega}); \rho_0 + T + 1 + \varepsilon \le t \le \rho_0 + T + 1 + 2\varepsilon\} = \emptyset.$$

Alors on a (5).

La démonstration de cette proposition suit les mêmes lignes que celle de la proposition 2. On introduit $\alpha(t) \in C_0^{\infty}(\mathbf{R})$ telle que

$$\alpha(t) = \begin{cases} 1 & \text{si } t \leq \rho_0 + T + 1 + \varepsilon, \\ 0 & \text{si } t \geq \rho_0 + T + 1 + 2\varepsilon \end{cases}$$

et $\beta(x) \in C_0^{\infty}(\mathbf{R}^n)$ de manière que

$$\beta(x) = 1$$
 pour $|x| \le -\tau + 2\rho_0 + T + 1 + 2\varepsilon$.

Après on considère

$$\widetilde{w}_j(x,\lambda) = F_{t\to\lambda}(\alpha(t)\beta(x)w_j(t,x))$$

et

$$\widetilde{F}_j(x,\lambda) = F_{t \to \lambda}(\square \widetilde{w}_j).$$

2. Les singularités de $s(t, \theta, \omega)$ pour des obtacles génériques.

On s'intéresse à des singularités de $s(t,\theta,\omega)$ pour $\theta \neq \omega$ fixés. Soit Z_1 un hyperplan orthogonal à ω et tel que l'obtacle K est inclus dans le demi-espace déterminé par Z_1 . On dit qu'un rayon $\gamma \in \mathcal{L}_{\omega,\theta}(\Omega)$ est ordinaire si γ est la projection sur $\overline{\Omega}$ d'une bicaractéristique δ de \square réfléchissante formée par un nombre fini de segments linéaires ayant des projections qui coupent ∂K transversalement et qui obéissent à la loi de réflexion.

Soit γ un (ω, θ) -rayon ordinaire qui passe par $u_{\gamma} \in Z_1$ avec la direction ω . Il existe un voisinage $\mathcal{O}_{\gamma} \subset Z_1$ de u_{γ} tel que pour tout $z \in \mathcal{O}_{\gamma}$ on peut trouver un $(\omega, \theta(z))$ - rayon ordinaire sortant de z. L'application

$$\mathcal{O}_{\gamma} \ni z \xrightarrow{J_{\gamma}} \theta(z) \in S^{n-1}$$

est C^{∞} et on appelle $|\det dJ_{\gamma}(u_{\gamma})|$ la section différentielle de γ (cf.[4]).

Maintenant, soit $\gamma \in \mathcal{L}_{\omega,\theta}(\Omega)$ ayant pour temps de séjour T_{γ} . Pour l'étude de la singularité de $s(t,\theta,\omega)$ en $-T_{\gamma}$ nous avons besoin des propriétés suivantes :

- (a) γ est ordinaire,
- (b) $|\det dJ_{\gamma}(u_{\gamma})| \neq 0$,
- (c) il existe $\varepsilon_{\gamma} > 0$ tel qu'il n'y ait pas $\delta \in \mathcal{L}_{\omega,\theta}(\Omega)$, $\delta \neq \gamma$ pour lesquels

$$|T_{\delta}-T_{\gamma}|<\varepsilon_{\gamma}$$
.

$$VIII-6$$

La condition (c) implique que les singularités de $s(t, \theta, \omega)$ dans l'intervalle $(-T_{\gamma} - \varepsilon_{\gamma}, -T_{\gamma} + \varepsilon_{\gamma})$ ne dépendent que du rayon γ . En utilisant (a) - (c) on peut calculer le terme principal de la singularité en $-T_{\gamma}$ en construisant une paramétrix globale du problème mixte (3) et en suivant les raisonnements de [11].

On se propose de montrer que dans le cas n=3 pour les obstacles génériques K, tous les rayons $\gamma \in \mathcal{L}_{\omega,\theta}(\Omega)$ satisfont (a) - (c). Pour cela, on va précider la notion des obstacles génériques.

Soit $\partial K = X$. On désigne par $C^{\infty}(X, \mathbf{R}^n)$ l'espace des applications C^{∞} muni de la topologie de Whitney (cf.[3]). On note $C^{\infty}_{\mathrm{emb}}(X, \mathbf{R}^n) \subset C^{\infty}(X, \mathbf{R}^n)$ le sous-espace des plongements, et on remarque que $C^{\infty}_{\mathrm{emb}}(X, \mathbf{R}^n)$ est un espace de Baire. On dit qu'un ensemble $\mathcal{R} \subset C^{\infty}_{\mathrm{emb}}(X, \mathbf{R}^n)$ est résiduel si $\mathcal{R} = \bigcap_{m=1}^{\infty} \mathcal{R}_m$, où \mathcal{R}_m sont ouverts et denses dans $C^{\infty}_{\mathrm{emb}}(X, \mathbf{R}^n)$. Etant donné $f \in C^{\infty}_{\mathrm{emb}}(X, \mathbf{R}^n)$, on désigne par Ω_f le domaine (nonborné) ayant pour frontière f(X).

