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I INTRODUCTION : THE PROBLEM AND THE RESULTS

The work described here is joint work with R.G. Froese and the details appear in (1~.
The spectrum of the Laplace-Beltrami operator on compact manifolds has been extensively
studied. Since the spectrum is discrete, much work, for example, has been directed towards
describing the asymptotic distribution of eigenvalues [2] and estimation of the lowest-lying
eigenvalues [3]. When the manifold M is non-compact, the spectrum of a second-order
elliptic operator L becomes much richer in the sense that the pure point spectrum of L,
app (L), and the continuous spectrum of L, uc(L), are, in general, non-empty. Here we are
interested in the questions :
(1) What is the nature of the essential spectrum of L, uess(L)1 , i.e. find inf ueBs(L) and

describe aac (L) and usc(L), the absolutely continuous and singular continuous spectra
of L ;

(2) How can we characterize app(L)? ; for example, for which manifolds .M do we have
Qpp(L) fl (lnf QesB(L), oo) _ 4&#x3E;1; and, if L has eigenvalues, what can be said about the
behavior of the eigenfunctions? are the eigenvalues stable under perturbation?
We describe here results on question (1) for a large class of manifolds ,M and second-

order elliptic operators L. This family includes, for example, the Laplace-Beltrami operator
on finite and on infinite volume hyperbolic manifolds (see Section 2). The results, described
in Section 4, include the Mourre estimate and related bounds which imply a limiting
absorption principle and the absence of singular continuous spectrum. In the last section,
work-in-progress on the second question will be briefly discussed. Our main tool is the
method of local positive commutators, the so-called Mourre theory [4], which has proved
to be very powerful for the spectral analysis of Schrodinger operators on Rn. This is
described in Section 3.

Questions (1) and (2) for the Laplace-Beltrami operator have been addressed for
various families of manifolds ,M. Part of this work has been motivated by the study of
the Eisenstein series associated with various hyperbolic manifolds (see Section 5). When
M is the quotient of hyperbolic space, these problems were studied by Selberg [5], Lax
and Phillips [6] and Patterson [7], and others. More recently, Perry [8] and Agmon [9]
have applied the method of stationary scattering theory to these problem and Mazzeo and
Melrose [10] have studied them using microlocal analysis.

The manifolds M and the operators L to which our theory applies are described as
follows. M is a non-compact manifold having the form

where K is compact and Ua, a =1, ... , s, has the form of a generalized cylinder :

where .Ma is compact. As it makes no difference for our proofs, we assume s =1, i.e. :

We call U an "end" . There is a smooth density on ,M such that = where &#x3E; is
a smooth density on and r is the distinguished coordinate on ~l.
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We let M = L2(M,w). ,In a formal sense, the subspace L2(U,w) of M has a constant
fibre direct integral decomposition :

The operators L which we consider are perturbations of operators Lo which respect this
decomposition. We call a second-order elliptic operator Lo on M separable if there exists
some R &#x3E; 1 such that :

where h and q are smooth functions on R+, h &#x3E; 0, which satisfy conditions described
below, and P is a second-order elliptic operator on the compact manifold M 1 (we also
assume that is a core for Lo~. The operators L which we consider can be written
as

- - -

where Lo is separable and E is a second-order symmetric operator whose coefficients are
smooth and relatively Lo-small. In a local coordinate chart on N i , E has the general
form :

II SOME EXAMPLES

We give 3 examples of manifolds .M and operators L which are included in the frame-
work described in Section 1.

Example 1 Finite Volume Hyperbolic Manifold
Let H2 denote the upper half plane with the Poincare metric ds2 = y-2(dx2 + dy2).

SL~2, R) acts as a group of isometries on H2. The discrete subgroup SL(2, Z) has a funda-
mental domain F shown in figure 1. By identifying points of F equivalent under the action
of S’L~2, Z), F has the structure of a complete Riemannian manifold M 2with the metric in-
duced from the metric on H2 . Note that the hyperbolic volume of F, y-2 d y
is finite and that .M 2 = any a &#x3E; lland

S 1 x (a, oo). Let L be the Laplacian on M 2 with Hilbert space L2 (.M2, y-2dx dy).
Then, we have
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and introducing this is equivalent to

acting on dx~ . Finally, by the unitary transformation :

we arrive at

acting on L2(M2,dr dx), with h(r) = e2r, q(r) = 1/4, and ~’ _ _a2 an elliptic operator
on Hence L is a separable operator.

