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INTRODUCTION.

Let H’~ be the n-dimensional hyperbolic space (Lobachevsky space) which can be
modelled as a half-space (x,xn)li 

’ 

E &#x3E; 01 with the Riemannian metric
ds2 == x;;2 (di2 + dxn ). Let r be a discrete group of isometries of Hn such that vol 
oo. In this paper we study some aspects of spectral theory of elliptic (pseudodifferential)
operators on H’~ which are automorphic with respect to r i.e. commute with the shift

operators given by the transformations from r in function spaces on Hn. We also consider
more general situations with a general Riemannian manifold M instead of Hn .

Similar operators on Rn are called periodic (with respect to a lattice F C Rn which
acts on Rn by translations). The spectrum of self-adjoint periodic operators on Rn has a
well-known band structure [E], [S]. There is also an important spectral invariant of such
operators which is called the integrated density of states (IDS) and naturally arises in the
quantum theory of solids. It is defined for self-adjoint semibounded below elliptic periodic
differential operators as a limit distribution function

where is the usual eigenvalue distribution function of the operator in a bounded
open domain V C Rn with Dirichlet boundary conditions, V ( is the Euclidean volume of

V, V - oo means that V blows up in a sufficiently regular way (e.g. homothetically) filling
the whole space Rn in this limit process. IDS can be defined by (0.1) not only for periodic
operators but also for general almost periodic or random self-adjoint elliptic operators (see
e.g. [Sh 4], [G]).

For an almost periodic operator A it was proved in [Sh 2] that his IDS can be written
as

where Ex is the spectral projection of some operator which is closely connected with A, and
trB is the trace on a Hoc-factor introduced by L.A. Coburn, R.D. Moyer and I.M. Singer
[C-M-S] to build an index theory of almost periodic elliptic operators. In particular (0.2)
implies a variational principle for N(A) (see [Sh 1]) and allows a description of the spectrum
o,(A) as the set of all points of increasing of N(A) :

There are also some results on asymptotic behaviour of N(A) as A 2013~ +00 (see [Sh 4] and
references there). The most unusual one tells that if A = -0 + q(x) with almost periodic
or random q, then

(Note that the estimate of remainder is remarkably better here then the best possible
Hormander estimate in the usual Weyl formula for the eigenvalue distribution function of
a second order operator on n-dimensional compact manifold). In [Sh 1] (0.4) was proved
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with help of (0.2) and the variational principle but later a very simple proof was found [Sh
4]. The latter uses directly (0.1) and the fact that for A = -0 IDS is explicitly known.

Now let M be the universal covering space of a compact manifold X and r = 7rl (X )
acts on M by deck transformations. More generally M can be a Galua covering space of a
compact manifold X. M.F. Atiyah [A] introduced then a von Neumann algebra (NA) ,A of
F-periodic operators and a natural trace trr on ,4. He used them to build up real-valued
index theory of elliptic r-periodic operators on M.

Generalising a bit in this paper we consider the case when 1V1 is an n-dimensional
Riemannian manifold and F a discrete group of isometries of llif such that vol  o0

(we do not suppose M If to be compact and allow that transformations -Y E F have fixed
points). Using the same Atiyah trace trr we introduce the spectrum distribution function
Nr(A) by the formula which is similar to (0.2) ; so (0.3) is also true. We do not know
whether some kind of interpretation of Nr(A) as IDS (i.e. a formula like (0.1)) generally
exists. It probably does not when the area of the sphere of the radius R increases at
the same rate as the volume of the ball of radius R as R - oo (e.g. this is the case in

H’~ ). Then we use NA technique to prove a variational principle which is similar to the
well known Courant principle in the form of the Glazman lemma. This can be done also
without using NA’s (see [B-S] where the case of random elliptic operators was treated) but
that would be more complicated.

The variational principle allows us to apply perturbation technique to obtain the
asymptotic results like (0.4) for operators A = (-~)’~~2 +Qm-r, where A is the Laplacian
on H, i Qm-r a T‘-periodic pseudodifferential operator of order m - r. More exactly we
prove that in this case

where k _ [(r - 1)/2], cj are constants depending only on n (actually they coincide with
the Minakshisundaram - Pleijel coefficients of -~). The proof goes along the same lines
as that of (0.4) in [Sh 1] (i.e. it is based on the variational principle and not on formulas
like (0.1) as in [Sh 4]).