On dira qu'un rayon $\gamma \in \mathcal{L}_{\omega,\theta}$ est dégénéré si γ a au moins un segemnt sur ∂K qui coïncide avec une géodésique sur ∂K par rapport à la métrique sur ∂K induite par la métrique euclidienne de \mathbf{R}^n . D'après les résultats de [2], [14], [15], il existe un ensemble résiduel $\mathcal{R} \subset C^{\infty}_{\mathrm{emb}}(X, \mathbf{R}^n)$ tel que pour toute $f \in \mathcal{R}$ et tout rayon non-dégénéré $\gamma \in \mathcal{L}_{\omega,\theta}(\Omega_f)$ les propriétés suivantes soient satisfaites :

- (d) γ est ordinaire et $\det dJ_{\gamma}(u_{\gamma}) \neq 0$,
- (e) si $\gamma, \delta \in \mathcal{L}_{\omega,\theta}(\Omega_f)$ satisfont (d) et $\gamma \neq \delta$, on ait $T_{\gamma} \neq T_{\delta}$.

Afin d'arranger (c) il faut tenir compte des (ω, θ) -rayons dégénérés. Récemment, L. Stojanov a démontré le résultat suivant.

Théorème 4 [20].— Soit $\theta \neq \omega$ fixés et soit n=3. Alors il existe un ensemble résiduel $\mathcal{R}_1 \subset C^{\infty}_{\mathrm{emb}}(X, \mathbf{R}^n)$ tel que pour toute $f \in \mathcal{R}_1$ tous les rayons $\gamma \in \mathcal{L}_{\omega,\theta}(\Omega_f)$ soient non-dégénérés.

En combinant ce théorème avec (d) et (e) on trouve un ensemble résiduel $\mathcal{R}_2 = \mathcal{R} \cap \mathcal{R}_1$ tel que pour toute $f \in \mathcal{R}_2$ tous les rayons $\gamma \in \mathcal{L}_{\omega,\theta}(\Omega_f)$ satisfont (a) - (c). Alors le calcul de [11] donne

Théorème 5 [2],[20].— Sous les conditions du théorème 4, il existe un ensemble résiduel $\mathcal{R}_2 \subset C^{\infty}_{\mathrm{emb}}(X, \mathbf{R}^3)$ tel que pour toute $f \in \mathcal{R}_2$ nous ayons

(7)
$$\operatorname{sing supp} s_f(t, \theta, \omega) = \{ -T_\gamma; \ \gamma \in \mathcal{L}_{\omega, \theta}(\Omega_f) \},$$

où $s_f(t,\theta,\omega)$ est le noyau de l'opérateur S-Id associé au domaine Ω_f . De plus, près de $-T_{\gamma}$ on a

(8)
$$s_f(t,\theta,\omega) = \frac{1}{2\pi} (-1)^{m_{\gamma}-1} i^{\sigma_{\gamma}} \left| \frac{\det dJ_{\gamma}(u_{\gamma}) \langle \nu(x_{\gamma}), \omega \rangle}{\langle \nu(y_{\gamma}), \theta \rangle} \right|^{-1/2}$$

 $\cdot \delta'(t+T_{\gamma})$ + des termes plus réguliers.

Ici m_{γ} est le nombre des réflexions de γ , $\sigma_{\gamma} \in \mathbb{N}$ est associé à l'indice de Maslov et x_{γ} (resp. y_{γ}) est le premier (resp. le dernier) point de réflexion de γ .

3. Les singularités de $s(t, \theta, \omega)$ pour des directions θ génériques.

Soit K et $\omega \in S^{n-1}$ fixés. On se propose de trouver un ensemble résiduel $\mathcal{R}(\omega) \subset S^{n-1}$ tel que pour tout $\theta \in \mathcal{R}(\omega)$ on ait

(9)
$$\operatorname{sing supp} s(t, \theta, \omega) = \{ -T_{\gamma}; \ \gamma \in \mathcal{L}_{\omega, \theta}(\Omega) \}.$$

Pour cela on introduit l'hypothèse

$$(H_{\omega}) \begin{bmatrix} & \text{Il existe un ensemble r\'esiduel} & \Sigma(\omega) \subset S^{n-1} \\ & \text{tel que pour tout} & \theta \in \Sigma(\omega) & \text{si} & \mathcal{L}_{\omega,\theta}(\Omega) \neq \emptyset, \\ & \text{tous les rayons} & \gamma \in \mathcal{L}_{\omega,\theta}(\Omega) & \text{soient ordinaires.} \end{bmatrix}$$

Dans l'exemple suivant, la condition (H_{ω}) est satisfaite pour tout $\omega \in S^{n-1}$.

