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THE PROPAGATION OF SINGULARITIES FOR

PSEUDO-DIFFERENTIAL OPERATORS

WITH SELF-TANGENTIAL CHARACTERISTICS

NILS DENCKER

University of Lund

0. INTRODUCTION

In this paper, which is a condensed version of a paper which is to appear in Arkiv for

Matematik, we study the propagation of singularities for a class of lseudo-differential oper-
ators having characteristics of variable multiplicity. We do not assume the characteristics
to be in involution, in the sense that their Hamilton fields satisfy the Frobenius integra-
bility condition. Instead, we assume that the characteristic set is a union of hypersurfaces
tangent of exactly order ko &#x3E; 1 along an involutive submanifold of codimension do &#x3E; 2.

This means that the Hamilton fields are parallel at the intersection, and their Poisson
brackets vanish of at least order ko + 1 there. We also assume a version of the generalized
Levi condition. One example, with 1~0 =1, is the wave operator for unia.xial crystals, i.e.

trigonal, tetragonal and hexagonal crystals. The main result is stated in Theorem 1.3,
and it shows that the wave front set of the solution is propagated along the union of the
Hamilton fields of the characteristic surfaces.

There have been many studies of singularities of solutions of symmetrizable hyper-
bolic systems, see [15] and references there. Nosmas [12] has studied the involutive case.
Kumano-go and Taniguchi [8] have constructed parametrices for dia,gonalizable systems,
but since they consider classical symbols, their results are not directly applicable here.
The results on the propagation of singularities for the system in Proposition 2.3 may be
obtained by the method of energy estimates of Ivrii [6] (see also [16]). For scalar oper-

ators, the case when the characteristics have transversal involutive self-intersection has
been analyzed in (1), [9], [13] and [14]. Melrose and Uhlmann [10] considered the case of
conical involutive singularity of the characteristic set. Morimoto (11) ] studied operators on
the form (2.10) below, but with involutive characteristics. Ivrii [7] considered operators
with L°° bounds on the Poisson brackets at double characteristic points.

In this paper, we shall consider classical, or polyhomogeneous, pseudo-differential opera-
tors. These have symbols which are asymptotic sums of homogeneous terms. But we shall
also use the more general symbol classes of the Weyl calculus. Since all our metrics are

split, we may use the standard calculus of pseudo-differential operators with these symbol
classes. For notation and calculus results, see [5, Chapter 18].
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1. STATEMENT OF RESULT

We are going to study the pseudodifferential operator P ~ ~~(~f) on a C°° manifold X .
Let p = be the principal symbol and E = the characteristics set. Assume,
microlocally near (xo, E ~, I

This means that the Hamilton field of Sj does not have the radial direction (ç, 8~). Also,
the ko:th jets of Sj coincide on ~2, but no ko+l:th jet does, and tlne surfaces only intersect
at ~2 in a neighborhood of (xo, ~0). Observe that the surfaces need not be in involution,
in the sense that their Hamilton fields satisfy the Frobenius integrability condition. Since

p is homogeneous in ~, ~i and Sj are conical. Next we assume, microlocally near (xo, 

(1.2) 
~2 is an involutive manifold of codimension do &#x3E; 2,

(1.2) 
and II (E2) = X, where II is the projection: ~’ (.~ ) --~ X.

Clearly the codimension cannot be equal to 1, and by non-degeneracy ~2 is a manifold

near (xo, In order to obtain conditions on lower order terms of P on the multiple
characteristic set we assume the following version of the Levi condition. For j =1, ... , ro
there exist mj E N, with the property that, if pj E C"0, (x, dxcpj) E Sj near xo, and
dx’Pj(xo) = ço, then

Va E Co supported near xo. Here mo = and d(x,O is the homogeneous
distance to ~2, i.e. the distance with respect to the metric + + ’çI2). This
means that p vanishes of order mj at Sj B E2, of order mo at E2, and P satisfies the Levi
condition on Sj and E2 (see [2]). We also have uniform conditions on lower order terms on
El = ~ 1 E2 when approaching E2. In order to avoid extra zeroes of the principal symbol
at E2, we assume

microlocally near (xo, ~0), where dkp is the k:th differential of p.
Clearly, (1.1), (1.2) and (1.4) are invariant under multiplication with elliptic pseudo-

differential operators and conjugation by elliptic Fourier integral operators corresponding
to canonical transformations preserving the projection condition: II (~2 ) = X.
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LEMMA 1.1. Condition (1-3) is invariant under multiplication of P with elliptic pseudo-
differential operators and conjugation of P by elliptic Fourier integral operators corre-

sponding to canonical transformations preserving the projection condition.