Note finally that S.P. Novikov and M.A. Shubin [N-S] introduced some invariants
of a compact manifold X with nontrivial fundamental group as exponents characterizing
asymptotic behaviour of Nr(A) as A - +0 for the Laplacians on exterior p-forms on the
universal covering space M of X . In Sect.5 we show that the variational principle easily
implies that these invariants do not depend on the chosen Riemannian metric on X.
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1. VON NEUMANN ALGEBRA OF r-INVARIANT OPERATORS.

1.1. Preliminaries on von Neumann algebras.
We start by reminding the necessary preliminaries on von Neumann algebras ([D],

[T]). Let x be a Hilbert space, the algebra of all bounded linear operators in H. A
subalgebra ,A C is called von Neumann algebra (NA) if
a) I E ,A (I is the identity operator in ~ ~ ;

b) A E ,~4 implies A* E .A (i.e. ,A is a *-algebra) ;

c) ,A is closed with respect to the weak operator topology.
For M C £( ) denote by the commutant of M , i.e.

A *-algebra A is NA iff A’~ _ .A where A" = (A’)’. Let a NA ,A be given. Let A be an
unbounded operator in ~-l. We write AqA and say that A is affiliated with A iff BA C AB
for every B E A’. If A is closed and densely defined operator in ~-l, A = US its polar
decomposition and A77A then U C .A and SqA. If A is a self-adjoint operator in H, AqA
and f = f (A) is a Borel function on the spectrum cr(A) of A, then f (A)qA. In particular
Ea E ,A for all spectral projections Ex of A.

Denote A+ = {A E AlA &#x3E; 01. A trace on A is an additive positively homogeneous
(of order 1) nonnegative functional f : ,A+ ~ [0, +00] satisfying f (CC*) = j(C*C) for
every C E A. Such a trace can be extended from J+ = {A E A+ I f (A)  to a linear
functional on an ideal J C A which is a linear hull of J+. Operators A are called

f -class operators.
We will always deal with the traces satisfying some additional conditions which are

called faithfullness, normality and semifiniteness. A trace f on ,A+ is called faithful iff
A E ,A+ and f (A) = 0 imply A = 0. It is called normal iff for every increasing directed
set c A+ the existence of sup Aa = A E ,A+ implies that f (A) = 

a a

Semifiniteness of f means that if A C .A+ then f (A) = sup f (B) with the supremum over
all B E .A+ such that B  A and f (B)  +oo.

1.2 r-invariant operators and r-trace.

Let M be a complete connected Riemannian manifold, F a discrete group of isometries
of M. Let ,~’ be a fundamental domain of r. We suppose that vol:F  oo. Remark that
some elements ¡ C r may have fixed points and M/r is not supposed to be compact. But
we suppose that r acts effectively i.e. that there such that -t defines
the identity transformation of M. We denote ,X the result of action of 7 E r on a point
r 6 M. Define L2 (M~ with respect to the usual Riemannian measure and a shift operator
L2(M) --t by the formula (L~,u)(~) = u(-y-lx), so L, is an unitary operator. An
operator A in L 2(M) is called a r-invariant operator iff ALl = LyA for every 7 E I~.

By ,Ar denote the algebra of all bounded linear r-invariant operators. Then Ar is a
NA and Ar is the weak closure of the linear hull of r}- It is easy to see that if A
is a self-adjoint operator in and A is r-invariant then 
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Define an action of r on M x M by ~y(~, y) _ (7x, 7y). Then ~’ x M or M are

fundamental domains of this action.

Let us introduce a class rHS of r-Hilberi-Schmz*dt operators in L2(M). By definition
A C rHS means that A C Ar and for the L. Schwartz kernel KA of A we have ~’A E
L2 (M x M) and KA E x M). Note that = for almost all

(x, Y) E M x M so KA E x M) iff KA E x ~"). Let X be such a function on M
that

for almost all x E M. It is easy to see that A C IPHS iff XA is a usual Hilbert-Schmidt
operator for every X satisfying (1.1). So FHS is a bilateral *-ideal.