Théorème 6.— Supposons que $K = \bigcap_{i=1}^{m} K_i$, où $K_i \cap K_j = \emptyset$ si $i \neq j$ et les K_i , $i = 1, \ldots, m$ soient convexes. Supposons qu'il n'y ait pas de points $x \in \partial K$ et de directions $\xi_x \in T_x(\partial K)$ tels que la courbure de ∂K en x le long de ξ_x s'annule à l'ordre infini. Alors pour tout $\omega \in S^{n-1}$ la condition (H_ω) est satisfaite.

Dans le cas où les K_i , i = 1, ..., m sont strictement convexes, ce résultat a été obtenu dans [16]. Il est naturel de faire la conjecture suivante.

$$(H) \qquad \left[\begin{array}{c} \text{Il existe un ensemble r\'esiduel} \quad \Gamma \subset S^{n-1} \\ \text{tel que pour tout} \quad \omega \in \Gamma \\ \text{la condition} \quad (H_{\omega}) \quad \text{soit satisfaite.} \end{array} \right.$$

Si (H_{ω}) a lieu, on peut trouver un ensemble résiduel $\mathcal{R}(\omega) \subset S^{n-1}$ tel que pour tout $\theta \in \mathcal{R}(\omega)$, tous les rayons $\gamma \in \mathcal{L}_{\omega,\theta}(\Omega)$ satisfassent (b) et (e). Pour (b) on applique le théorème de Sard, tandis que pour (e) on utilise un résultat de Stojanov [19]. De cette manière on obtient

Théorème 7.— Soit $\omega \in S^{n-1}$ fixé tel que (H_{ω}) soit satisfaite. Alors il existe un ensemble résiduel $\mathcal{R}(\omega) \subset S^{n-1}$ tel que pour tout $\theta \in \mathcal{R}(\omega)$ on ait (9) et la singularité de $s(t,\theta,\omega)$ en $-T_{\gamma}$ soit donnée par la formule (8).

Maintenant supposons que K soit captif (cf. [7]) et que la condition (ii) du § 1 soit satisfaite. Alors il existe un point $(y,\eta) \in T^*(\Omega)$ tel que la projection $\gamma(\sigma)$ sur $\overline{\Omega}$ de la bicaractéristique $\gamma(\sigma)$ de \square passant par $(0,y,1,\eta)$ satisfasse à la condition.

(10)
$$\{\gamma(\sigma); \, \sigma > 0\} \subset B_{\rho_0} = \{x; \, |x| \le \rho_0\}.$$

En utilisant la connexité de Ω , on en déduit qu'il existe un point $x_0 \in B_{\rho_0}$ et une direction $\omega_0 \in S^{n-1}$ tels que le rayon $\gamma_0(\sigma)$ passant par x_0 en direction ω_0 satisfait (10). Cela implique l'existence d'une suite des (ω_0, θ_k) -rayons γ_k dans Ω ayant temps de séjour T_k tels que

$$\lim_{k\to\infty}\,T_k=+\infty\,.$$

Tenant compte de (ii) on peut approximer γ_k par des (ω_k', θ_k') -rayons ordinaires γ_k' ayant temps de séjour T_k' , satisfaisant

$$\lim_{k\to\infty} T_k' = +\infty.$$

4. Résolvante du laplacien en Ω et les temps de séjour des (ω, θ) -rayons.

Pour $\lambda \in \mathbf{R}$ on désigne par $\mathcal{R}(\lambda)f = u(x,\lambda)$ la solution du problème

$$\begin{cases} (\Delta + \lambda^2)u = f & \text{dans } \Omega, \\ u = 0 & \text{sur } \partial \Omega, \\ u & \text{est } (-i\lambda)\text{-sortante.} \end{cases}$$

