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Periodic Solutions of Some Problems of 3-Body Type

by Abbas Bahri and Paul H. Rabinowitz

§1. Introduction
The study of time periodic solutions of the n-body problem is a classical one. See e.g

~1~. The purpose of this paper is to sketch some of our recent research on the existence of
time periodic solutions of Hamiltonian systems of 3-body type [2]. This work presents a
new direct variational approach to the problem.

To describe it more fully, consider the Hamiltonian system of ordinary differential

equations .

In (HS), qi E R’, 1  i  3, ~ &#x3E; 3, mi &#x3E; 0, where F3 (R) is the configuration space

Furthermore V is T-periodic in t.
We are interested in T-periodic solutions of (HS). It is assumed that V is an interaction

potential:

Each function 1  i ~ j  3, satisfies
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there is a neighborhood, IV, of 0 in R’ and E R) such that Uij (q) --+ o0
as q -~ 0 and IUlj(Q)12 for q E ~11B{O}.
Condition (Li ) - (V5 ) are satisfied in particular by potentials of the form

where aij and are positive constants. Hypothesis (~6) is also satisfied by V in (1.3)
if &#x3E; 2 for each i, j . The classical 3-body problem corresponds to the case in which

/3ij = 1, for all i # j and (Xij = aji. The significance of (~6 ) will be discussed below.
To formulate (HS) as a variational problem, let E = 14,r 1’2(R, (Rt )3), the Hilbert

space of T-periodic functions from R into (Rt )3 with norm:

The functional associated with (HS) is

Set

It is not difficult to prove that

Lemma 1.8: If V satisfies (Vl), (Y2); (V4), and (Vs), then for each c &#x3E; 0, there is a b(c) &#x3E; 0

such that if I(q)  c, then

See e.g. [2] or (3~. An immediate consequence of Lemma 1.8 is the variational problem can
be posed on A rather than E. Moreover it is easy to verify that if q E A and I’(q) = 0,
then q is a classical T-periodic solution of (HS).

Our main result is:
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Theorem 1.9. If V satisfies (~11) - (v’6), then I possesses an unbounded sequence of
critical values.

If condition (V6) is dropped, it is possible that q E E with I(q)  oo but qi(t) = qj(t)
for and t E [0, T], i.e. a collision occurs at time t. Thus without (Bí6) it is

possible that collisions can occur for periodic solutions of (HS). Since a collision orbit
cannot be a classical solution of (HS) , following [4], we say q E E is a generalized T-
periodic solution, of

Remark 1.11. Conditions (1.10) (i~-(iv) are not mutually exclusive but we prefer to define
generalized T -periodic solution in this way since it is these conditions that one verifies in

applications.

Given Theorem 1.9, using an approximation argument from [4], it is not difficult to
show:

Theorem 1.12. If V satisfies (ifi ) - (~5), then (HS) possesses a generalized T-periodic
solution.

Corollary 1.13. If in addition, V is independent of t and V’(q) ~ 0 for all q E (Rl)3,
(HS) has infinitely many distinct T-periodic solutions.

In the next two sections, Tue will discuss some of the preliminaries that go into the

proof of Theorem 1.9. Then in §!~, the proof of Theorem 1.9 itself will be sketched. Finally
in §5, a few remarks will be made about the proofs of Theorem 1.12 and Corollary 1. 1 S.

§2. The breakdowl1 of (PS) and a Morse Lemnia for neighborhoods of infinity.

A standard condition used in the study of variational problems is the Palais-Smale

condition or (PS) for short. It says any sequence 
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is precompact. Unfortunately (PS) does not hold for (I. 6). However the behavior of
(PS) sequences can be characterized precisely.

Proposition 2.2. Suppose " satisfies (~i~ - (l4) and (l,6). Let (2.1). Then
the f ollowing alternative holds: Either

(i) there exists a subsequence, still denoted by (qk), and a sequence C Rt such that

(qt - zrk ) converges in for i = I, 2, 3, or

(ii) there exists a subsequence, still denoted by (qk), a sequence (Vk) C R’, and i E {I, 2,3)
such that

a. I[qf - I and --~ 0 as k -; oo, and

b. converges in to a classical

solution of the two-body problem associated with the potential Vii + Vij.