Now we can introduce F-trace class FTR as a bilateral ideal spanned by A1 A2 with
A1, A2 E rHS. If al and u2 are measurable functions satisfying (1.1~ and A E rTR then
~1 is a usual trace-class operator. Suppose in addition that

It is not difficult to see (cf. [A] that tral A92 does not depend on the choice of Ql and U2
satisfying (1.1) and (1.2). So we can define r-trace of A as

Let = 1,2,’"} be an orthonormal base in L2 (.F ). Set ei (x) = 0 for x V F, then
f L -t ei 1-y E r, i E N} is an orthonormal base in L2 (M). Taking o~1 = a2 = where is
a characteristic function of ~’ we obtain

Note that there exists a function a C C°°(M) such that ~¡E It may be

essentially constructed in the same way as in [A]. Some difference is caused by the existence
of fixed points. We leave details to the reader. For any 0 E Lfoc(M) fl we have

where dp is the Riemannian density induced by a given r-invariant Riemannian metric on
M. Obviously we can take a1 = u2 = va in ( 1.3~. We also can suppose that is positive
on So A E Ar belongs to rHS iff is a Hilbert-Schmidt operator.

With these preliminaries it is not hard to prove the following properties of the r-trace.
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Proposition 1.1.
i) Let A E then A E FTP iff VA E rHS.

ii) Let A E FTP, then tr sA = tr AS.

iii) Let S c F TR, Aj E Ar,Aj --+ A strongly. Then trrSAj --+ trr A.

iv) (Normality of IF-trace). Let be an increasing directed set of operators from At
and suppose that there exists sup Aa = A E At. Then trr A = sup trr Aa

a a

Proofs of the statements of this proposition are the same as in [A] or follow from
analogous statements for usual trace.

2. UNIFORM PSEUDODIFFERENTIAL OPERATORS.

Here we introduce appropriate classes of uniform pseudodifferential operators (’11 DO)
and corresponding uniform Sobolev spaces on M. For the sake of simplicity we suppose
that discrete group F acts on M without fixed points and X = is a compact manifold.
For an unimodular Lie group similar classes of ’11 DO were studied in [M-S 1] and for general
manifolds of bounded geometry in [Ro].
2.1. Classes of uniform 

Let L( be a r-invariant covering of M obtained by lifting of finite covering of X by
small balls with coordinates chosen on them. Then u has finite multiplicity, and we may
suppose that 7U n U = 0 for any U E LI and 7 E f, ¡ =1= e.

For a domain V C Rn we denote by a usual class of functions a(x, ç) E
C°°(V x Rn) such that for any K CC V and any multiindices a and # there exists a
constant such that

Now a(x, Dx ) denotes on V with the symbol a(x, ~).
Definition 2.1. An operator A : C°°(M) is called properly supported
uniform W DO of order m iff the following conditions are satisfied :

i) Let be the L. Schwartz kernel of A. Then there exists a constant CA such
that KA (x, y) = 0 when d(x, y) &#x3E; CA where d(x, y) denotes the distance between x
and y, induced by a given Riemannian metric.

ii) KA E where A M C M x M is the diagonal, and for every U2 E U,
every K1 CC Ul , h’2 CC = f~, and every multiindices a, f3 there exists a
constant C = such that C does not change if we replace k’1, K2, U1, ~2 , by
,Kl, ,K2"U1"U2 and

iii) Let AU = Alu : C°°(U) be a restriction of A on t~ E Ll. Then Au
au(x, Dx) + Ru, where au E sm(U),Ru is a smoothing operator such that
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when x, y E .K CC U. The constants in (2.1~ for au and in (2.2) for KRu do
not change if we replace K and U by 7K and for any 7 E r.
Denote this class of operators by 
Now we shall define uniformly elliptic operators.

Definition 2.2. W DO A E is called U11iformly elliptic iff there exist constants
C &#x3E; 0 and R &#x3E; 0 which do not depend on U E LI such that

when x E U, lçl [ &#x3E; R. Denote this class of uniformly elliptic operators by 
We shall also need classical or polyhomogeneous (in the sence of [Sh 3] or [H6]) 

In this case for each U we have

where m E C, am-j,U are positively homogeneous of order m - j in E 0

when lçl  1/2 and 0 = 1 when lçl &#x3E; 1. Denote also

Obviously E rN,U E SRem-N(U). w DO A is called uniform classical
TDO if for one can choose constants in (2.1) uniformly for all U E U.
Denote this class by Denote also 

A rootine technique allows us to show that = UMER Uwm(M) is an invo-
lutive algebra. For A E there exists a parametrix B E EUw-m(M) i.e. an

inverse to A modulo UT--(M) = If A E then B may
be chosen from We will write D instead of W for classes of differential

operators and r instead of U for classes of r-invariant operators.

