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Periodic Solutions of Some Problems of 3-Body Type

by Abbas Bahri and Paul H. Rabinowitz

§1. Introduction
The study of time periodic solutions of the n-body problem is a classical one. See e.g
[1]. The purpose of this paper is to sketch some of our recent research on the existence of
time periodic solutions of Hamiltonian systems of 3-body type [2]. This work presents a
new direct variational approach to the problem.
To describe it more fully, consider the Hamiltonian system of ordinary differential

equations
(HS). migi + Vo, (t,9) =0, 1<i<3
In (HS),q; € RY 1<i<3, £>3, m; >0, where F3(RY) is the configuration space

(1.1) BRY={(g1,02-05) € (R | gi £ q; if i#i}.

Furthermore V is T-periodic in t.
We are interested in T-periodic solutions of (HS). It is assumed that V is an interaction

potential:

3

(1.2) V=) Viltaq)
"-J;f;l
Each function Vj;, 1 <1 # j < 3, satisfies

(Vi) V;; € C*(R x (R%\{0}),R) and is T-periodic in t,
(Va) Vij(t,q) <0 for allt € [0,T), g€ RO\{0},
(Vs) Vis(t,), 9% (t,0) — 0 s lg] — oo uniformly int, 1< k<3,
(Va) Vij(t,q) = —oo as q — 0, uniformly in ¢,
(Vs) for all M > 0, there is an R > 0 such that
avij
9q

oV

whenever |¢| > R,
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(Vs) thereis a neighborhood, W, of 0 in R¢ and U;; € C'(W\{0}, R) such that U;;(¢q) — oc
as ¢ — 0 and —V;;(g) > |Ul;(g)|? for ¢ € W\{0}.

Condition (V;) — (Vs) are satisfied in particular by potentials of the form

(1.3) V(g) = Ejm—mm

i,5=1
X3

where a;; and B;; are positive constants. Hypothesis (V) is also satisfied by V' in (1.3)
if B;; > 2 for each 7,j. The classical 3-body problem corresponds to the case in which
Bij = 1,for all i # j and a;; = aji. The significance of (V) will be discussed below.

To formulate (HS) as a variational problem, let E = W}1*(R,(R)?), the Hilbert

space of T-periodic functions from R into (R¢)® with norm:

T 1/2
(1.4) uw=(A|Wa+mﬁ

where

T
(15) =7 s

The functional associated with (HS) is

T 1 3
(1.6) I(q) = /0 <§ Zmi|di|2 - V(t,Q)) dt
i=1

(1.7) A ={q € E|q(t) € F3(R") forall t€[0,T]}

It is not difficult to prove that

Lemma 1.8: If V satisfies (V1), (V2), (V4), and (Vs), then for each ¢ > 0, thereisa é(c) > 0
such that if I(gq) < ¢, then
inf |gi(t) — g;(t)] 2 é(c).

t€f0,T)
[ 3]

See e.g. [2] or [3]. An immediate consequence of Lemma 1.8 is the variational problem can
be posed on A rather than E. Moreover it is easy to verify that if ¢ € A and I'(q) = 0,
then g is a classical T-periodic solution of (HS).

QOur main result is:
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Theorem 1.9. If V satisfies (V;) — (V5), then I possesses an unbounded sequence of
critical values.

If condition (V) is dropped, it is possible that ¢ € E with I(g) < oo but ¢i(t) = g;(t)
for some ¢ # j and t € [0,T], i.e. a collision occurs at time t. Thus without (V%) it is
possible that collisions can occur for periodic solutions of (HS). Since a collision orbit
cannot be a classical solution of (HS) , following [4], we say ¢ € E is a generalized T-

pertodic solution of

(i) D={te[0,T]|q(t) ¢ Fs(RY)} has measure 0.

(i1) q€ C? and satisfies (HS) in [0, T)\D.

(1.10) L) = [T V(tg(t))dt < oo.

(iv) IfV is independent of t, 1 S0 |di(t)]2 4+ V(q(t)) =

constant fort € [0,T]\D, i.e. energy is conserved
\ on the set on which it is defined.

Remark 1.11. Conditions (1.10) (i)-(1v) are not mutually ezclusive but we prefer to define
generalized T-periodic solution in this way since it i3 these conditions that one verifies in

applications.

Given Theorem 1.9, using an approzimation argument from [4{], it is not difficult to

show:

Theorem 1.12. IfV satisfies (V1) — (Vs), then (HS) possesses a generalized T-periodic

solution.

Corollary 1.13. If in addition, V is independent of t and V'(q) # 0 for all ¢ € (R?)?,
(HS) has infinitely many distinct T-periodic solutions.