L'opérateur

$$\mathcal{R}(\lambda): C_0^{\infty}(\overline{\Omega}) \to C^{\infty}(\overline{\Omega})$$

admet une extension méromorphe dans C ayant des pôles λ_j , $\Im \lambda_j < 0$, (cf. [5]). Soit

$$\widehat{s}(\lambda, \theta, \omega) = F_{t \to \lambda}(s(t, \theta, \omega))$$

$$= c_n \lambda^{n-2} \int_{\partial K} e^{-i\lambda \langle x,\theta \rangle} \left(\frac{\partial v}{\partial \nu} - i\lambda \langle \nu,\omega \rangle v \right) (x,\lambda) dS_x,$$

où $c_n = \text{const}$ et $v(x, \lambda)$ est la solution du problème

$$\begin{cases} (\Delta + \lambda^2)v = 0 & \text{dans } \Omega, \\ v + e^{i\lambda\langle x, \omega \rangle} = 0 & \text{sur } \partial \Omega, \\ v & \text{est } (-i\lambda)\text{-sortante.} \end{cases}$$

Soit $a > b + 1 > \rho_0 + 2$. On introduit une fonction $\varphi_a(x) \in C_0^{\infty}(\mathbf{R}^n)$ telle que

$$\varphi_a(x) = 1$$
 pour $|x| \le a$, $\varphi_a(x) = 0$ pour $|x| \ge a + 1$.

Alors

$$\begin{split} v(x,\lambda) + \varphi_a(x) e^{i\lambda\langle x,\omega\rangle} \\ = R(\lambda) \left[(\Delta + \lambda^2) (\varphi_a e^{i\lambda\langle x,\omega\rangle}) \right] = R(\lambda) F_a(\lambda), \end{split}$$

où

$$F_a(\lambda) = \left[\Delta \varphi_a + 2i \langle \nabla \varphi_a, \omega \rangle \lambda \right] e^{i\lambda \langle x, \omega \rangle}.$$

Soit $\chi_b(x) \in C_0^\infty(\mathbf{R}^n)$, $\chi_b = 1$ pour $|x| \le b$, $\chi_b(x) = 0$ pour $|x| \ge b + 1$. On obtient

$$\frac{\partial v}{\partial \nu} \mid_{\partial K} = -i\lambda \langle \nu, \omega \rangle e^{i\lambda \langle x, \omega \rangle} \mid_{\partial K}$$

$$+ \frac{\partial}{\partial \nu} \left(\chi_b R(\lambda) F_a(\lambda) \right) |_{\partial K} .$$

On voit facilement que pour $\theta \neq \omega$ on a

$$\int_{\partial\Omega} e^{-i\lambda\langle x,\theta-\omega\rangle} \langle \nu,\theta+\omega\rangle dS_x = 0$$

et on trouve

(11)
$$\widehat{s}(\lambda, \theta, \omega) = -c_n \lambda^{n-2} \int_{\Omega} e^{-i\lambda \langle x, \theta \rangle} (\Delta + \lambda^2) (\chi_b R(\lambda) F_a(\lambda)) dx$$
$$= -c_n \lambda^{n-2} \int_{\Omega} e^{-i\lambda \langle x, \theta \rangle} [\Delta \chi_b R(\lambda) F_a(\lambda)] + 2 \langle \nabla_x \chi_b, \nabla_x R(\lambda) F_a(\lambda) \rangle dx.$$

On introduit des fonctions $\psi_c(x) \in C_0^{\infty}(\mathbf{R}^n)$, c = a, b, telles que

$$\psi_c(x) = 1 \text{ pour } 0 < c < |x| \le c + 1$$

$$\psi_c(x) = 0 \text{ pour } |x| \ge c + 2 \text{ ou } |x| \le c - 1.$$

Soit

$$R_{a,b}(x) = \psi_b(x)R(\lambda)\psi_a(x).$$

Lemme 8.— Supposons qu'il existe $\varepsilon > 0$ tel que $R_{a,b}$ soit analytique dans le domaine

$$\mathcal{U}_{\varepsilon} = \{\lambda \in \mathbf{C}; -\varepsilon \operatorname{Log}(1+|\lambda|) < \Im \lambda \leq 0\}.$$

Supposons qu'il existe C > 0, $\alpha > 0$, $p \in \mathbb{N}$, $k \in \mathbb{N}$ tels que

(12)
$$||R_{a,b}(\lambda)\varphi||_{H^1} \le C(1+|\lambda|)^p e^{\alpha|\Im \lambda|} ||\varphi||_{H^k(\Omega)}$$

pour tout $\lambda \in \mathcal{U}_{\varepsilon}$ et chaque $\varphi \in C_0^{\infty}(\Omega)$. Alors pour tout $m \in \mathbb{N}$ il existe $t_m < 0$ tel que

$$s(t, \theta, \omega) \in C^m$$
 pour $t \le t_m$

uniformément par rapport à $(\omega, \theta) \in S^{n-1} \times S^{n-1}$.