The proof follows by using the stationary phase (see [5, Th. 7.7.1 and 7.7.6]) when
conjugating with elliptic Fourier integral operators, since 1.

We shall now state the result for propagation of singularities for P. Since the surfaces are

tangent at ~2, their Hamilton fields are parallel. Because E2 is iiivolutive and ~2 = n Sj,
the Hamilton fields of Sj are tangent to ~2, and they define the same flow there.

DEFINITION 1.2. The Hamilton flow on E is the union of the Hamilton flow on Sj,
j = 1,...,ro.

The following is the main result.

THEOREM 1.3. Assume that P E satisfies (I.1)-(I.4) Inicrolocally near w E ~.
If u E D’(X), then WFuB WF Pu is invariant under the Hanzilton flow on E = 

near w.

On ~1 this follows from the fact that the characteristics have constant multiplicity,
see [2, Th. 1.1]. Theorem 1.3 will be proved in section 5.

2. REDUCTION TO A FIRST ORDER SYSTEM

We assume P satisfies ( 1.1 )-( 1.4) microloca,lly near 10 C 2. Since the result9
is local and the conditions are invariant, we may assume X = Rn. Because 2 is involutive
and H(E2) = X, we may choose symplectic, homogeneous coordinates (x, ~) E 
near w E ~2, so that w = (0; (0) ... 1)) and

We may also assume

near w. We rename x

tangent to S’1 at ~2, we obtain

with {3j real and homogeneous of degree 1 in , Qi - 0, and

in a conical neighborhood of w. By taking k = 1, we obtain that (3j vanishes of exactly
order at (g’ = 0 } .

Next, we prepare P Assume P to be given by the expansion p +

pm-2 +..., where p = Q(P) and pj E Si. Conditions (1.3) (with ~1 = t) and (1.4) give
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Thus Malgrange’s preparation
theorem gives, by homogeneity (see [5, Th. 7.5.5~ ~,

where 0 ~ c E sm-mo, aj E COO(R,Sj) are homogeneous in ç, ao - 1 and aj = 0 at
~2, j &#x3E; 0. By multiplication with an elliptic pseudo-cliffere11tial operator, we may assume
m = mo and c -1. By using Malgrange’s preparation theorem repeatedly, we get

where Aj E and 1. Now (1.3) gives more information about Aj, butphg) and Ao = 1. Now (1 .3) gives more information about Aj, but
we first have to introduce some symbol classes corresponding to the (3j’s.

Let

were 

where = ko /(ko + 1), which gives h2 = ((g)" +  1. It is easy to

see that g is cr temperate, and m is a weight for g. We shall denote

by the symbol classes in (x, ~) of weight E Z, depending COC&#x3E; on t, and

the corresponding (classical) pseudo-differential operators. (Thus we shall
suppress the t dependence.) The reason for using these classes is that E s(m, g). Also,
if a(t, x, ~) is homogeneous of degree j in ~ and lal  cmk, then a E In fact, if
k  j, then a = 0, otherwise a vanishes of order &#x3E; + 1) at ~2.

LEMMA 2.1. Assume that P is given by (2.5 and satisfies (I.I)-(I.4 with m = mo and
s1 = {r = 0}, near w E ~2. Then Ai E Op S(mz, g) and

for all a E S(mT,g), if is homogeneous of degree 1 in ç, E Sj
near (to,xo,ço), = w, and E ~2 when ç/ = 0.

