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On strongglobal solutions of nonlinear

hyperbolic equations.

Philip Brenner

0. Introduction

This is a version adapted for the seminar from a paper to appear in Math. Z.

The aim is to prove the existence of global solutions belonging to 
00 2

for nonlinear equations of the form

Here A devotes the Lapracian on IRn, b(x,D) is any first order differential operator on

!R with bounded smooth coefficients, and the nonlinearity f is assumed to satisfy

Since all results will be local in time, we may as well confine ourselves to discuss

the result for the slightly simpler Klein-Gordon equation
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where m &#x3E; 0 and f satisfies (0.2) and (0.3) above and in addition f’(O) = 0. This will

simplify the exposition (and some references to related work), with no loss of generality.

The case when also the principal part of A(x,D) = -A + b(x,D) is allowed to have

variable coefficients, is discussed in Section 3 below.

Our main result is the following.

THEOREM 1. Let f satisfy (0.2), (0.3), and let n &#x3E; 3. Let u be the (unique) solution

of the NLKG .. in 2 n x L’(R n). Then u E toc , 2 n)).o f the NLKG with data in x L 2 t ). E L 2 ((R )).
The proof will be given in section 3 below. Let us here remark that using the

results of [1], also the global version of Theorem 1 holds for the NLKG, namely that u E

L 2(,n)). Obviously this global result does not in general hold for (0.1).00 + 2 ( )) Y g g (Q )
Previous results on strong solutions are due to Heinz and v. Wahl [6], who proved

Theorem 1 assuming the more restrictive growth-condition p  n , (but working with
more general elliptic operators than -A + b(x,D)). In Brenner and v.Wahl [4], the

growth condition was relaxed to (0.3) for n  12, but asymptotically the result in [4]

only improved the previous established bound to P  1 + 2013~ .
The bound (0.3) is a "natural" growth condition on f, since it implies (with (0.2))

that the energy (which is a conserved quantity for both the NLKG and the

corresponding linear Klein-Gordon equation) is equibounded for the linear and the

nonlinear equations.

This paper is structured as follows: Section 1 contains some basic estimates, with

proper references. Section 2 states the results on relations between space-time means for

solutions of the linear and the non-linear equations. In Section 4 (local versions of) all

these results are proved, while, as mentioned above, Theorem 1 is proved in Section 3.
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1. Some basic estimates

Below, will denote the norm in the Besov space B~ . q For a definition of

these spaces and the related Sobolev spaces Ls based on L , see e.g. [4]. The Besovq ql

spaces may in many places be replaced by the corresponding Sobolev norms, using that

for and B s112c L ,. We assume, when nothing else is stated, thatq- q q q

1/N&#x3E;3.
We use the notation b r r’ r &#x3E; 2 and b r r for r  2. Also primed

indices (such as r and r’) denote duality, i.e. 1/r + 1/r’ = 1. For proofs of the results

below cf. [1], [4] and also [5].

where

Lemma 1.2 With ’ f as above,

Let E(t)g denote the solution of the KG equation

with u(x,0) = 0, = g(x). The operator E(t) will be used frequently in the

following, mainly because the solution u of the NLKG can be written in terms of the

solution u 0 of the KG with the same initial data, as

This formula is the natural starting point when treating the NLKG as a perturbation of
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the KG.

Proposition 1.1 Let n &#x3E; 3. Let for some 0, o  8  1, (n+~+8)b  1+s-s ; s,s’ &#x3E; 0

where b = ~ ~ p’ &#x3E; 2. Then

where

Usually we will assume that for some 8 &#x3E; 0, (n-1-fJ)t5  1, so that K E L (!R),_ 1+c

some c &#x3E; 0.

In the next section, and in particular in section 4, we will use properties of

space-time means of solutions to the linear Klein-Gordon equation. There are two

results: -

Proposition 1.2 Let E denote the fundamental solution o f the KG equation, and let f E

for some 0, 0  B  1. If br) = 0, strict inequalities have to be used in (b).

For a proof, see e.g. Proposition 1 in [2]. The above result, and also the next, is

essentially due to Segal [8] (for n = 3), Strichartz [9] and Marshall [7].

Proposition 1.3 Let the conditions of Prop. 1.2 hold with s-s’ replaced by 2s in (a)

through (c). . Then an y solution u of the KG with data in x belongs to0 2 21
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A special case, often used is r’ = = 1 (and 0 = 0).

For the next result we need some notation.

