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Consider the Schr6dinger operator

where x = E R2,AI,A2 and V are periodic in x with respect to some
-

lattice L. A(z) = is called the magnetic (vector) potential, V (x) is the
electric (scalar) potential and

is called the magnetic field.

The Schr6dinger equation

describes the spectrum of the electron in the periodic electromagnetic field (see [1]). Denote
by SpecoH the periodic spectrum of H i.e. when the eigenfunctions O(x) are periodic :

We shall study the following problem : Recover B(x~ and V(x) from SpecoH.
We shall assume that

It follows from (2) that

where ~’2 = R /L. Using (5) and the Fourier series expansions one can easily show that
there are unique AI, A2 satisfying (2) and (4) and such that

Therefore the problem of recovering B(x~ and from SpecoH is equivalent to the
recovering of Ai , A2 and V(x where AI, A2 satisfy (4) and (6). This work is a continuation

- 0

of Eskin-Ralston-Trubowitz (see [2] and [3]) where the case A = 0 was studied. We shall
-

use some results and constructions from [2] and [3]. However the case when 0 requires
new methods.

Denote by SpeCkH the Floquet spectrum of H, i.e.

where ’Pn(x + d) = E L, L’ is the dual lattice.

Repeating the proof of Theorem 6.2 in [2] we obtain :
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Theorem 1.- Assume that A(x) and V(x) are real analytic and the lattice L has the
following property :

Then SpecoH determines SpeCkH for any k E R2 / L’.
As in [2] denote by s the set of all "directions" in L’ i.e. for any b E L’ there is 60 e S

such that b = mbo, m E Z and k60 / S for 1.

-

Any periodic function A(x has the following decomposition

where

I T21 [ is the area of T2 = R /L.
Talk arbitrary bo E S’. There is a basis (do,d(O)) in L such that do.60 = = 1.

Denote

The following theorem holds :

Theorem 2. Knowing the Floquet spectrum SpeCkH for all k E R2 / L one can recover
the following integrals

for a,II ba E S’ and p &#x3E; -4minAbo (s) -
8

The proof of Theorem 2 is based on the study of the asymptotics of the Green function
for the nonstationary Schr6dinger equation
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As in [2] it is easy to find out that the Floquet spectrum of H determines the integrals
,f G(x + d, x, xo)dx, dX2 for any d E L. Indeed the trace formula gives

where satisfies (12), (12’) for x E T 2, y E T 2 and the Floquet boundary
conditions

The Green function Gk(x, y, can be represented in the form

Substituting (15) into (13) we get that fT2 f G(x + are the Fourier coefficients
of The main result of the work is the following theorem :

Theorem 3.- The following asymptotics holds as N -~ oo :

To is arbitrary and sufficiently small. There is an explicit expression for ao (TQ ) and the
further terms in the asymptotic expansion (I6~ can be found.

The proof of the Theorem 3 consists of the following three steps :
1) Make change of variables
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and substitute in (12)

with appropriate choice such that g( s, t, s’, t’, xo ~ will satisfy

where Aso(s~ is the same as in (10).
2) Construct g(s, t, s’, t’, xo ~ as a kernel of a Fourier integral operator with nonhomoge-

neous phase function :

eo is small and fixed, L satisfies the eiconal equation

T = :roA, a = ao + a, + .- . + aN where ak satisfy corresponding transport equations.
3) Compute the trace of the Fourier integral operator by the stationary phase method.

The stationary points form a curve corresponding to the whirling motion of the pen-
dulum

Such curves are defined by their period and they satisfy the following conditions

where s(O) = y, p(0) = are the initial conditions and (7_) = d(T) . For each sufficiently( l p 2 dr
small T m there is such a curve and Tm 2013 0 as jE’(?) 2013 00 and vice versa. Here
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is the energy. It is enough to consider the case m =1 since Tm = mT1 and E( Tm) = 
The Theorem 2 follows from (18) if we take p = E(T1) and denote by the function
inverse to E( T1).
Remark 1 The asymptoticsof theintegral f fT, is more difficulté
· 

- 

. , . 

I 1 
..

in the case m = 0. It requires a Maslov’s type global construction of the Fourier integral
operators. The stationary points in this case form curves corresponding to the periodic
trajectories of the pendulum (25). We didn’t consider the case m = 0 since the spectral
invariants obtained by the asymptotics for m = 0 can be easily obtained from (11) by the
analytic continuation in p.

Now we shall apply Theorem 2 and 3 to the inverse spectral problem.
Note that can be extended analytically to the whole complex plane p with the

cut along the real axis from -oo to -4minAbo (s). Using this analytic continuation we can
s 

°

find the following functions

The spectral invariant (p) can be used to prove the following theorem :

Theorem 4. Assume that Abo(s) is even and real analytic. Assume that has
2m local maxima and minima : where m oc maxlma an mlillma. ,So ,... ’Sm-I were Sm-I - 2" 00 an k k
Assume that 0 and for 0  K  m -1. Then there is at most

2m even real analytic functions having the same spectral invariant (p) as AlSo (s).g p 60 () o ( )

Computing the first term in the asymptotic expansion (16) that depends on V (x)
and using Theorem 4 one can prove the following theorem on the rigidity of isospectral
deformations :

Theorem 5. Let = and V(t)(x) be continuous family of even( ) 1 ( ) 2 ( )) ( ) Y
real analytic magnetic and electric potentials, 0  t  1. Assume that the lattice L satisfies
the condition 8 and A(°) s for all b S’ satisfies the same conditions as in Theorem 4.
Assume that the periodic spectrum of H(t) is independent of t, 0  t  1 where H(t) is the

Schrodinger operator corresponding to A(t) x V(t) (x). A (0) (X), V (t) x =
V (°)(x) for all t E (0, 1 ]. 

p g ( )~ ( ) ( ) ( )~ ( )

The asymptotic formula (16) shows that some kind of quantum mechanical semiclassi-
cal asymptotics appears in the direction 60 . The same semiclassical nature of the problem
appears when one considers the asymptotics of eigenvalues for the operator H with periodic
boundary conditions.
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Let n be an integer, n --+ oo. Denote

Let J.lm,n be the approximative eigenvalues for the semiclassical eigenvalue problem

- 0

where hn - 0 and Cbo(s) has the same relation to C(s,t) as Ab(s) to A(x) (see (9) and
(21)).

It is known (see [4]) that

where satisfies the Bohr-Sommerfeld quantization condition
r 1

Theorem 6.2013 Let am,n = ~ 2013 There exists a subsequence a~~~ in SpecoH
such that 

’

for all n sufficiently large and m such that

The approximative eigenfunctions (quasimodes) have the following for

’ 
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