Moreover if

,

then qk --+ C.
Proposition 2.2 tells us that if a (PS) sequence is not precompact in the usual sense,

it has a subsequence which converges to a "two-body solution at We further note
that one can take vk = ! [q1 + 

One major new idea in our work is to uqe a "Morse Lemma" in a neighborhood of a

sequence of type (ii) in Proposition 2. ~.

Proposition 2.4. Let V’ satisfy (~rl ) - (l,5). Then

(1) for all C &#x3E; 0, there exists an a(C) &#x3E; 0 such that if q = (ql, q2, q3) E A satisfies

for sorrae v = v(q) E R’, then there is a unique A(q) &#x3E; 0, continuousl y differentiable in q,
and satisfying
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where

(2) Conversely for all C &#x3E; 0, there exists a(C) &#x3E; 0 such that E A

satis fies

for some v = v(q) E R, then there is a unique p(ql, q2, Q3) &#x3E; 0, continuously differentiable
in its argument, and satisfying

where

(3) If a~(C) _ a(C) is sufficiently small, then = 1 and the

trans formations defined in 1 and 2 are inverse diffeomorphisms.
In Proposition 2.1,, we could replace 2 (ql + q2l by any convex combination of [ql]

and [q2l, In particular we could have taken the center of mass l’f we doml m2

so, the representation provided by Proposition 2.. has the physical interpretation that the
interaction of the motion of the body q3 with the two other bodies can be replaced by the
motion o f a new body Q3 which interacts (at the level o f mean values) only with the center

o f mass of the other bodies. Proposition 2.,¢ allows us to represent I in a simple fashion
in a neighborhood of a seq-,ience violatirv!l the (PS) cun,dition, i.e. r;.car i; 1 poz*nt
at infinity". In this sense we have a Morse Lemma for neighborhoods of critical points at

infinity.
One final technical result will be given in this section. Let
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Prop osition 2.fi. Let ~% satisfy (l’i) - (lr5). Then there is an Eo &#x3E; 0 such that for all
c E (0, Eo), 16 netmactbu de 6 OJUnailo 11 an N R X c R9’ . In the 6inguta
homology 06 IS (with aeational vanizha . all i .

§3. An abstract theorem in Morse Theory.

The proof of Theorem 1. 9 involves in part the construction of a certain deformation
retraction. In this section, a finite dimensional version of this result will be stated. In the
next section, the extensions needed for the proof of Theorem 1.9 will be discussed. More

details can be found in {2] and [5].
Let M be a compact n-dimensionat Riemannian mani f old and let f E C2(M , R).

Assume all of the critical points of f are nondegenerate. Let Z denote a pseudogradient
vector field for f, i. e. Z is a locally Lipschitz continuous vector field on M and

for E M where y &#x3E; 0 is a constant. Further assume the critical points of f are
nondegenerate zeroes of Z. Consider the ordinary differential equation

Let denote the solution of (3.3). Suppose Z(xo) = 0. Set

i, e. is the unstable mani f old for the flow (3.3) which emanates from xo . Let a  b

be noncritical values of f and

Let

Then we have
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Theorem 3.5. Let Z, be a peudogradient vector field for f . Then in any C~ neighborhood
of Zl, there exists a pseudogradient vector field Z for f such that f’ retracts by deformation
onto 

, ,

is a single point, then Theorem 3.5 is a classical de f ormation res ult. See e.g. [6.
p - 1,56-160J. There are many extensions of Theorem 5.5, especially in ait 

sional space. The theorem can also be formulated in different ways. We re f er to Bahri [5]
for such extensions, alternate formulations, and applications. W’e note that Theorem 3.5

can not be generalized as such to situations where (PS) fails. In the next section we will

discuss how to extend Theorem 3.5 so as to apply to the functional (I. 6~.

§4. The construction of a pseudogradient vector field -’or I and a ;ketcli of the

proof of Theorem 1.9.

Let C1 be a constant and 3 E C(R+, R+). Let v’3 denote the set 

The sets Vl, V2 are defined in a similar way via a permutation uf indices. If ,0 is sufficiently
small, Proposition ~.1~ is valid on V3 (resp. and one can therefore use, as in

the classical situation in Morse Theory [6], the new coordinates (ql, q2, Q3) to define a
A, N

pseudogradient vector field 2 for I on V3. Then Z, similaT.ly defined on VI, V2 can be

extended to A by taking convex linear combinations of I’ and Z.
We will give an id ea f or the construction o f Z on V3 . A detailed proof can be found

in [2J. Suppose we have a pseudogradient vector field Z12 for [12. To simplify our presen-

tation, assume that the critical points o f F12 and I are nondeginerate. (This, o f course, is

not the case due to the translational symmetry possessed by and I.) Let be a

critical point of 112 and therefore a zero of Z12. Let 2) be the unstable manifold
associated with (ql, q2) for the differential equation.