2.2. Uniform Sobolev spaces.
Let As C ErT’(M) be an operator with a positive principal symbol. We may sup-

pose that is a parametrix for 11~ so that = I where C UT-"O(M).
Define H-OO(M) as a set of ~c E D’(M) such that there exist Pi,..., PN E rD°° (lVl ) and
U 1, - - - , u E L2 ( M ) such that = Pl U 1 + ... + Now we define uniform Sobolev

spaces HS(M).
Definition 2.3. fu E H-OO(M)IAsu E L2(M)I. Define also H°°(M) =

The following proposition is a trivial corollary of developped technique.

Proposition 2.1.
i) Let A E u E Hs(M), then Au E 

ii) (EIIiptic regularity.) Let u E E E then u E
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Let us introduce an inner product in HS(M) in a usual way. Namely, let ~1, ... , QN
be generators of left C’ (X)-module s. For ~c, v E Hs(M) set

where (~, ~) is the usual L2-inner product. The inner product (2.3) turns Hg(M) into a
Hilbert space, and the Sobolev norm defined by (2.3) is locally equivalent to usual HS(Rn)
norm. An operator A E UiI!m(M) extends to a continuous operator A : H~(M) --~

for each s E R. Such simple facts as the density of in every Sobolev

space Hg(M) and the duality of Hg(M) and with respect to L2-inner product
are also true (for the proofs see e.g. [Sh 3] and [M-S 1]). There is also a uniform Sobolev
embedding theorem : if s &#x3E; l~ + n/2 with an integer k &#x3E; 0 then Hs(M) C where

is the space of all ~c C such that Lu is bounded for every L E 
From Proposition 2.1 easily follows

Proposition 2.2. Let A E be a formally self-adjoint operator, m &#x3E; 0.
Consider A as an unbounded operator in L2(M) with the domain D(A) = Co’(M). Then
it is essentialy self-adjoint, and D(A) = 

2.3 Complex powers of uniform 
Let A c &#x3E; 0. Suppose that there exists an 6: &#x3E; 0 not depending on

U such that

when x E 1 &#x3E; I, A E A5  6). In this case one can construct

complex powers Az of A by the scheme of Seeley ~S 1~ . The uniform structure of M allows
us to obtain estimates of (A - A)-’ which are similar to ones of ~S 1J, so one can define
Az, Rez  0, by a standard contour integral. All the local properties of the complex powers
and their L. Schwartz kernels are the same as for compacts manifolds. In addition it is easy
to see that A’ = + Rz where C and Rz is a smoothing operator
in the uniform Sobolev scale (i.e. Rz : Ht (M) is a bounded operator for all
s, t E R). (Remark that complex powers of uniform elliptic operators on a unimodular Lie
group were studied in [M-S 2] and the case of r-invariant was considered in [E-E]).
Remark. All the results of this section are easily generalized on arbitrary manifolds with
a bounded geometry (see e.g. [Ro]). We use the action of r just for the sake of simplicity
of definitions (we do not use the manifolds without free action of a discrete group in
applications below).
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2.4. Operators in spaces of sections of vector bundles.

We shall need a generalization of the situation which has been described. Let M be
as before and E, F are some complex vector r-bundles on M. This means that r acts on
E and F and this action agrees with the action of r on e.g. every element 7 E r defines
a linear map t*x : E¡x for every E M. We always suppose that the bundles E, F
have Hermitian inner product on their fibers. All structures are supposed to be C°°. Then
the usual Hilbert spaces L2 (M, E) and L2 (M, F) of square-integrable sections are defined.
The shift operators L~, are then defined on CQ (M, E), C°° (M, F) and L2 (M, E) (and
also on COO(M, F), C - (M, F), and L2 (M, F)). Now we can define r-invariant operators
A : C-(M,F) or A : L2 (M, E) --~ L2 (M, F) as operators which commute
with all L¡ i.e. AL~, = L-,A for every 7 E r. Note that here L.~ in the left side of the
equality acts in or and that in the right side acts in C°°(M, F) or
L2 (M, F). All the definitions and results of this and previous sections are easily generalized
to this case. Let us note that the kernel of an operator A : E) -~ COO(M, F) will be
considered as a distribution section of the vector bundle E 0 F over M x M with the fiber

Ex over the point (x, y) E M x M. This is possible because we identify functions and
densities with the help of the canonical Riemannian density on M and Fy and ~* with the
help of Hermitian structure on F. The NA of all bounded linear r-invariant operators in
L2 (~l, E) will be denoted by Ar (E). The main example of this situation naturally arises
when r acts on M as before and E, F are some tensor bundles or their natural subbundles
like The exterior differentiation de Rham operators dp : 
as well as the Laplacians Ap = -(d§dp + AP(M) are r-invariant
operators. The invariance condition for an operator A : L2 (M, E) --~ L2(M,F) with a
continuous kernel can be written as follows :