In the nezxt two sections, we will discuss some of the preliminaries that go into the
proof of Theorem 1.9. Then in §4, the proof of Theorem 1.9 itself will be sketched. Finally
in §5, a few remarks will be made about the proofs of Theorem 1.12 and Corollary 1.13.

§2. The breakdown of (£S) and a Morse Lemma for neighborhoods of infinity.

A standard condition used in the study of variational problems is the Palais-Smale

condition or (PS) for short. It says any sequence (¢*) satisfying

(2.1) I(¢*) is bounded and I'(¢*) — 0
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is precompact. Unfortunately (PS) does not hold for (1.6). However the behavior of

(PS) sequences can be characterized precisely.

Proposition 2.2. Suppose V satisfies (V1) — (Vi) and (V). Let (¢*) satisfy (2.1). Then

the following alternative holds: Either

(i) there exists a subsequence, still denoted by (¢*), and a sequence (vi) C R* such that
(g¥ — vi) converges in Wr%(R,RY) for i =1,2,3, or

(ii) there ezists a subsequence, still denoted by (¢*), a sequence (vk) C R, andi € {1,2,3}
such that
e. |lg* — vell = oo and [l¢]lz2 — 0 as k — oo, and
b if j #r € {1,2,31\{z}, (¢} —vk,qf —vi) converges in W3R, RY)?) to a classical
solution of the two-body problem associated with the potential Vj; + V;;.

Moreover if
TN
(23) Litgssa) = [ (GOmalis 4 meldn) = Vit = 0
- Vit gr - Qj)) dt,

then Ijr(q;-‘,qf) —c.
Proposition £.2 tells us that if a (PS) sequence is not precompact in the usual sense,
it has a subsequence which converges to a “two-body solution at infinity”. We further note

that one can take v* = J[q¥ + gf].

One major new idea in our work is to use a “Morse Lemma” in a neighborhood of a

sequence of type (ii) in Proposition 2.2.

Proposition 2.4. Let V satisfy (V1) — (Vs). Then
(1) for all C > 0, there ezists an a(C) > 0 such that if ¢ = (q1,92,93) € A satisfies

(D) Y llgi —v(@lze <G,

and
1

1+ |[gs — v(g)]}?

for some v = v(q) € RY, then there is a unique A\(q) > 0, continuousl y differentiable in g,

< a(C)

1 .
(i6) gmalldslizs +
and satisfying

1
1+[@s — 3(q1 + @)l

1 [T :
I(Q)=I12(QI,92)+§/ m3|Q3|2dt+
0
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where

Qs = glor + 0] + 57250 — ) + A(@)las = 501 + 22)].

(2) Conversely for all C > 0, there ezists a(C) > 0 such that if (q1,¢2,Q3) € A

satisfies

2
(i) Y llgi = v(g)llzew < C,

and
1

14 [Qs — 3(a1 + 2)]]2

() 3molQslis + <®(0)

for some v = v(q) € R, then there is a unique p(q1, 92, @3) > 0, continuously differentiable

in its argument, and satisfying

1 (T
I(q1,92,93) =h2(q1,92) + 5 / m3|Qs|*dt
0

1
I Q - i@+ )P

where

g3 = ';'[91 + q2] -+ (1,92, @3)(Q3 — [Q3])

1 1
+ ——‘—”(q],qz,Q3)[Q3 - 5((11 + g2)].

(8) If a(C) = a(C) is sufficiently small, then A(q1,92,93)1(q1,492,Q3) = 1 and the
transformations defined in 1 and 2 are inverse diffeomorphisms.

In Proposition 2.4, we could replace 1[q1 + g2] by any convez combination of [g;]
and [g2]. In particular we could have taken the center of mass M%}H—:’Iq—’l. If we do
so, the representation provided by Proposition 2.4 has the physical interpretation that the
interaction of the motion of the body q3 with the two other bodies can be replaced by the
motion of a new body Q3 which interacts (at the level of mean values) only with the center
of mass of the other bodies. Proposition 2.4 allows us to represent I in a simple fashion
in a neightorhood of o sequence violatiny the (PS) condition, i.e. near ¢ “ciiticy ! point
at infinity”. In this sense we have a Morse Lemma for neighborhoods of critical points at
infinity.

One final technical result will be given in this section. Let
(2.5) I°={ge A|I(g) < c}.
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Proposition 2.6. Let V satisfy (Vi) — (Vs). Then there is an € > 0 such that for all
e € (0,60), I° netractbu deformation on an E N R X C R*. 1n particularn the singularn
homoLogy of 15 (with national coefficients) vanishes in ald dimensions > 2 .

§3. An abstract theorem in Morse Theory.