PROOF: We obtain p j satisfying the conditions in the lemma by solving (3.3), according
to Lemma 3.1. To compute (2.8) for homogeneous a, we may use the formal expansion in
Lemma A.l, and homogeneity, to find
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is differential operator of order k

in (t, x), with principal symbol

Applying this to a E S(l, g), homogeneous of degree 0 in ç, (1.3) gives that Lk(P, ~~) - 0
when k  m j , and that all coefficients of Lk(P, ’Pj) are bounded by c m’O -’j when k &#x3E; m~

(since m = mo). By homogeneity, all coefficients of are in S(mmo-k,g) when
k &#x3E; mj. Observe that this implies that p vanishes of order 777j at 5j, I and s E

m j , near w.

By induction we obtain that vanishes of order (mj - i)+ = max(m j - i, 0) at Sj,
and

I

By using the expansion (A.4) for general a, we get (2.8). We obtain Ai E Op S( mi, g), by
using (2.9) for j == 1 (i.e. T = 0).
LEMMA 2.2. Assume that P satisfies the conditions in Leinma, 2.J. Then we can find

A, AI E I = E Nro, so that a(A) = 1 and

microlocally near w E ~2. Here Qj = Dt + Bj, Bj E Op S(m, g) and ~(B~) _ ~~.
PROOF: Observe that the products in (2.10) are commutative modulo lower order terms.
We find that = p a(Qj), since it is a monic polynomial of

degree mo in T, vanishing of order mj at T = -,Q~. We shall consider the cases ~~’~ ~ 
by using a partition of unity in S’(1, g). When ] ::; c(ç)JL, we find S( mk, g) C S(l, g), Vk.
Replacing Dk by fiQ kj I where E kj = l mj, only changes terms of lower orderp g t y  ? - y

in Dt. Thus we only have to consider ] &#x3E; c()’. The result will follow if we can write
k &#x3E; 0, on the form

I- "",..-v

when lç’l ] &#x3E; c(ç)Jl.
The proof of Lemma 2.1 implies that vanishes of order - k)+ at (T 

Since Pmo-k/P is rational in T, residue calculus gives

By (2.9) and the fact that q 1 ,=_a _ /3j)-I E when we

find aii i c when lç’l ] &#x3E; c ’ . This proves ( 2.11 ) and the lemma.k 1

Now it is simple to reduce (2.10) to a first order diagollaliza,ble system. See Mori-

moto ~11~ for the details. Summing up, we obtain the following result.
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PROPOSITION 2.3. Assume that P E satishes (I.1)-(1.4). Then, by conjugation
with elliptic Fourier integral operators and multiplication by elliptic pseudo-differential
operators, the equation Pu = f , u E D’(X ), can be reduced to the No x No system

microlocally near w E ~ 2 . Here and

K E Op S‘(m, g~ with principal symbol

being diagonal matrix, with real eigenvalues Pi E S(m, g~ homogeneous of degree 1 in 6,
satisfying (2.4), and /~1 = 0.

3. THE CAUCHY PROBLEM

We shall study the Cauchy problem for the 1Vo x No system

having the properties in Proposition 2.3. Let 7rj be the projection on the eigenvectors
corresponding to the eigenvalue Q; , along the others, thus k = We are going
to solve

microlocally near (0, (0, go ) , (0, go ) ) , ~’ 0 = 0, with E: ~’(R’~-1 ) --~ D’ (R’ ) . We shall

use Lax’ method of oscillatory solutions. In order to do tllat, we must solve the eiconal

equations

By Hamilton-Jacobi, this has a unique local solution, homogeneous of degree 1 in 77.

LEMMA 3.1. Let Oj solve (3.3) with Oj satisfying the conditions in (2.4), and ,~1 = 0.
Then we find that x, 77) = x, 17) - (x, 77) satisfies

IDEA OF PROOF: Clearly (3.3) gives p ; m 0 when q’ = 0. Successively differentiating the
equation, we find that = 0 when q’ = 0 ko .

Now we define E’(Rn-1) -3 D’(Rn), j = 1,... ,ro, as oscillatory integrals
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with aj E S’( 1, g) . Assume that aj is supported in a conical neighborhood of {1]’ = 01. By
Lemma A. I in the appendix, we get

where

Rj is continuous

with lVh E S’( 1, g). In general, we cannot find homogeneous aj ma.king bj E However,
we have the following result.

