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On strongglobal solutions of nonlinear

hyperbolic equations.

Philip Brenner

0. Introduction
This is a version adapted for the seminar from a paper to appear in Math. Z.

The aim is to prove the existence of global solutions belonging to LOIOOC(R; Lg(an))

for nonlinear equations of the form

(0.1) G2u - Au + b(x,D)u + f(u) = 0, (t,x) €R, xR,
u(0,x) = <p0(x), 9,u(0,x) = ¢,(x), x€ R™.

Here A devotes the Laplacian on R®, b(x,D) is any first order differential operator on

R™ with bounded smooth coefficients, and the nonlinearity f is assumed to satisfy

\'A

0.2) £0) = 0, f e C2, F(v) = Jf(u)du >0, veRY,
0

and

(03) (] < Ca+u)?™, o< 245

Since all results will be local in time, we may as well confine ourselves to discuss

the result for the slightly simpler Klein-Gordon equation

32u—Au+m2u+fu=0 tx) € R, xR"
NLKG {t v () € Ry

u(0,x) = gpo(x), Btu(O,x) =p(x), x€ R™
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where m > 0 and f satisfies (0.2) and (0.3) above and in addition f'(0) = 0. This will
simplify the exposition (and some references to related work), with no loss of generality.
The case when also the principal part of A(x,D) = -A + b(x,D) is allowed to have
variable coefficients, is discussed in Section 3 below.

Our main result is the following.

THEORFM 1. Let f satisfy (0.2), (0.3), and let n> 3. Let u be the (unique) solution
of the NLKG with data in LYR") x LYR"). Then ue L!°°®; LER™)).

The proof will be given in section 3 below. Let us here remark that using the
results of [1], also the global version of Theorem 1 holds for the NLKG, namely that u €
L (R,; L3(R")). Obviously this global result does not in general hold for (0.1).

Previous results on strong solutions are due to Heinz and v. Wahl [6], who proved
Theorem 1 assuming the more restrictive growth-condition p < n—I_lf , (but working with
more general elliptic operators than -A + b(x,D)). In Brenner and v.Wahl [4], the
growth condition was relaxed to (0.3) for n < 12, but asymptotlcally the result in [4]
only improved the previous established bound to p <1 + 7

The bound (0.3) is a "natural" growth condition on f, since it implies (with (0.2))
that the energy (which is a conserved quantity for both the NLKG and the
corresponding linear Klein-Gordon equation) is equibounded for the linear and the
nonlinear equations.

This paper is structured as follows: Section 1 contains some basic estimates, with
proper references. Section 2 states the results on relations between space-time means for
solutions of the linear and the non-linear equations. In Section 4 (local versions of) all

these results are proved, while, as mentioned above, Theorem 1 is proved in Section 3.



1. Some basic estimates

Below, ||« || a8 will denote the norm in the Besov space Bg’z. For a definition of
these spaces and the related Sobolev spaces Lg based on L g 5ee &8 [4]. The Besov
spaces may in many places be replaced by the corresponding Sobolev norms, using that
for <2<, L(s1 C B(Sl’2 and B:'lz2 C Lf‘l.. We assume, when nothing else is stated, that
1<p< %—i% , N2> 3.

1

We use the notation 6r = % -p I2 2 and 61_ =1 % for r < 2. Also primed

T
indices (such as r and r') denote duality,i.e. 1/r + 1/r' = 1. For proofs of the results

below cf. [1], [4] and also [5].

Lemma 1.1 Let fe€ CI, f(0) =0 and f(u) < 1. Then for 0<s< 1,
-1 1-
il < Clluly 3 Ml 37
where

(s -8")/(1-8")<p-1,
1 - p<ngl
1+ 46- 2m<p< py - 2n(né - s +5"),

p, = (n + 4né - 2(1+s) + 28')/(n-2).

Lemma 1.2 With f as above,

-1
)l 1 < Clulle™ full
where 5q.(n+1) =1, 26q.r >p-1.