The proof of Theorem 1.9 involves in part the construction of a certain deformation
retraction. In this section, a finite dimensional version of this result will be stated. In the
nezt section, the extensions needed for the proof of Theorem 1.9 will be discussed. More
details can be found in [2] and [5].

Let M be a compact n-dimensional Riemannian manifold and let f € C?*(M,R).
Assume all of the critical points of f are nondegenerate. Let Z denote a pseudogradient

vector field for f, i.e. Z 1s a locally Lipschitz continuous vector field on M and

(3.1) (f'(z), Z(2)) 2 |f'(2))?
and

(3:2) 1Z(z)| < ~1f' ()|

for all z € M where v > 0 s a constant. Further assume the critical points of f are

nondegenerate zeroes of Z. Consider the ordinary differential equation

dz

(3.3) =

= —Z(.’B), I(Oa y) =Y.
Let ¢(s,y) denote the solution of (3.8). Suppose Z(x¢) = 0. Set
(3.4) Wu(zo) = {z € M| p(s,z) 229 as s— —oo},

i.e. Wy(zo) ts the unstable manifold for the flow (3.3) which emanates from zo. Leta < b

be noncritical values of f and
fef={re M| f(z) Lc}.

Let
Cl={zeM|f(z)=0 and a< f(z)<b}.
Then we have
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Theorem 3.5. Let Z, be a peudogradient vector field for f. Then in any C! neighborhood
of Zy, there ezists a pseudogradient vector field Z for f such that f° retracts by deformation
onto
fFul U W)
z€C}

IfCt is a single point, then Theorem 8.5 is a classical deformation result. See e.g. [6.
p.156-160). There are many extensions of Theorem 5.5, espesially in an i iniic diren-
stonal space. The theorem can also be formulated in different ways. We refer to Bahri [5]
for such extensions. alternate formulations, and applications. We note that Theorem 8.5
can not be generalized as such to situations where (PS) fails. In the nezt section we will

discuss how to eztend Theorem 8.5 so as to apply to the functional (1.6).

§4. The construction of a pseudogradient vector field ‘or I and a sketch of the

proof of Theorem 1.9.

Let Cy be a constant and 8 € C(RY,R*). Let V3 denote the set of (q1,92,q3) € A
satisfying

and 1 1
(12 -m ] 22 N —<_ 6 22
(22) 5 sllgsllz 1+”q3_%(q1 + ¢2))? )

The sets V1.V are defined in a similar way via a permutation of indices. If B 1s sufficiently

small, Proposition 2.4 is valid on Vs (resp. V1,V) and one can therefore use, as in
the classical situation in Morse Theory [6], the new coordinates (qi1,92,Q3) to define a
pseudogradient vector field Z for I on Vi. Then Z, similarly defined on Vy,V, can be
ezxtended to A by taking convez linear combinations of I' and Z.

We will give an idea for the construction of Z on Vs. A detailed proof can be found
in [2]. Suppose we have a pseudogradient vector field Z15 for [12. To simplify our presen-
tation, assume that the critical points of I3 and I are nondeg-nerate. (This, of course, is
not the case due to the translational symmetry possessed by I;; and I.) Let (g,,q;) be a
critical point of I, and therefore a zero of Z13. Let Wy(q,," ;) be the unstable manifold
associated with (q,,q,) for the differential equation

d
(4.2) E;(QI»QZ) = -7Z12(q1,92)-

Now we define Z in the coordinates (q1,92, Qs — (@3], [@3 — (a1 + @2]) via

(4.3) 7. = (9



if and only if

L(q1,92) = —Z12(q1,92)
(4.4) £(Qs - [Qs]) = —(Q3 — [Qs])

41Qs — (g + )] = 0.

Using Proposition 2.4. it is easy to verify that Z is a pseudogradient vector ficld for I on
V3. The solution ¢(s,q) of (4.3) compactifies the “critical points at infinity” in the sense
of [7], i.e. the decreasing (with respect to I as s — +00) orbits of the gradient flow that are
not compact. In doing so, we introduce new equilibrium points for Z which are distinct
from the critical points. This prevents Theorem 3.5 from being extended directly to (4.9).
It is necessary to take into account the “unstable manifolds of critical points at infinity”.

By doing so. one can prove a version of Theorem 3.5 for the current situation. Let

Ct={qeA|I'(q9)=0 and a<I(q)<b}, cr
Co(1,5) = {(3:-7;) 1 ij(3:.3;) =0 and a < Lij(g;,7;) < b},

Db = | ) W) end Di(cc)=| U W(g,, 7).
gecs i#7 (9:,9;)€CL(4,)5)

Here W°(3,,q;) denotes the unstable manifolds of critical points at infinity.