ProDosition 1.4 Let E(.) be the solution operator o f Prop. 1.1, and let u be a solution

o f the and let f satisfy (0.2), (0.3). Then

where 1 &#x3E; ~ &#x3E; 0, and 

Proof: Let

It is enough to show that

and since the symbol
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of

is 00 for 1, m &#x3E; 0, H -1 is bounded on s &#x3E; 0, 1  r  00.

Since ~(t) is an isometry on Hs, the estimate in Prop. 1.4 follows.
The following is an important application of Proposition 1.4: Let u be a solution

of the NLKG, with u 0 the corresponding solution of the KG. We note that the

characteristic function of (O,t) belongs to L 1/r for 1  r  00. Let I = (O,t) and
L r

let 1/r + 1/r’ = 1, (1 1/r. Then by Prop. 1.4,

Since we may take or = 1/r = 1 - 1/rI, we get

Thus, to estimate U locally in L~, we have for some r’  oD (but otherwise as

larg as we wish) to prove that f(u) E Lloc(L’ /rl). In a sense we have gained "almost

one derivative", using the oscillatory properties of the nonlinear term in(l.1).
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2. Space--time means for nonlinear Klein-Gordon epuat-

In this section we will state some results, most of relate boundedness of

space-time means for the linear equation with those of the nonlinear equation.

As before, we assume that (0.2), (0.3) hold, and in particular that P  n &#x3E;

3. We denote by u the solution of the NLKG and by u 0 the corresponding solution

(i.e. with the same initial data) of the linear Klein-Gordon equation.

We have to relate the Lp-spaces with the behavior of the Vernel K(t) in

Proposition 1.1, and introduce for that purpose the condition

This implies in particular that K ~ 

Proposition 2.1 Assume that (*); holds, and that ~s-~~/~-~~  p - 1. Then uo E

implies that r P r P

Remark Using the stronger assumption

We find that K E L1 (lR) globally, and in that case Proposition 2.1 holds also globally in

time (Lloc is replaced by L ). The proof, given in [3], is much more complicated than
that for the local case.

Proposition 2.2 Let b = 112 - b(n+l) = 1 and let 0 cr ~ Then u 0E

Again, there is a global version of Proposition 2.2. Both the local and the global

versions may be derived from the corresponding forms of Proposition 2.1.
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Again there is a global version available. Notice that the assumptions in Proposition 2.3

seems to be non-optimal. It is precisely the result we need to prove our main theorem,

however.
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3. On the existence of global strong solutions of the nonlinear Klein-Gordon eguation

Let us begin this section by stating the main result: As before p  n&#x3E;3.

Theorem 3.1. Let u be the unique global solution of the NLKG with data in L2 n) x
Then u E 

2 00 2

Proof. In view of (1.2), it is enough to bound the f(u), where

r’  oo can be chosen as large as may become necessary. A straightforward application of

H61der’s inequality and Sobolev’s embedding theorem gives

To prove our theorem, we will first prove that u E 1/(n+l)

+ 1/r’ by (3.2), and r’  oo is large (which assumes less smoothness of u). But by

Proposition 2.3, if u E then u E and our result0 _ m 2 rt q 
I ri q 

I

2follows, assuming that a  4/(n-2), which we clearly may do. That u 0 E is

clear, and so by Proposition 1.3, ueL 3/2 1 oc 3/2 By Sobolev’s embeddingclear, and so by Proposition 1.3, u0E By Sobolev’s embedding

theorem, we find that

, which is exactly what we needed. Since now u E

We may assume that n &#x3E; 6, and so p -1  1, since the theorem is known for n  6

(cf. [4]). But then (3.4) implies that u E which completes the proof of our
00 2

theorem.

If -A + b(x,DS) = A(x,D) is replaced by a positive elliptic operator A(x,D)
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with smooth coefficients, and which has a principal part that coincides with -A for lxl

large, then it would be natural to expect Theorem 1 to hold also in this case.

However, in the proof of Theorem 1 we used that u 0 E 1/r’ +

6 q 1, with r  oo large and cr ,(n+l) 
= 1. An application of Sobolev’s inequality to u 0

E unfortunately only gives u 0 E with c = 6 . q This means that we
oo u r Q Uf

should need an additional, although marginal, smoothness assumption on the data in

order to make the present proof work in the more general case. The missing part is a

version of the estimate of space-time means (Proposition 1.2) for solutions of the wave

equation A(x,D)u = 0. Possibly the results and techniques of [1], [2] could be

combined to give a (local version of) the space-time estimates in Prop 1.2.
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4. Proof of the results in section 2.