Let E(t)g denote the solution of the KG equation
(KG) 6fu0 - AuO + m2u0 =0, on R+ x R%,
with u(x,0) = 0, d,u(x,0) = g(x). The operator E(t) will be used frequently in the
following, mainly because the solution u of the NLKG can be written in terms of the

solution u, of the KG with the same initial data, as

t
(1.1) u(t) = uO(t) + J E(t-7)f(u(7))dr.
0

This formula is the natural starting point when treating the NLKG as a perturbation of
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the KG.

Proposition 1.1 Let n > 3. Let for some 6, 0< 0< 1, (n+1+0)6 < 1+s-s°, 5,8’ 2 0
where 6 = §p” p’2 2. Then

IE®)gl,, < K@)llgll

where
Itl—(n—1+0)5, ltl > 1
K(t) <C
W0 yrm1-08 1y ¢
Usually we will assume that for some 6> 0, (n-1-6)6 < 1, sothat K€ Li_?_(é([R),
some € > 0.

In the next section, and in particular in section 4, we will use properties of
space-time means of solutions to the linear Klein-Gordon equation. There are two

results:

Proposition 1.2 Let E denote the fundamental solution of the KG equation, and let f€
L,®; L®")) = L (L), {=f(zt). Then
1
B+l 1) < Kolfly, 5y

provided 2<r’<.q¢’, and

(a) 1-s8-s8'>0

(b) 28, + (n-1—0)6q. >1> 6q.(n—1—0) + 28,

(c) (n+1+0)6q. <1-s-5¢
for some 6,0< 0< 1. If 67,, =0, strict inequalities have to be used in (b).
For a proof, see e.g. Proposition 1 in [2]. The above result, and also the next, is

essentially due to Segal [8] (for n = 3), Strichartz [9] and Marshall [7].

Proposition 1.3 Let the conditions of Prop. 1.2 hold with s—s’ replaced by 2s in (a)

1+st

through (c). Then any solution u, of the KG with data in L),

+ s
LL2F2).

s
o belongs to



A special case, often used is r' = q', 6q.(n+1) =1 (and 4 = 0).

For the next result we need some notation. Let (Tah)A = (in)al;(n), fl(n) =

Q©
J e‘”’th(t)dt, and let B? = (m2—A)0/ 2 By |||l 0, 05 Wwe denote (slightlly
J Ly (L")

) It B %
illogical, maybe) ||T "B .
L (L)

Proposition 1.4 Let E(-) be the solution operator of Prop. 1.1, and let u be a solution
of the NLKG, and let f satisfy (0.2), (0.3). Then

D g ) <Ko G

s-1,’
r (Lo (Lo )

where 1 > 020, s>1 and 1 <r<aw.

Proof: Let

£(t) = exp(itB)
Then

E(t) = Im(B (1)),

u(t) = Re [£(t)®], @ = ¢+ iB 1y,
It is enough to show that

T™(B) (E(t)f(u(t)) = £ + (B) T f(u(t))

and since the symbol

_o
og(&m) = (1 + (m2+1g?) 240



of
= (1 + (iB)"’T9)

s #0 for £n€RR, 0<o<1,m>0, H' isboundedon L (HS), 520, 1<r<aw,
Since £(t) is an isometry on H®, the estimate in Prop. 1.4 follows.

The following is an important application of Proposition 1.4: Let u be a solution
of the NLKG, with u, the corresponding solution of the KG. We note that the
characteristic function Xq of (0,t) belongs to Li/ T for 1<r<w Let I=(0,t) and
let 1/r+1/r'=1, ¢<1/r. Then by Prop. 1.4,

06l € Nig®)lly o + I, (MEC-((n)drly

€l + gl JEE Mg
< “u()(t)ng,g + C(a,r;t)llf(u)" .(I L )

Since we may take o= 1/r=1-1/r', we get

0D Ol < gl + CEOMW ey

Thus, to estimate U locally in Lg, we have for some ' < o (but otherwise as

loc( l/r)

larg as we wish) to prove that f(u) € L . In a sense we have gained "almost

one derivative", using the oscillatory properties of the nonlinear term in(1.1).