Theorem 4.5. Let a < b be noncritical values of I. Then I® retracts by deformation on
I° UD UDY (o)

and W°(3;,;) is a trivializable fiber over Wy(q;,q;), the fiber having the homotopy type
of a sphere S¢1.

With the aid of Theorem 4.5, the proof of Theorem 1.9 can now be skeiched. To
simplify matters, assume that I has no critical points. Then, for any b > a = € > 0,
Ct = & so by Theorem 4.5,

(4.6) I’ ~ I U Db(o0)
where =~ denotes retraction by deformation. The proof continues via three steps.

Step 1. Since A = U I® and (4.6) holds for all b > ¢, it can be shown that
bERT

(4.7) A ~ I UD>*(c0)
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where ~ denotes homotopy equivalence.

Step 2. Let
By= U W@
(3:,9;)€C(4,5)
B = U W (4, ;)
(9:4,0€C2 5,7
and
B>® = U Bf’f
i#)

An improved version of Theorem 4.5 [2] says that BSY fibers over Bj, the fiber being
trivializable and having the homotopy type of a sphere S¢=1. Set

(48) Ay ={(g-g) € WEAR.(RY?) | qilt) £ ;(1) for all te[0.T]).

It is not difficult to check that I satisfies (PS) on A;j up to translations, i.e. if I;;
is bounded and Ii; — 0 along the sequence (¢",q]"), then there is a sequence (vm) C R!
such that (¢[" — vm.q]" — vm) possesses a convergent subsequence. Therefore an infinite

dimensional version of Theorem 8.5 [{], and an argument related to (4.7), yields

(4.9) A,’j ~ Ifj UB,‘J'.

Step 3. By Proposition 2.6, the rational homology of I¢ vanishes in dimension > (.
Applying the Mayer- Vietoris sequence to the ezcisive triad (A, I¢,B>°) shows that

(4.10) Hi(A) = Hi(B>®) for k2>¢.
Simailarly
(4.11) Hi(Aij) = Hi(Bij) for k2> L.

Moreover, from the fibration of BY over Bij, one deduces that
(4.12) Hi(BY) = He(Biy) ® Hk—t41(Bij; for k> L.
Combining (4.10)-(4.12) yields:

(4.13) Hi(A) = €D Hi(Aij) ® Hy—g4a(Aij) for k2L
i#)
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Let ay be the dimension of Hiy(A) and Bi the dimension of Hy(A;j). Then by (4.18)
(4.14) ak = 3(Bk + Br-e+1) for k2> L.

However Aij has the homotopy type of the free loop space on S¢—1 — see [2] — and therefore
Bk 18 bounded independently of k [8]. On the other hand, by a Theorem of Sullivan and
Vigué-Poirrier [8]. the sequence (ax) is unbounded. This contradiction shows that I has
at least one positive critical value.

A more complicated variant of this argument given in [2] which takes D into account

proves that I, in fact, has an unbounded sequence of critical values.

§5. The proof of Theorem 1.12 and Corollary 1.13.

We will give a brief sketch of the ideas 1nvolved in getting Theorem 1.12 from Theorem
1.9. First for all § > 0, the potentials Vi; are approzimated by V which satisfy (V1)—(Vs).
Vi‘;(t,z‘) = V5(t.x) if |z| > 6, and —Vig(t,:z:) > —Vij(t,z) if |r| < 6. Then Theorem 1.9
applies to the functional

T ()3
(5.1) Is(q) =/0 (§ stldilz -Vé(fAI)) dt.

Nezt it is shown that there are constants M and €, which are independent of 6 such that

Is has a critical value cs in Ié"\[g‘. Thus
(5.2) e <cs <M

independently of §. Let ¢° be a critical point of Is corresponding to cs. The bounds (5.2)
and the properties of Vs lead to upper bounds depending only on € and M for

3
1
(5:3) > llgf — 5laf + gflllwes
1=1
and for
T
(5.4) - [ vitaepat.
0

These bounds enable us to let § — 0 and find a subsequence of (¢°) converging to a gener-
alized T-periodic solution of

To prove Corollary 1.18, we use a standard argument. By Theorem 1.12, we have a
generalized T-periodic solution q'. By the assumption that V'(q) # 0 for g€ (R%)3, ¢! #
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const.. Let T/ky denote its minimal period. Applying Theorem 1.12 again with T replaced

by T/(1+Fky), there exists a T/(1+k;) periodic solution g*> having @ minimal period < _—1+Tk, )

Clearly ¢* 1s geometrically distinct from q'. Repeating this argument generates a sequence

of geometrically distinct generalized T-periodic solutions of
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