In particular,

is a r-invariant scalar continuous function. If in addition A E hTR
then

The class of operators A : Cgo(M, E) --+ C°°(M, F), naturally generalizing 
will be denoted We shall write instead of 

Analogous notations will be used for other classes of The natural uniform Sobolev

space of sections of a vector r-bundle E will be denoted by H-’(M, E) (if E is the trivial
bundle with the fiber C’ then = 
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3. SPECTRUM DISTRIBUTION FUNCTION AND VARIATIONAL PRIN-

CIPLE.

3.1. Preliminaries

In this section we change notations a little. We return to the situation which is
described in 1.2 i.e. we suppose that M is a complete connected Riemannian manifold and
r is a discrete group of isometries of M such that volM/F  oo. Moreover we shall suppose
for the sake of simplicity that there is another discrete group of isometries of M which is
denoted by fl and acts on M without fixed points so that Mlrl is a compact manifold.
Instead of the existence of such a group 1~1 we could just suppose that M has a bounded
geometry because all we need is that the technical tools described in Section 2 could be
applied. So we can construct classes of uniform pseudodifferential operators 
uniform Sobolev spaces HS(M) and combine results of the two previous sections.

An example of particular importance is M = Hn. Since Hn is a symmetric space we
can find a discrete group ri satisfying the above mentioned conditions ([B]). Consider the
Laplacian A on Hn, which we identify with the self-adjoint operator in L 2(Hn) defined
as the closure of A from the initial domain In this way A becames a strictly
negative self-adjoint operator (strictly negative means here that the spectrum of A is on
the negative real half-line and is separated from 0). So following the results of Section 2 we
can define complex powers (-)z, z E C. We shall study r-invariant operators of the form
H = - m2 + H1 where m &#x3E; = Hil) + H{2 , H1 E uq,m-r(Hn), r &#x3E; 0, Hi2)1 1 1 ) 1

is a smoothing operator in the uniform Sobolev scale. If H1 is formally self-adjoint (i.e.
symmetric an then the closure of H (which we will denote by the same letter)
is a self-adjoint operator in An important example is the Schr6dinger operator

where q is a real-valued C°°-function with bounded derivatives of every order (this means
that C2 for every Fi -invariant differential operator L with C°°-coefhcients).
3.2. Spectrum distribution function.

Let E be a hermitian vector F-bundle on Nl, A be a W DO, A : 
C°°(M, E) and where Al E Uwm(M), R, is a smoothing operator in the
scale H,9 (M, E) i.e. R, defines a bounded operator R, : H’(M, E) - E) for every
S7 t E R. Let us suppose that m &#x3E; 0 and Al has a strictly positive principal symbol
a~ so that a~ ~x, ~) : Ex --~ Ex is a positive hermitian map for every x E M and every
(x, fl) E Tx*M. Suppose that A is formally self-adjoint i.e. symmetric on Co"O(M7 E). Then
its closure (also denoted A) is a self-adjoint operator in L2 (M7 E) which is semibounded
below. Let us consider an open, closed or semiclosed interval A C R and denote by the

corresponding spectral projection of A. If 11= (-00, A] we shall write Ex instead of EA.
Let A be a bounded interval. Then one can show (cf.[F-S]) that EA is a smoothing

operator in the uniform Sobolev scale. If y) denotes the L. Schwartz Kernel of EA
then 0 for every x E M. It is easy to see that
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for every f E Ey, g E Ex. It follows that

for every x, y E M. Since A is semibounded below all these statements are fulfilled for Ea
too.

Note that =  ( ( , y) f ) for every y E M and f E Ey . Using the results of
Sect.2 we get

where we used the notation = IIA : Hs(M, E) --~ Due to (3.2) it is
obvious that EA E rHS and since EA = E2A we obtain that EA E rTR. Now (with the
notations of Sect. 1.2)

because of (1.4).
Now we can define the spectrum distribution function Nr(A).

Definition 3.1. Nr(A) = trrEa.
Note that Nr (A) is semicontinuous from the right (i.e. = Nr (A)), Nr (A) --_ 0

when A  inf u(A), and a(A) coincides with the set of points of increasing of Nr, i.e. (0.3)
is fulfilled for Nr . We will also write Nr,A instead of Nr when it is necessary to specify
the operator A for which Nr is constructed.