Example 2 Infinite Volume Hyperbolic Manifold

We now consider Hn, n-dimensional hyperbolic space, with the Poincare metric. Let
r be a discrete subgroup of hyperbolic isometries on Hn which is geometrically finite
and such that the fundamental domain F = H’~ /F has infinite hyperbolic volume. For

simplicity we assume that r has no parabolic elements (this amounts to assuming that F
has no ends or "cusps" equivalent to the type appearing in Example 1). F may appear
as in figure 2 where lC and ui are identified. By identifying points on the boundary of F
according to the action of I‘, we obtain a complete Riemannian manifold M n. Let L be
the Laplacian on .Mn. To describe L on an end ui, we follow Perry [8] and introduce local
coordinates (T, 8), T E R+, 8 E .Ma. Then

where Ei is a second-order differential operator on ui having the form

with p a second order differential operator (with coefficients satisfying certain uniformity
estimates). We define Lo = L - z so by (2.1), Lo is separable with h(T = e-2T and
- _
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Figure 1

Example 3 Complete Riemannian Manifolds whose metrics are almost warped
products on ends

Let (,M, g) be a complete Riemannian manifold, .M = JC U u, and L the Laplacian on
L2 (.M, g2dx1... dxn) with g2 = We assume that on U - R+ x .M1, g has the
form (in local coordinates (r, 0)) :

where is a metric on Ni and a "small" perturbation. When = 0 for all
r &#x3E; R, the metric is a warped product on U and g2 = . We define Lo to
be the Laplacian with this metric. By the unitary transformation

where w is a smooth function equal to 1 on K and h-,/4 on U for r &#x3E; R, .Lo is equivalent
to

where

Now consider a perturbation which does not necessarily vanish outside of a compact
set. It can easily be seen that after the unitary transformation

with w equal to 1 on K and g(0,6)/g(r,6) on U, the Laplacian has the form Lo + E, with
Lo as above, acting on where, in local coordinates on .M 1,
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Figure 2

III THE MOURRE THEORY AND ITS CONSEQUENCES

. 
Our analysis of L described above is based upon a method of E. Mourre [4], [11]. The

method depends upon the existence of a (skew-adjoint) operator A, called a conjugate
operator for L, such that L and A satisfy the following properties (these are stated
imprecisely, see [11] for the exact statement). Let &#x3E; 0, be the sth Sobolev space
associated with L, i.e. the closure of D((1-~ ILI)8/2) with the norm = II (ILl + 1)8/21/J11;
~l_8(L) - ~!8(L)*, s &#x3E; 0.

Boundedness

(1) The form ~L,A~ extends to a bounded operator from ~!+2(L) --&#x3E; ~l_1(L).
(2) The form ~~L,A~,A~ extends to a bounded operator from M+2 (L) --&#x3E; ~!_2(L).
Positivity
(3) For each A E R, except possibly in a discrete set I (L), there exists an interval A E) A,

a constant a &#x3E; 0, and a compact operator K such that

where is the spectral projector for L and the interval A.
The condition (*) is called the Mourre Estimate.

In our case, as L = Lo + E, we first construct a conjugate operator for Lo satisfying
(2) and (3) and

(1’) the form [Lo, A] extends to a bounded operator from ~+Z (Lo) -~ ~! .
Having found an A satisfying (1’), (2) and (3), sufficient conditions on the coeflicients of
E (see the end of Section 1) will insure that

9 E is relatively Lo bounded with bound  1

, is compact

is bounded

is bounded
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. f (L) ~E, A~ f (L), f E Co (R), is compact.
Hence one can pass from the Mourre estimate for Lo and A to the Mourre estimate

for L with the same A.

The problem, therefore, is to find a conjugate operator A for Lo. Unlike the Schr6dinger
operator case, the main difficulties already appear for the unperturbed operator Lo. As the
examples of Section 2 show, there is a wide variation in the behavior of h as r ---~ oo. We
divide the operators Lo into 3 classes according to this behavior : the choice of A depends
crucially upon this. Note that in Example 3, h-1 measures the "size" of the manifold M
at infinity, hence the terminology below.
(A) h(r) - 0 as r - oo; .M is large at infinity. We distinguish 2 cases :

p a polynomial

,M is small at infinity.

.M has a "constant volume" at infinity.

The conjugate operators to be constructed for each class will be supported in the
end U : the local compactness property of Lo guarantees that no singular spectrum is
contributed from M. Case (Aii) is the easiest in the sense that it is the closest to the

one-body Schrodinger operator case : A is effectively the generator of the dilation group
in r. Technically, case (Ai) is the hardest.