2. Space—time means for nonlinear Klein—Gordon equations.
In this section we will state some results, most of relate boundedness of
space—time means for the linear equation with those of the nonlinear equation.
As before, we assume that (0.2), (0.3) hold, and in particular that p < % , >
3. We denote by u the solution of the NLKG and by u, the corresponding solution
(i.e. with the same initial data) of the linear Klein—Gordon equation.
We have to relate the Lp—spaces with the behavior of the lernel K(t) in
Proposition 1.1, and introduce for that purpose the condition
(*)é (n—1)6p. <1, (n+1)5p. < 1+4s-s', some s, 0<s<1.
This implies in particular that K € LL*°(R).

Proposition 2.1 Assume that (*) s holds, and that (s-s’)/(1-s’) < p - 1. Then Uy €
loc,;8°y ;. . loc,rs’
L, (Lp,) implies that v € L, (Lp ).

Remark Using the stronger assumption
(*)S For some 6,0 < <1 and some s, 0<s<1,
(n—1—0)5p, >1 (n—1—0)§p., (n+1+0)6p. < 1+4s-s".
We find that K € Ll(lR) globally, and in that case Proposition 2.1 holds also globally in

time (L:OC is replaced by L ). The proof, given in [3], is much more complicated than

that for the local case.

Proposition 2.2 Let 6§ = 1/2- 1/¢’, 6(n+1) =1 andlet 0< o < 1. Then up €
loc,;joy ; i loc,;o
L, (Lq,) implies that v € L (Lq,).
Again, there is a global version of Proposition 2.2. Both the local and the global

versions may be derived from the corresponding forms of Proposition 2.1.

Proposition 2.3 Let o < 4/(n-2). If uy € Lioc(Lg) n Lf,oc(LfIfU) then wu €

loc ,y1+0
Lr (Lq, ).



Again there is a global version available. Notice that the assumptions in Proposition 2.3
seems to be non—optimal. It is precisely the result we need to prove our main theorem,

however.



3. On the existence of global strong solutions of the nonlinear Klein-Gordon equation

Let us begin this section by stating the main result: As before p < % n>3.

Theorem 3.1. Let u be the unique global solution of the NLKG with data in Lg(an) x
LI®®). Then ue L °@®; LIR")).

Proof. In view of (1.2), it is enough to bound the Li?c(L;/ r')—norm of f(u), where
r' < o can be chosen as large as may become necessary. A straightforward application of
Holder's inequality and Sobolev's embedding theorem gives
Il o < Cllullg 1 o1l
where 1/q' - (1+a)/n =1/2 = (2+¢)/n and provided

2
(3.2) p<2itiof. .

To prove our theorem, we will first prove that u € Lr.(L(llTa), where ¢ 2> 1/(n+1)

+1/r' by (3.2), and r' < w is large (which assumes less smoothness of u). But by

Proposition 2.3, if u, € L1°C(L2) n LIOC(L”") then u € L1°C(L1+"), and our result
follows, assuming that o < 4/(n—2), which we clearly may do. That uy €L (L ) is

clear, and so by Proposition 1.3, u, €L .(L3/ 2) c Ll (L3/ 2) By Sobolev's embedding

~

theorem, we find that u, € Lr.(L(llTo) for ' >q', 1/t > 1/q" - (1/2 - a) =
1/(n+1), i.e. o < 1/(n+1) + 1/r', which is exactly what we needed. Since now u €
140 -
Lr'(Lq' ), for ¢=1/r+ 1/(n+1),
(3.3) [[£Cu)ll <C U, IIU(T)II
Li(')c( 1/r)

By (1.2) and (3.3)
-1
(34) (@)l 5 < ug(e)ly,p + € sup (o)l
We may assume that n > 6, and so p- 1 < 1, since the theorem is known for n < 6

(cf. [4]). But then (3.4) implies that u € Lolooc(Lg), which completes the proof of our

theorem.