3.3 The variational principle.
We shall formulate now the variational principle which is similar to the well known

Glazman lemma. For the sake of simplicity we shall write instead of Ar(E). Let

Proj (,Ar ) be the set of all orthogonal projections in Ar . Let A be any semibounded below
self-adjoint r-invariant operator. Then we can define Nr,A(A) = trr Ex (it may happen
that Nr,A(A) = oo when A &#x3E; Ao ).
Theorem 3.1. Let AqAr be self-adjoint and semibounded below. Then 

sup trr P where supremum is taken over P E Proj such that ImP C D(A) and
P(A - a)P  0 (here D(A) is the domain of A).
Remark. This theorem was proved in [Sh 1] for I or II factors. The algebra ,Ar is not

generally a factor but the proof for ,Ar is the same. We will give a sketch of it for the sake
of completeness.
Proof. Since Ea satisfy the conditions on P in the theorem the inequality 
sup trr P is evident. To prove the inverse inequality note that if P satisfies the conditions
then ImP n Im(I - EÀ) = 0 since A - Al &#x3E; 0 on Im(I - E~). So ImP n KerE x = 0. This
implies that Ex gives a monomorphism of ImP to ImEx so it should be expected that
trr P  trr E. For the rigorous proof one should consider the polar decomposition EÀP =
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UT where T = U is the partially isometric operator mapping isometrically ImT
to IMEXP and vanishing on (ImT) . Since ImT = ImP, ImEaP C ImEa, U is an isometric
monomorphism of ImP onto a subspace in We evidently have U* U = P, UU* = F
and F E Proj(,Ar ), F  Ex. So trr P = trr (U* U) = trr (UU* ) = trr F  trr Ea. o

Corollary 3.1. If both AI, A2 satisfy conditions of Theorem 3.I. and A2 then

Nr,AI (A) &#x3E; Nr,A2 (A) for every A E R.

4. ASYMPTOTICS OF THE SPECTRUM DISTRIBUTION FUNCTION.

4.1 Zeta function, teta function and rough asymptotics of Nr(A) as A - +00.
Suppose that A C E), m &#x3E; 0, and A is a self-adjoint positive r-invariant

operator satisfying the matrix analogue of (2.4), i.e. ~)-a)-1 ~~  C when x E U,
lçl &#x3E; 1, A E It is easy to see that in this case all the constructions of sect.3.2 are valid.
On the other hand one can construct complex powers Az of A. The usual arguments
connected with uniform Sobolev spaces (see 3.2) show that Az E hTR when Rez  -nm
and in this case

where Az(x,y) is the L. Schwartz kernel of Az. This fact allows us to give the following
Definition 4.1. (r(z) = trr Az, Rez  -n/m. In view of ~4.I) and standard local
properties we obtain that (r can be extended to a meromorphic function on C
with simple poles in Zk = (k - n)/m, k = 0, l, .... Residues in these poles are given by the
well known Seeley formulas ([Sl]).

We can also define the exponent e-zA of A by the formula

where c &#x3E; 0, Rez &#x3E; 0. Let y) be the L. Schwaxtz kernel of e-zA. Then it is easy to
prove that e-zA E rTR (see 3.2) and

Definition 4.2. = trr e-zA, Rez &#x3E; 0.

Taking r-trace in (4.2) we obtain a usual connection between (r and 8r . So (see
e.g. [D-G]) there exists Minakshisundaram-Pleijel expansion for Br (z)(z --~ 0) and the
coefficients of it (which are called the Minakshisundaram-Pleijel coefficients of A) are
related with the residues of (r by standard formulas. Note also that if A &#x3E; Ao &#x3E; 0 then
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There are two important corollaries from this formula.
First, if we know the residue 131 = resz=-n/m ~r ~z) then applying Ikehara tauberian

theorem we obtain

For free actions of r with a compact factor this formula was proved in [E-E]. Second,
using (4.4) one can obtain expressions of coefhcients of asymptotic expansion of Nr,A(A)
through Minakshisundaram-Pleijel coefficients, if such an expansion exists. We will use
this fact below for the Laplace-Beltrami operator.
4.2 Precise spectral asymptotics for Schrodinger type operators.

Here we will obtain for the spectrum distribution function of operator H on Hn much
more precise asymptotic formula than (4.5) by using the variational principle. First of all
we need the following
Lemma 4.1. Let H be as described in 3.I. Then there exists a constant C &#x3E; 0 such
that (; (-D~tm-r)~2 .
Proof. It is sufficient to prove the statement for Hi . We shall prove that for u E 

Since (2013A) m4 r ; is an isomorphism, it is sufhcient to prove that

But the operator B = is bounded in every Hg(Hn) so (4.6) is

actually true. a

Now we shall formulate the main theorem.