LEMMA 3.2. Assuming (2.13), we can find aj E S(l, g) suel] tlia.t bj E S(m-N, g), d lV,
in (3. 7), j =1, ... , ro, I and

The term in

in the expansion (3.7), is given by

where §) f = since h  m-1 (a - 0). For 1 = -1, we obtain a° E Im r- ==
ni:h Ker If we at t = 0, we obtain E a § = Now * (,Qz - J3j) E3 .1 t 0 J

S(m, g) is invertible modulo S’(m-1, g) according to (2.4), i, since = O( 117’ I)
by (3.4). Thus, it suffices to solve successively, with suitable initial data,

where 0, and has been determined in the previous step. Here Rj is

with /4( E 8(1,g). If we introduce local 9 orthogonal coordinates, then 
transforms into a uniformly bounded Coo vector field. Thus, by adding a suitable linear
combination of v) to each column of ajr we may solve (3.9) for all 1  j  ro, with initial

data making (3.8) hold modulo 
Now the symbols in nN are integrable in ~~’. We obtain new symbol classes

after integrating (3.fi), according to the following lemma.
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LEMMA 3.3. E nN S(m-N,g) has support where I
homogeneous of degree 1 satisfying (3.4), then

PROOF: If we obtain

by putting ~’ = r~’~ ~r~" ~ ~‘ . This gives C ~7~" ~ L . when differentiating (3.11), the
derivatives falling on a gives the right factors. The derivatives falling on the exponent
gives either 77’ factors, or factors

by (3.4) and homogeneity. The "1’ factors gives only factors by (3.13), and the
m factors are harmless since a E 5’(?r~"~,~), This completes the proof.
The lemma gives

where r; E = 1,..., ro. We shall compensate for tllese terms by adding a similar
term Eo: £’(R’~~~ ) - with symbol ao E sl~~,,~o. By lemma A.2 in the appendix,
we obtain that PEo has symbol bo E given by

if k is the full symbol of Ii . By using Proposition 4.1, we may solve 0  t  c,

ao It=o rv 0, modulo Since we can do this with t replaced by t - s, for small s, we
obtain

PROPOSITION 3.4. Let I1 (t, x, Dx) E Op S(m, g) be an No x No system with principal
symbol k(t, x, ~) satisfying (2.13). Then the Cauchy problem for ] ,E
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microlocally near (0, (o, ~Q), (0, ~’o)), çb = 0, has a solution
the form

rrt

Here

where

4. THE MICRO-LOCAL PSEUDO-DIFFERENTIAL 01"-,’RATOR

We are going to study the system

modulo Si°°, where f o, r E have values in CNù, and E g) is No x No system
(see section 3). By lemma A.2 in the appendix, we have I C SY,p,o if ,f E SV We shall
also assume that k is symmetrizable, i.e. 3 symmetric No x system ~~, ç) E S(l, g)
such that 0  c  M and Mk - (Mk)* E S(l, g).

PROPOSITION 4.1. Assume that k(t, x, ç) E g) is a S}’lnlTIctrizable No x No system.
Then, for every f o, r E the equation ~~.1~ l1a.s a E S",,,o in a. conical
neighborhood of ( 0, 0, (0, qg’)) E R x x 

~ 

PROOF: We shall solve (4.1) by iteration, modulo ~‘~,j~~~, Il = + 1)  1. By
Lemma A.2, we have

modulo terms in Also, we may assume k supported where 2013 (o, r" ) ]  6(,q") and

It I  c. By cutting off, we may assume v = 0, k, f supported were (q" ) x5 ~r~o ~, and fo, r
having compact support. Put A = ~r~o ~-~  1, and ClloosC 2u = (.r~, À-IZI, ~1~~7~") as new
coordinates. If we make the symplectic dilation (y, q) _ ~ ~ r i .n’, a~’ ), then it suffices to
solve the system
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modulo S(À, Idwl2 + IdyI2), where E s(~?~~~0+1, ga)~ g x = + Idwl2 +
Idr¡12/(r¡)2 and fo, r E B°°, uniformly in A. Here B°° is the set of C°° functions having
L°° bounds on all derivatives. By assumption, there exists a, symmetric lVo x No system
0  c  Mx(t, y, w, q) E S’(1, ga), such that Maka is symmetnic modulo 5(1,9&#x3E;"). To

complete the proof we need to solve (4.3) with f E B°°, uniformly in A. Going back, we
obtain a solution in to (4.1) modulo 5~,~;o.