Results For each of the cases (A) - (C) we prove that inf O’ess(L) = q(oo) and we construct
a conjugate operator A for Lo, and hence for L, such that (1) - (3) hold. It is then a

consequence of Mourre’s theory that a limiting absorption principle holds for L. For each
A ~ app(L) and for which (*) holds for some open interval Ll 3 A, there exists a constant
C &#x3E; 0 such that

for a &#x3E; 1. As a consequence, 0. For cases (A) - (B), the Mourre estimate
holds for all points above q(oo) = inf a,..(L) and hence 0. In case (C), the set
of exceptional points ~’(L) _ + q(oo)lan E at which the Mourre estimate
fails is non-empty and discrete so 0. It also follows from Mourre’s theory that
L has finitely many eigenvalues of finite multiplicity in any interval on which (*) holds.
Hence the eigenvalues can accumulate only at inf in cases (A) and (B) and also at

in case (C).
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IV SKETCH OF THE CONSTRUCTION OF A AND THE PROOFS

We sketch the ideas behind the construction of A in the various cases described in
Section 3. As Lo has the separable form (1.1) only on the end u, A will be supported in
U for r &#x3E; R, .R sufficiently large. The compact piece of .M can be neglected because Lo
is locally compact (as follows from ellipticity and the smoothness of the coefficients). Let
X E such that x &#x3E; 0, monotone, and X = 0 for r  1 and X = 1 for r &#x3E; 2; set
XR = x(r/R).

Case (Ai)

As re-r » e-r on suppXR this is positive in the sense of Mourre but it is not relatively
Lo-bounded for the same reason. To reduce the size of the commutator, we try Åo =
x2 Dr + DrX2 and obtain :

This is Lo-bounded but not positive in the sense of Mourre. A basic problem above is that
P is unbounded. Let us write A for P as r and P commute. Returning to (4.1), we see
that if we restrict ourselves to a region of (r, A)-space where Ar e~r  C1 (1 + Àe-r) or,
equivalently, where A e-r  C2, for some Cl, C2 &#x3E; 0, it then follows that the first term on
the right in (4.1) is Lo-bounded provided we add a cut-off function ~ to Ao supported in
the region hP  C. This almost works except that there are remainder terms like rXR ~’~r
which are not Lo-bounded since G1  X,-r  C2 does not imply that r is bounded. Both
of these problems are solved if we modify r in a P-dependent manner and add a cut-off
function e to Ao which is supported in the region hP  C. We now take

and find

Now [r - log(P + 1)] &#x3E; b &#x3E; 0 so we have positivity, [r - log(P + 1) 
is bounded so the remainder is negligible and

so the commutator is Lo-bounded. A in (4.2) is basically the conjugate operator we
construct. Now, to finish a proof of the Mourre estimate (*), we take f E and

multiply (4.3) on both sides by I(Lo). After some manipulations, we obtain :
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where K is compact. We prove that as su pp( f ) shrinks around a point Ao and the constants
R and C such that (1 - e) projects onto h(P + 1) &#x3E; C, are taken sufficiently large,

1)f(Lo)ll - o. This can be understood classically as f restricts the energy
E; + hA + q N Ao where as (1 - ~) restricts hA &#x3E; C. Hence, the supports of f and (1 - E)
become disjoint.

Case (Aii)
It is easily seen that in this case a conjugate operator for Lo is A = + 

since for r &#x3E; R, R sufhciently large. In fact, this situation is
simply part of a more general case for which Lo is not necessarily separable on u . For

example, suppose Lo = -D 2 + E on U where E is as in (1.2). If the coefficients of E

satisfy conditions like 
......

etc., for constants ei, bi &#x3E; 0, then the simple form of A given above works.

Case B

To see the idea, consider -D’ + erP. Let (An) = a(P). Then Lo on
the end U is a direct sum + erÀn). For n &#x3E; 0, -Dr + eran has compact
resolvent and hence discrete spectrum. For n = 0, however, if Ao = 0, the operator
-Dr has continuous spectrum [0, oo). From this we see that (1) we need only control the
commutator on the n = 0 subspace, and (2) L may have eigenvalues embedded in l1c(L).
Concerning point (1), let Po be the projection for P onto the n = 0 eigenspace. Then with

An argument similar to the one given in Case (Ai) shows that 11 (1 - can be
made small by taking R large and shrinking suppf . Concerning point (2), it is known that
for certain case (for instance, Example 2) there are embedded eigenvalues ; we comment
on this in Section 5.