Theorem 4.1. Let Nr(A) be the spectrum distribution function of H, where H is
described in 3.I. Then 

-

when a ~ +00. Here k = ((r - 1)/2], and cj do not depend on Hi (they depend on j and
n only).
Proof. Consider the functions f+ (A) = ± CA(m-r)/2 with C from Lemma 4.1. Then
Lemma 4.1 and Theorem 3.1 imply that

Denote by No (A) the spectrum distribution function for -0, then Nr f~~_o~ (ft(~~) _
No (A) . For No (A) the complete asymptotic expansion is known [Ef]
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and do actually vanishes because of the regularity of (r(z) near z = 0. We will study
the case of f+ (A), another case is treated similarly. Let p = f+ (A), then A = ~C2~"Z(1 +
0(~"~/~)). Substituting this expression to (4.8) we obtain

where k = ~(r -1)/2~ is the maximal integer which is less then r/2. The statement of the
theorem follows now from (4.’l). a

For the Schr6dinger operator (3.1 ) with a r-periodic potential q Theorem 4.1 gives
Nr(A) = + O(A-1)). The estimate of remainder is remarkably better here then
the usual H6rmander one.

As was mentionned above the coefhcients c j are related with the Minakshisundaram-

Pleijel coefhcients of -0. In particular cj = 0 when n is even and j &#x3E; n~2. Denote by
the heat kernel on Hn, where r = d(x, y). . The explicit formulas for pt(n)(r) are

known for n = 2, 3 and there is a recurrent formula connecting (r) and r (see
[D-G-M]). Using these formulas one can obtain more explicit formulas for 
consequently for the Minakshisundaram-Pleijel coefficients) for odd n. Namely

where

and rck = 2(1 - 22k-1 IB2pl(2,Q &#x3E; 0, KO == 1, B2t are Bernoulli numbers. In particular
r(2t+l) 1f:I:!.. -n 1 .,(2P+1) 0 _ Z‘z 1 (1 + 0(t)) and we obtain co = where Sn-I is
the area of the unit sphere Sn-1 C =2~+1, the formula, which agrees with (4.5).
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5. TOPOLOGICAL APPLICATION : A NEW INVARIANT OF NON SIM-
PLY CONNECTED MANIFOLDS.

The results of this section belong to S.P. Novikov and M.A. Shubin. We suppose here
that ~ is a Riemannian manifold with a free action of a discrete group of isometries such
that X = M/r is compact. It is well known that the spectrum of the Laplacian on At is
connected with the properties of r, hence with topological properties of X. As an example
remind a result of R. Brooks ([Br]) telling that for simply connected At (i.e. when M is the
universal covering space for X) 0 C iff r is amenable. Also Laplacians Ap on exterior
p-forms on M are important. For example in [N-Sl] von Neumann real Betti numbers
bp first introduced by M.F. Atiyah ([A]) were used to improve the Morse inequalities for
manifolds which are not simply connected. These Betti numbers can be identified with
von Neumann dimensions of KerAp on L2-forms on M and are homotopy invariants of X.
Note that they are easily expressed in terms of the spectrum distribution function 
of (-~p) :

Note that if M = H’~ or M is a strictly pseudoconvex domain in C k then 0 when

p # dim M/2. But the condition bp = 0 does not imply that 0 ~ ~(-~p ). It was remarked
in [N-Sl] and [N-S2] that if 0 E a(-Ap) then new and deep topological phenomena ap-
pear : invariants lying between the von Neumann Reidemeister torsion and homology. An
example of such an invariant is the exponent arising in the power asymptotics of 
as A - +0 or in the power asymptotics of = trretap as t -~ +oo ((N-S2~). Now we
shall prove with help of the variational principle that these exponents do not depend on
the Riemannian metric an X and introduce a more general invariant.