Choose a partition of unity s( 1, ~ dy ~ 2 ), such tha,t there is a fixed bound of
the diameter of the supports of and on the number of overlapping supports. Replacing
f o, r with and translating in y, it suffices to solve (4.3) with f E s uniformly,
when f o, r E Co uniformly with fixed support. Since

uniformly, we can replace k)..(t,y,w,Dy) by ka(t, w, Dy) - in the sys-
tem (4.3). By taking = we obtain that is symmetric,
mod 5’(1,~).
Now taking the Fourier transform with respect to y in (4.3), we want to solve

,-, p... , - , .. ,

The unique temperate solution to (4.4) is given by
/ ~t ,

I

if is temperate solution to

Thus the proof is completed by showing that f E S uniformly, whlch is done in the following
LEMMA 4.2. Fx is temperate, and the mapping S x (, f o, r) - f E S defined by (4.5
is continuous, uniformly with respect to A.

PROOF: Since Fourier transformation and integration are continuous in S, it remains only
to prove that multiplication with .F~ is uniformly continuous. This will follow from

I

To prove (4.7), we let ~~ I uniformly.
We obtain by (4.6) that at so Gronwa.ll’s lemma gives (4.7). By
differentiating (4.fi), we get (4.8) by induction . This completes the proof.
REMARK 4.3. The unique / E S solving (4.4) With /0, rES, gives a continuous map

uniformly in A.

This follows easily by writing (4.5) as an oscillatory integral a,nd integrating by parts,
using (4.8).
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We shall construct a microlocal parametrix for the ~Vo x ATO system P in Proposition 3.4.
As before, it suffices to consider w = (o, o, r~o ) E ~2. Let es be the restriction to It = s},
and have support in a conical neighborhood of tv, such tliat w ft. and

= p = 0, ds, where N* is the conormal bundle. Then the composition 0., o V
is well defined, so for sufficiently small e &#x3E; 0 we may define

t E ]-e, e[, where is the solution to (3.16). Then E is a microlocal parametrix near
w, and we shall study the singularities of this parametrix. R.eca,ll that = where

Sj are non-radial hypersurfaces. Let Cj C Sj x Sj be the forward (in t) Hamilton flow
on =1, ... , ro, and A* the diagonal in T*R’ x T*Rn.

PROPOSITION 5.1. Let P = be an No x A70 system, with Il E Op s(m, g)
having principal symbol k satisfying (2.I3~. If E is the parametrix for P defined by (5.I),
then WF’ E C U microlocally near (zv, zu) E ~2 x E2.

PROOF: We have = where 7r: (t,J:;T,Ç) ~ (t,x,ç) is the

projection. Thus, it suffices to show

where ii : -; is the dual to the inclusion of R"-1 as the surface It = sl
in R n. Now, (5.2) holds for EJ8) fo, j &#x3E; 0, since 4~~ solves (3.3). It is clear that

where Co C ~2 X E2 is the set of (WI, w2 ) such that wl and w2 are in the same leaf of E2 and

t(WI) &#x3E; t(W2). Thus it suffices to prove that E¿8) E C°° microlocally near (,(0,)??1 Z p 0 y ( ( 0 )
(0,)) when x’ 54 z’. By translation we may assume s = 0.
Now applying P to we obtain by (3.15) and Lemma A.2 in the appendix

mod S-’, microlocally when Ix’ - z’ I e &#x3E; 0. Here Ro: S’ " //o’ V v, and k is the
full symbol of K. (This follows since (5.2) holds for E,(O), j* &#x3E; 0.) Also, (5.3) is determined
mod S-oo by the restriction ofao to fly’ - ~( &#x3E; e/21, to C(77")}. We shall
prove ao E .S’"°° in {a-’ 0 z’}, by showing that ao E =} S--A12 V v, there.
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Thus assume ao E near ~xo - &#x3E; o. By translation and