Remarque. Pour des obstacles non-captifs, Vainberg [21] a obtenu (12) avec p = k = 0 et C, α, ε convenablement choisis.

Corollaire 9.— Supposons qu'il existe (ω_k, θ_k) -rayons ordinaires dans $\overline{\Omega}$ ayant temps de séjour T_k tels que

$$\lim_{k \to \infty} T_k = +\infty,$$

(14) $-T_k \in \operatorname{sing\,supp} s(t, \theta_k, \omega_k)$ et la singularité en $-T_k$ est donnée par (8).

Supposons qu'il existe $\varepsilon > 0$ tel que $R_{a,b}(\lambda)$ soit analytique dans le domaine $\mathcal{U}_{\varepsilon}$. Alors pour C, α , p et k arbitrairement fixés, l'estimation (12) n'est pas satisfaite pour toutes $\varphi \in C_0^{\infty}(\Omega)$.

Comme nous avons remarqué au paragraphe 3, on peut arranger (13) pour des obstacles captifs.

Dans quelques cas particuliers on peut arranger (14) grâce à la condition (H_{ω}) . Nous supposons que pour tout obstacle captif, il existe (ω_k, θ_k) -rayons ordinaires qui satisfont aux conditions (13) et (14).

Bibliographie

- [1] K. Andersson and R. Melrose: The propagation of singularities along gliding rays. Invent. Math., 41 (1977), 197-232.
- [2] F. Cardoso, V. Petkov and L. Stojanov: Singularities of the scattering kernel for generic obstacles. Preprint.
- [3] M. Golubitsky and V. Guillemin: Stable Mappings and Their Singularities. Springer Verlag, New York, 1973.
- [4] V. Guillemin: Sojourn time and asymptotic properties of the scattering matrix. Publ. Res. Inst. Math. Sci., Supl. 12 (1977), 69-88.
- [5] P. Lax and R. Phillips: Scattering Theory. Academic Press, New York, 1967.
- [6] A. Majda: A representation formula for the scattering operator and the inverse problem for arbitrary bodies. Comm. Pure Appl. Math. 30 (1977), 165-194.
- [7] R. Melrose: Singularities and energy decay of acoustical scattering. Duke Math. J., 46 (1979), 43-59.
- [8] R. Melrose and J. Sjöstrand: Singularities on boundary value problems, I, II. Comm. Pure Appl. Math., 31 (1978), 593-617 and 35 (1982), 129-168.
- [9] S. Nakamura: Singularities of the scattering kernel for two convex obstacles. Publ. RIMS Kyoto University, 25 (1989), 223-238.
- [10] S. Nakamura and H. Soga: Singularities of the scattering kernel for two balls. J. Math. Soc. Japan, 40 (1988), 205-220.
- [11] V. Petkov: High frequency asymptotics of the scattering amplitude for non-convex bodies. Comm. PDE, 5 (1980), 293-329.
- [12] V. Petkov: Scattering Theory for Hyperbolic Operators. North-Holland, Amsterdamn, 1989.
- [13] V. Petkov and L. Stojanov: Periods of multiple reflecting geodesics and inverse spectral results. Amer. J. Math., 109 (1987), 619-668.
- [14] V. Petkov and L. Stojanov: Spectrum of the Poincaré map for periodic reflecting rays in generic domains, Math. Z., 194 (1987), 505-518.
- [15] V. Petkov and L. Stojanov: On the number of periodic rays in generic domains. Ergodic Theory and Dynamical Systems, 8 (1988), 81-91.
- [16] V. Petkov and L. Stojanov: Singularities of the scattering kernel and scattering invariants for several strictly convex obstacles. Trans. Amer. Math. Soc. 312 (1989), 203-235.
- [17] V. Petkov and L. Stojanov: Singularities of the scattering kernel for a class of star-shaped non-convex obstacles. Math. Appl. Comput., (to appear).

- [18] H. Soga: Conditions against rapid decrease of oscillatory integrals and their applications to inverse scattering problems. Osana J. Math., 23 (1986), 441-456.
- [19] L. Stojanov: Unpublished manuscript, 1989.
- [20] L. Stojanov: Nonexistence of generalized scattering rays and singularities of the scattering kernel for generic domains in R³. Preprint, 1989.
- [21] B. Vainberg: Asymptotic Methods in Equations of Mathematical Physics. Gordon and Breach Sci. Publ., 1988.

Université de Nantes Inst.de Math. et d'Informatique 2 Chemin de la Houssinière 44072 NANTES Cedex (France)