Now we define Z in the coordinates (
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if and only if

Using Proposition ,. it is easy to verify that Z is a ps eudograd field for I on

V3. The solution q) of (4.:1) compactifies the "critical points at infinity" in the sense

of [7J, i. e. the decreasing (with respect to I as s -i +oo) orbits of the gpadient flow that are
not compact. In doing so, we introduce new equilibrium points for Z which are distinct

from the critical points. This prevents Theorem 3.5 from being extended directly to (,~.3~.
It is necessary to into account the "unstable manifolds of critical points at infinity".
By doing so, one can prove a version o f Theorem 3.5 for the current situation. Let

Here denotes the unstable manifolds of critical points at infinity.

Theorem 4.5. Let a  b be noncritical values of I. Then I b retracts by deformation on

and trivializable fiber over the fiber having the homotopy type
o f a sphere 

With the aid o f Theorem ~.5, the proo f o f Theorem 1.9 can now be sketched. To

simplify matters, assume that I has no critical points. Then, for any b &#x3E; a = f &#x3E; 0,

C~ so by Theorem ~.5,

where denotes retraction by deformation. The proof continues via three steps.

Step 1. Since A = U Ib and (4.6) holds for all b &#x3E; f, it can be shown that

bER+
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where - denotes homotop y equivalence.

Step 2. Let

and

An improved version of Theorem .~.5 [2] says that Bfj fibers over 8-j, the fiber being
triaializable and having the homotopy type of a sphere SI-1. Set

It is not difficult to check that I.j satisfies (PS) on up to translations, I,e, if Iii
is bounded and Iij --+ 0 along the sequence (qi, qj), then there is a sequence (vm ) C R,t
such that (q7’ - vm.. qj - vm) possesses a convergent subsequence. Therefore an infinite
dimensional version of Theorem 3.5 and an arguments related to (.~.?’~, yields

Step 3. By Proposition 2.6, the rational homology of IE vanishes in dimension &#x3E; t.

Applying the Mayer- Vietorts sequence to the excisive triad (A, IE, B-) shows that

Similarly

Moreover, from the fibration of over L3ij, one deduces that

Combining ~,~.10~-(l,.l,~~ yz*eldq:
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Let ak be the dimension of and (3k the dimension of Then by (1~.13~

has the homotopy type of the free loop space on Sf ~1 - see [2] - and therefore
(3k is bounded independently of k [8]. On the other hand, by a Theorem of Sultivan and

Vigué-Poirrier [8]. the sequence (Qk) is unbounded. This contradiction shows that I has

at least one positive critical value.

A more complicated variant of this argument given in [2] which takes Da into account
proves that I, in fact, has an unbounded sequence of critical values.

35. The proof of Theorem 1.12 and Corollary 1.13.

We will give a brief sketch of the ideas involved in getting Theorem 1.12 from Theorem
1. 9. First for all 6 &#x3E; 0. the potentials are approximated by 1 s j which satis f y (1/1 ) - (l’6).
t z~(t, x~) _ ~ i J(t, x) if I x I &#x3E; b, and if I x  8. Then Theorem 1.9

applies to the functional

Next it is that there are constants ~l~ and El which are independertt of 6 such that

16 has a critical value cb in Thus

independentl y of 8. Let q6 be a critical point of 16 corresponding to cb. The bounds (5.2)
and the properties of 1-~ lead to upper bounds depending only on fl and RI for

and for

These bounds enable us to let 6 -- 0 and find a subsequence of (q6) converging to a gener-
alized T -periodic solution of

To prove Corollary 1.13, we use a standard argument. By Theorem 1.12, we have a

generalized T-periodic solution ql. By the assumptions that V’(,q) 0 0 for q E (Rl)3, ql 0-
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const.. Let T / k1 denote its minimal period. Applying Theorem 1.12 again with T replaced
by there exists a periodic solution q2 having a minimal period  TI I ion q- - I+k, -

Clearly q2 is geometrically distinct from ql..Repeating this argument generates a sequence
o f geometrically distinct generalized T -periodic solutions of
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