localization, we may assume xo - 0, ao E supported where ^-_’ (r~o ), and k
supported where  C (~" ~ N Let ~A = (~?o ~ -~‘ , and change variables as in
section 4. Then ao (t, y, w) E S(A~"/" , e), k(t,y,w,1J) E S( ~r~~ ~’°+1, g~~ uniformly, where e
is equal to the Euclidean metric and we may assume v = 0. Clearly Iwl [ &#x3E; ~0~"1, and (5.3)
holds mod BIN, when ’yl = [  ~A-~/2. Choose ~(s) E C~ (R), such that
~(s) =1 when Isl  1/2, ~(s) = 0 when Isl &#x3E; 1, and put x(y, w) _ + E

+ IdwI2). Then bo = satisfies

where - k(t, 0, w, r~), and rj E ego are uniformly bounded in B"0. In fact,
Xao E S(ÀN,e), VN, at t = 0. Also, the calculus gives

and

where 9À = ’Bldyl2 + Idwl2 + Id~l2//~12. Then Remark 4.3 gives that bo is uniformly in B°°,
0  t  e. Thus xao E s(~1/2, e), and since this is uniform in A when ix’ 2013 ~j ~ ~ &#x3E; 0, we
obtain the proposition.
PROOF OF THEOREM 1.3: As mentioned before, we only have to consider w E E2. By
Proposition 2.3 it suffices to prove the propagation of singul.rities for the system P =

DtIdN, + x, Dx) with principal symbol satisfying (2.13). The adjoint P* satisfies the
same conditions, so by Proposition 5.1 we can construct a parametrix E for P* such that
WF’ E C microlocally near (w, w) E E2 x ~2. Cutting off, we may assume
u E .6’ and w E ~2 B WF Pu. Then u rv E*Pu modulo C’", and since we may change t
to -t, this gives the result.

APPENDIX. SOME CALCULUS LEMMAS

We are going to study the composition of conormal distributions having non-standard
symbols. Let a, (x, D) E Ð’(Rn x Rn ) be given by

~c E Co (Rn), where a E S(m’, g), and E is llomogeneous of degree 1
in the 7J variables, satisfying (3.4). Here g, m are defined by (2.6)-(2.7). The composition
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if we put

1 , ., , 1 1

LEMMA A.1. Assume p{x, 1]) E CCX)(T*R n B0) is hoiilo,,,enCOLIS of (leg1’ee . in the 1) variables
and satisfies (3.4). If a E B( mk, g), k E Z, has support ir a, SLIfEciently small conical

neighborhood of {77’ = 0 and p E S(m, g), then the cOlnpositioIl of p(x, D) and a,(x, D)
is equal to b~(x, D), where b E satisfies ~~1.2~, a.nd has the expansion

modulo given by (~A.~).

IDEA OF PROOF: If p = 0 then (A.4) follows frofll the calculus, since 
= g(t, r) (see Th. 18.5.4 and 18.5.10 in [5]). Now 17) E where 

. - -.. - -..... /......,..,...,.,..,. /.......... ’" ,

the result follows by proving x* S(!B1, G) = S(M, G), where
is a diffeomorphism, using Lemma 8.2 in ~4j.

, then the composition is given by

LEMMA A.2. If p E g) and a E S",,,O,, tlierl compositioli of p(x, D) alld a(x, D")
is equal to b(x, D"), where b E satisfies ~~,~~ and

where R: 8í II. 0 -- continuous. and Ra are determined modulo S-00 by
,,-, 1,,o,O

the restriction of a to  6}, and p to f 16 - (0, (  0.

IDEA OF PROOF: The composition is well defined since the metrics and weights are A tem-

perate with respect to the diagonal, if A(x,ç,y,Z’,17") = (y, 6). By using ei(DJI,D() =

we obtain (A.7) since the restric’bicins of the metrics and weights
also are temperate.
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