Let KM denote the M2013fold convolution of K(t) with itself, where K is the

kernel in Proposition 1.1. We have already remarked that under assumption (*)~, K E
n Ll Oc for some c &#x3E; 0 (and K E Li n L1+f if also (*)~ holds). Thus K~ e L1

n Lr(M)’ where by suitable choice of M, we may get any r(M)  00. This is an

immediate consequence of Young’s inequality.

As before, we let u denote the solution of the NLKG, and u 0 the corresponding

solution of the linear Klein-Gordon equation (with the same initial data as in the

nonlinear case). We assume (0.2), (0.3) and f’(0) = 0 to hold, and that the data of the

NLKG are at least in ~2 on Rn

Lemma 4.1 Assume that (*)~ holds with (s-s’)1(1-s’)  p - 1. Assume also that U 0 ~

for M &#x3E; MO’ = 

Proof. Let = with M so large that KM E Lr. Then go E

L loc and using Lemma 1.1, and Proposition 1.1,
00

some (small) n &#x3E; 0. The last term may be estimated by

and hence

I oc
which implies that gEL lOCo .

It’s clear that a corresponding global result holds if we assume (*)s rather than

(* )~. The proof of the next lemma is however quite different in the local and global case

(cf. [3], where the more difficult global result is proved.)

Lemma 4.2 If : holds, and B-/-  p - 1, then u E implies that.2013201320132013201320132013 s 0 r p
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U E Lloc s°

Proof. Let K. as above be the convolution of the kernel K with itself j times. Then
J

Lloc and by Lemma 1.1 and Proposition 1.1,i 1 r(j), 
i loc

Kj_l * Lr by assumption, and so if j * Lrthen also
* Hull ’s’ E If we let j = M = M(r) as in Lemma 4.1, then KM * liull p sp , r P?*

E c L loco Thus Lemma 4.2 follows by induction over j.
00 

- r " "

Remark One allowed combination in Lemma close and s’ =

1/2.

Since the arguments used in Lemma 4.1 and 4.2 will be used also in some of the

following lemmas, a formal statement of one part of the "machine" used above will be

convenient.

Let K be the integral operator defined by

-

Then X maps Lloc into L loc n L$§,, some c &#x3E; 0, 1 r 00, as follows from&#x3E; 0, 1 - r - ao, as follows from

n 
, m .. 1 . A n en J6’M ma s 10 1 .n t o loc f l lo c w h ereYoung’s inequality. As a consequence /b- - maps r into r n Lr (M) I where

r(M) ~. oo can be taken as large as we want, by choosing M large. Replacing the

convolution operator with kernel K( ~ ) used in Lemma 4.2 and 4.3, by. ~ we obtain

by repeating the proofs of these theorems the following lemma:

Lemma 4A. Let JIb be as above, and assume that U E L 1 oc, If U satis f ies0 r
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Proof. By Proposition 1.3, u 0 E and since 7 &#x3E; 1/2, Lemma 4.3 applies in

case (n-l)b  1 is sufficiently close to 1, proving that q p

The next result is derived from Lemma 4.3, and is valid both in local and global

form. The proof given here holds also in the global case (with minor obvious changes),

provided we use Lemma 4.2, and so 4.3 in a global form.

Lemma 4.4 Let 0  o, $ 1, = 1. then Uo E L loc (Lad implies that u E
- - 

Q 0 r q

Proof. We use the inequality

standing assumption), and so by Sobolev’s inequality, u E where 1 /r =r1 p 1

1/q’ - 1/2(n+l). If we use (1.1) and (4.1) we thus have

By Proposition It only remains to prove

that (with (local time-estimates), i.e.

We have to prove that any p  ~~ can be made to satisfy (4.3) for suitable choice of
r ’ But the upper bound in (4.3) can be made arbitrarily close to r~ 2 by proper
choice of r’. Now
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which means that for any p  we can find n r6 and ro such that K E Lloc r, and
0

= E L°, + 11r’ = 1. A trivial variation of thi ument also
P , ’Y r0

proves that h(7-) = lql small, and so
p , 7

An application of Lemma 4A then proves Lemma 4.4.

Proof. We have (Lemma 111.6 in [4]) that

By Proposition 1.3, uo E L q i(L3/2 ) ql 1 we have immediately u 0 E L 00( L q 1 ). By Lemma

4.4 also u E using the "easy" case in the proof. Thus we may use c = n/(n+ 1)m q

in (4.5) and obtain that u E if only using Lemma 4A.

and so in particular any o  4/(n-2) will do.

The proof of Proposition 2.1 through 2.3 is now finished by reference to Lemma

4.2 through 4.5.
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