If -A + b(x,DS) = A(x,D) is replaced by a positive elliptic operator A(x,D)
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10

with smooth coefficients, and which has a principal part that coincides with -A for |x|
large, then it would be natural to expect Theorem 1 to hold also in this case.
However, in the proof of Theorem 1 we used that u, € L(ll(,’c(L(ll'!'a), o> 1/t +

6q., with r < » large and aq.(n+1) = 1. An application of Sobolev's inequality to Uy
L(ll’f‘
should need an additional, although marginal, smoothness assumption on the data in

€ Lm(Lg) unfortunately only gives u, € L:,?C( ) with e=§ " This means that we
order to make the present proof work in the more general case. The missing part is a
version of the estimate of space—time means (Proposition 1.2) for solutions of the wave
equation G%u — A(x,D)u = 0. Possibly the results and techniques of [1], [2] could be

combined to give a (local version of) the space—time estimates in Prop 1.2.
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4. Proof of the results in section 2.

Let K, denote the M—fold convolution of K(t) with itself, where K is the

kernel in Proposition 1.1. We have already remarked that under assumption (*)é, Ke

loc loc
Limnhife 1+

n Lr(M)’ where by suitable choice of M, we may get any r(M) < . This is an

for some ¢ >0 (and K € L,nL if also (*)s holds). Thus Ky €L
immediate consequence of Young's inequality.

As before, we let u denote the solution of the NLKG, and u, the corresponding
solution of the linear Klein—Gordon equation (with the same initial data as in the
nonlinear case). We assume (0.2), (0.3) and '(0) = 0 to hold, and that the data of the
NLKG are at least in Ly x L, on R™.

Lemma 4.1 Assume that (x)g holds with (s-s')/(1-8') < p - 1. Assume also that U €
)
LiOC(LSp.). Then for M > My, some My = M(r),

0

1
JKM(t-T)Ilu(r)Ilp.,s.dr erloc
0

Proof. Let go(t) = KM*HUO(T)”p',S" with M so large that Kp; € L ,. Then g, €

L:ooc and using Lemma 1.1, and Proposition 1.1,

t
1-
g(t) = KM * "u”p',s' < gg(t) + CJKM+1(t’T)I|u||p'?SvdT,
0

some (small) 5> 0. The last term may be estimated by

1 t' t
J(K(t-t')(J KM(t‘—T)||u||p.,s.dt)1'”(JKM(r)dr)"dt'
0 0 0

and hence
g<gy+Cg "
which implies that g € L1,
It's clear that a corresponding global result holds if we assume (*) s rather than
(*)g- The proof of the next lemma is however quite different in the local and global case
(cf. [3], where the more difficult global result is proved.)
Lemma 4.2 If (* )s’ holds, and (s-s’)/(1-s’) <p - 1, then Uy € Lf,oc(L;:) implies that

V-11



12
loc,, s’
ve L, (Lp,).

Proof. Let Kj as above be the convolution of the kernel K with itself j times. Then

Kj € Lioc n Ll(()(j:)’ r(j) > 1, and by Lemma 1.1 (with 7 = 0) and Proposition 1.1,

loc . . loc
Kj—l * |lu0||p.’s. € Iir by assumption, and so if Kj * ||u||p.,s. €L_™ then also
Ky *llully g€ L’ Ifwelet j=M=M(r) asinLemma4.1, then Kyp * [u] b sl

€ Lolooc (o Lioc_ Thus Lemma 4.2 follows by induction over j.

Remark One allowed combination in Lemma 4.2 is 6p (n-1) <1 closeto 1, and s’ =
1/2.

Since the arguments used in Lemma 4.1 and 4.2 will be used also in some of the
following lemmas, a formal statement of one part of the "machine" used above will be
convenient.

loc - yloc loc _
Let K€ Lro n Lr0+e and h e Lr(') on R, where (as usual) 1/ry + 1/ry = 1.
Let K be the integral operator defined by

t
J(t) = JK(t-r)h(r)g(T)dr.
0

Lioc Lioc n Li_?_g., some ¢ >0, 1<r<w, asfollowsfrom
loc

Young's inequality. As a consequence JBM maps Llo into Lioc n Lr(M)’ where

Then 4 maps into
r(M) <o can be taken as large as we want, by choosing M large. Replacing the
convolution operator with kernel K(-) used in Lemma 4.2 and 4.3, by - %, we obtain

by repeating the proofs of these theorems the following lemma:

Lemma 4A. Let ¥ be as above, and assume that er Lioc- If U satisfies
U<Uy+CHU™, 0|7 < ¢ ¢>0 small,
then also U € Lrl,oc.

loc,r1 loc vy _ _ 1
Lemma 4.3 If uy € L00 (L2) then ue Lq, (Lp,) where 7y =1/2 + 6q, 6p,, 6q,(n+ )
=1 and Jq,s 5p,<1/(n-1), with Jp,(n—l) close enough to 1.
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Proof. By Proposition 1.3, u, € LI?C(L7.), and since 7 > 1/2, Lemma 4.3 applies in
case (n-1)é <1 is sufficiently close to 1, proving that u € Lloc L7)

The next result is derived from Lemma 4.3, and is vahd both in local and global
form. The proof given here holds also in the global case (with minor obvious changes),

provided we use Lemma 4.2, and 50 4.3 in a global form.

Lemma 44 Let 0< o< 1, 5q,(n+1) = 1. then uj€ Lioc(LZ,) implies that u €
loc, ;o
L, (Lq,).

Proof. We use the inequality

(4.2) )y, < Cllull?: 1*nuu
where 6 < 6 < 1/(!1—1) a.ndl 7 2' 6 + %“'—1’ ?ﬁ‘*' 6 611)q N;)W ue€
q' (Lg.) w1th vy = 7 +oaFr by Lemma 4.3 (notice that lfo Lwoc(Lz)

standing assumption), and so by Sobolev's inequality, u € Lioc(Lg.), where 1/r; =
1

1/q' - 1/2(n+1). If we use (1.1) and (4.1) we thus have

(4.2) lullg: o < gl (,+jK<t AMlle ulg

1

By Proposition 1.1, K € L ?c, all rO such that r0 -——1- < 1. It only remains to prove

To
that (with l/r(') -1/ry=1) rO(p-l) <r; (local time-estimates), i.e.

(4.3) p-1<r(l-1/ry).

We have to prove that any p < ﬁ—i% can be made to satisfy (4.3) for suitable choice of

r('). But the upper bound in (4.3) can be made arbitrarily close to I n—f_—l-, by proper
choice of r('). Now
l/r1 =1/2 - 3/2(n+1)

so that
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o2 2 1 _ 4
1n+1 " n+l 1/r1_n-72’

which means that for any p < % we can find n r(') and Iy such that K€L

loc
1
f0
h(r) = ||u||gfljy € Lioc’ 1/r0 + 1/r' = 1. A trivial variation of this argument also
’ 0

and

proves that h(r7) = ||u[|p:1'-H7, |7| small, and so
PH7

t
1-
@l gl + Cp [ KBl or
’ 0

for |n| small, with K € L9, heLloC.
To To

An application of Lemma 4A then proves Lemma 4.4.
Lemma 4.5 Let 6q.(n+1) =1, and let o < 4/(n-2). Then u,) € Lolooc(Lg) n
Lioc(L(ll-f-a) implies that u € Lioc(L(ll'f”).

Proof. We have (Lemma IIL.6 in [4]) that
-1
(4.5) IElg 14 € Ol o0l + W),
where 1/r;-1/n=1/2- (2+¢)/n and
4 n
7 < E2%entl’
By Proposition 1.3, u) €L q.(Lg{ 2), we_have immediately u, € Lw(L(ll.). By Lemma
4.4 also u € Lw(L‘ll.), using the "easy" case in the proof. Thus we may use € = n/(n+1)

in (4.5) and obtain that u € Li“(L}lT") if only ug € LiOC(Lcll'!' %), using Lemma 4A.

4 .._n
n-4+2/(n+1) n+1’
and so in particular any o < 4/(n-2) will do.

o<

The proof of Proposition 2.1 through 2.3 is now finished by reference to Lemma

4.2 through 4.5.
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