Case C

When h(oo)  oo, the eigenvalues of h(oo)P + q(oo) on L2(M 1, 11) form an exception
set I (Lo) at which the Mourre estimate fails. To construct A, consider A &#x3E; q(oo) =

I(Lo) and take N such that A N h (oo) + q(oo)  A  + q(oo).

where we assumed that lrh’i [ --&#x3E; 0, lrqi ~ 0. The remainder term is

controlled in the same way as above : suppf C (ÀNh(oo) + q(oo), A N + I h (oo) + q(oo)) and
is made small whereas (1- PN)XRhP &#x3E; by taking R large. Note
that in this case A depends upon the point where the Mourre estimate is to be computed.
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V WORK-IN-PRO GRESS AND APPLICATIONS

We conclude with some remarks about work-in-progress [12] and applications [13].

A. Eigenvalues
The existence of eigenvalues for L above inf can be studied using the results

presented here and the method of Froese and Herbst [14]. This method combines the

virial theorem and the Mourre estimate to establish isotropic L 2-exponential bounds on
eigenfunctions. When the eigenfunction decays faster than any exponential, one can many
times use a unique continuation theorem or a positivity estimate to conclude that it is

identically zero. This is the case for manifolds which are large at infinity, i.e. in Case A

we prove that L has no embedded eigenvalues.
When h(r) oo, Case B, it is known that embedded eigenfunctions

exist in certain cases (Example 2 is discussed in [15]). However, we can show that if

1$ is an eigenfunction corresponding to an embedded eigenvalue, then Pio decays faster
than any exponential (where Pi projects onto the Ai-eigenspace of P). Moreover, we have

( = 0 which can be interpreted as a generalization of the
cusp form condition known to hold for eigenfunctions of the Laplacian on finite volume
hyperbolic space, i.e. that PoV) = 0.

B. Stability of Eigenvalues and Resonances

The stability of embedded eigenvalues for the Laplacian on finite volume hyperbolic
manifolds in 2-dimensions was extensively studied by Colin de Verdiere [16]. He showed
that they are unstable under generic Co’ -perturbations of the metric. In such a situation,
one expects that the eigenvalues dissolve into spectral resonances of the operator. We study
this situation using the analytic family of operators L(8),  ~r~2, constructed from
L using the unitary group U(8) = E R, where A is a conjugate operator for
L, by continuing U(0)LU(8)-1 from 0 E R. The resonances of L are complex eigenvalues
of L(8) lying in C-. It is an easy application of perturbation theory and the theory
of resonances to prove that if L has embedded eigenvalues then a Co’ -perturbation of
the metric generically causes these eigenvalues to dissolve into resonance of the perturbed
operator. We also believe that in Case B the Laplacian generically has spectral resonances,
but this seems much harder to prove.

C. Meromorphic Continuation of the Eisenstein Series

A first step fowards the meromorphic continuation of the Eisenstein series associ-
ated with a hyperbolic manifold is the continuation of the resolvent kernel for the

Laplacian L. Using the spectral deformation group introduced in B above, it follows
from the analyticity of L(O) and a calculation of that matrix elements of the
resolvent of L between vectors from a dense set of analytic vectors for have mero-

morphic continuations across ac(L) . Since it can be shown that L(O) is analytic on the
strip  7r/2 and that uess(L(8)) these continuations extend to Cr.
From this information we hope to derive the corresponding results for the resolvent kernel.
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D. Scattering Theory for the Wave and Schrôdinger Equations
With S. DeBievre, we are studying scattering theory on manifolds N of the type

described here : .M = K u ul U ... U Us. Physically, each end appears as a geometric
channel into which a particle may scatter. Of particular interest is the wave equation on
M :

where L &#x3E; 0 is an operator of the type considered here and V is a short-range potential
on .M. To study questions like asymptotic completeness for this equation, we extend the
Mourre theory for L to a form applicable to (5.1). This amounts to finding a conjugate
operator for £1/2, which is formally Ll/2 A + AL1/2, where A is a conjugate operator for L.
It follows from the limiting absorption principle (3.1) and the theory of smooth operators,
that the wave operators, which compare the dynamics given in (5.1) to that given by a
separable operator Lo,i on the end Ui :

exist and are complete. Other situations of physical interest which fit into the framework
given here include obstacle scattering on unbounded domains in Rn and scattering on
static space-times, like the Schwarzschild metric on R x R x ~’2.
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