Proposition 5.1. (~~V S2J). Let Np, lVp be spectrum distribution functions correspond-
ing to the Laplacians (-Ap), (-A’), constructed by means of r-inva,riant Riemannian
metrics g, g’ on M. Then there exists C &#x3E; 0 such that

Proof. It is clear that there exists C &#x3E; 0 such that CAo. Now
are the spectrum distribution functions of the operators 

so if p = 0 then (5.2) immediately follows from Corollary 3.1. It is not so easy when

p &#x3E; 0 because as was pointed out by M. Hilsum and G. Scandalis it is not always true
that A’  CAp (e.g. take the case when 0 and there exists a L 2-form w such that

Apw = 0 but 0). But the arguments given in [Hi], Sect.5, show that there exists a
bounded invertible r-invariant operator B (with a bounded inverse operator) such that

with a positive constant C. So (5.2) immediately follows. o

Denote by N the class of all (non strictly) increasing functions on R vanishing on the
open negative half-line i.e. JV contains all increasing functions N(A) such that N(A) = 0
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when A  0. For two such functions N1 (A), N2 (A) we shall write N1 rv N2 iff there exists
a constant C &#x3E; 0 such that

Let JU = JVI - be the set of all equivalence classes. Then (5.2) means that the equivalence
class Np = Npmod - of the function Np does not depend on the choice of a r-invariant
Riemannian metric on M (or in other words it does not depend on the choice of a Rie-
mannian metric on X). Let us try to extract number invariants from the equivalence class
of a function N E To do so it is natural to look at asymptotics of N(A) as a ~ +00
or A - +0. Now when A - +oo then we have Weyl asymptotics like (4.5) with m = 2
for every function Np(A). It is easy to see that the equivalence class of such a function
contains no information concerning the asymptotic behaviour +00 exept of the ex-
ponent in the power asymptotics i.e. the only number we can extract from the asymptotic
behaviour of Np(a) as A - +oo is the dimension n. The asymptotic behaviour as A - +0
is much more interesting. First of all the limit N(+0) does not depend on the choice of
a function N(A) in a given equivalence class. But we know already that bp = Np (+0) are
homotopy invariants. Let us write that f(A) m ,.B° as A - +0 iff there exists c &#x3E; 0 such
that caa  f (~)  c-1 Ac’ when A C (o, ao ), where Ao is any fixed positive number. It is
clear that if N(A) - ,.B ° with some a &#x3E; 0 then the same is true for any function

Nl such that Ni - N. So we have

Corollary 5.1. Suppose that

for a r-invariant Riemannian metric on M. Then the same it is true for every such metric
with the same a p .

So ap is an invariant of smooth structure on X. It can also be defined in terms of

corresponding 0-function 8r. More generally for every lV E JV define the Laplace transform
of the corresponding measure

Suppose that 0(t) is finite for every t &#x3E; 0 which is certainly the case for the functions
Np(A). Then it is a (non strictly) decreasing function on R+ _ ~t : t &#x3E; 0}. It is easily
seen that if Ni - N2 and 01 , 02 are the Laplace transforms of N2 then 02 in the
same sense i.e. there exists C &#x3E; 0 such that

So we have proved

Proposition 5.2. Let = = where are as

in Proposition 5.J. 
Then
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The number invariants that we discussed before can be usually desribed in terms of
8p as well. For example the Weyl asymptotic like (4.5) for Np(A) can be deduced with help
of tauberian Karamata theorem from the asymptotic

We also have

If we now suppose that

then the same is true for 8p, so ap in (5.4) does not depend on the Riemannian metric on
X.

The connection between (5.2) and (5.4) is clear from the following
Proposition 5.3. Estimates (5.2~ and (5.4) are equivalent i.e. (5.2) holds if and only
if (5.4) holds.

Proof. We shall omit the subscript p in the notations ap, bp, Np, Bp. Integrating by parts
gives

Subtracting bH(A) from N(A) (with b = N( +0) and H(A) the Heaviside function) we may
assume that b = 0. Taking into account that

we easily obtain that (5.2) implies (5.4).
In proving the inverse implication we shall also suppose that b = N(+0) - 0, so

limt-+m 0(t) = 0. Note first that

for t &#x3E; 1 and for every A &#x3E; 0, so if (5.4) is true then

Taking t = .À -1 we obtain

On the other hand we have
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so if (5.4) is true then

with some positive constants c, C for every A &#x3E; 0 and for every t &#x3E; 1. Taking t = M/A
with M &#x3E; 0 sufficiently large we obtain N(~~ &#x3E; C2 Ac, A  1, with some positive C2, q.e.d.
0

Note that if M = Rn then ap = n/2 for all p = 0, l, ... , n. But for M = H3 we have
al = a2 = 1/2 ([V]) so geometry of M really influences a~ .

The authors are very grateful to M. Hilsum and G. Scandalis for useful remarks and
discussions.
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