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University of Lund

0. INTRODUCTION

In this paper, which is a condensed version of a paper which is to appear in Arkiv for
Matematik, we study the propagation of singularities for a class of pseudo-differential oper-
ators having characteristics of variable multiplicity. We do not assume the characteristics
to be in involution, in the sense that their Hamilton fields satisfy the Frobenius integra-
bility condition. Instead, we assume that the characteristic set is a union of hypersurfaces
tangent of exactly order kg > 1 along an involutive submanifold of codimension dy > 2.
This means that the Hamilton fields are parallel at the intersection, and their Poisson
brackets vanish of at least order kg + 1 there. We also assume a version of the generalized
Levi condition. One example, with kg = 1, is the wave operator for uniaxial crystals, i.e.
trigonal, tetragonal and hexagonal crystals. The main result is stated in Theorem 1.3,
and it shows that the wave front set of the solution is propagated along the union of the

Hamilton fields of the characteristic surfaces.

There have been many studies of singularities of solutions of symmetrizable hyper-
bolic systems, see [15] and references there. Nosmas [12] has studied the involutive case.
Kumano-go and Taniguchi [8] have constructed parametrices for diagonalizable systems,
but since they consider classical symbols, their results are not directly applicable here.
The results on the propagation of singularities for the system in Proposition 2.3 may be
obtained by the method of energy estimates of Ivrii [6] (see also [16]). For scalar oper-
ators, the case when the characteristics have transversal involutive self-intersection has
been analyzed in (1], [9], [13] and [14]. Melrose and Uhlmann [10] considered the case of
conical involutive singularity of the characteristic set. Morimoto [11] studied operators on
the form (2.10) below, but with involutive characteristics. Ivrii [7] considered operators

with L bounds on the Poisson brackets at double characteristic points.

In this paper, we shall consider classical, or polyhomogeneous, pseudo-differential opera-
tors. These have symbols which are asymptotic sums of homogeneous terms. But we shall
also use the more general symbol classes of the Weyl calculus. Since all our metrics are
split, we may use the standard calculus of pseudo-differential operators with these symbol
classes. For notation and calculus results, see [5, Chapter 18].
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1. STATEMENT OF RESULT

We are going to study the pseudodifferential operator P € ¥, (X) on a C* manifold X.
Let p = o(P) be the principal symbol and & = p~!(0) the characteristic set. Assume,

microlocally near (z¢,&) € X,

To
= U Sj, To 22, whereS; are non-radial hypersurfaces

(1.1) J=1 To
tangent at ¥, = ﬂ S; of exactly order kg > 1.
i=1

This means that the Hamilton field of S; does not have the radial direction (£, ;). Also,
the ko:th jets of S; coincide on X5, but no kg+1:th jet does, and the surfaces only intersect
at X, in a neighborhood of (z¢,&p). Observe that the surfaces need not be in involution,
in the sense that their Hamilton fields satisfy the Frobenius integrability condition. Since
p is homogeneous in ¢, ¥; and S; are conical. Next we assume, microlocally near (2o, &),

3, is an involutive manifold of codimension dy > 2,
(12) and II (X3) = X, where II is the projection: T*(X) — X.
Clearly the codimension cannot be equal to 1, and by non-degeneracy ¥, is a manifold
near (z9,&p). In order to obtain conditions on lower order terms of P on the multiple
characteristic set we assume the following version of the Levi condition. For 7 =1,...,7¢
there exist m; € N, with the property that, if p; € C*, (z,d.p;) € S} near zo, and
dzpj(zo) = &, then

(1.3)  |e7"¥i P (e'®ia)| < C(1 + pd*™ ¥ (z,dyp;))™ ™ (1 + 0)™ "™, o — oo,

Va € C§° supported near zo. Here my = ;°=1 m;, and d(z,§) is the homogeneous
distance to ¥, i.e. the distance with respect to the metric |dz|? + |d¢|?/(1 + |€|?). This
means that p vanishes of order m; at S; \ X3, of order my at ¥, and P satisfies the Levi
condition on S; and ¥ (see [2]). We also have uniform conditions on lower order terms on
¥, = ¥\ £, when approaching ¥,. In order to avoid extra zeroes of the principal symbol

at X9, we assume

To
(1.4) d™p#0 at L, my = ij,
. 1=1

microlocally near (z, &), where d*p is the k:th differential of p.

Clearly, (1.1), (1.2) and (1.4) are invariant under multiplication with elliptic pseudo-
differential operators and conjugation by elliptic Fourier integral operators corresponding
to canonical transformations preserving the projection condition: II (3;) = X.
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LEMMA 1.1. Condition (1.3) is invariant under multiplication of P with elliptic pseudo-
differential operators and conjugation of P by elliptic Fourier integral operators corre-

sponding to canonical transformations preserving the projection condition.

The proof follows by using the stationary phase (see [5, Th. 7.7.1 and 7.7.6]) when
conjugating with elliptic Fourier integral operators, since ko > 1.

We shall now state the result for propagation of singularities for . Since the surfaces are
tangent at ,, their Hamilton fields are parallel. Because X, is involutive and ¥, =) S},
the Hamilton fields of S; are tangent to X7, and they define the same flow there.

DEFINITION 1.2. The Hamilton flow on ¥ is the union of the Hamilton flow on S;,
j = 1, ..oy T0.
The following is the main result.

THEOREM 1.3. Assume that P € V7 (X) satisfies (1.1)-(1.4) microlocally near w € X.

If u € D'(X), then WFu\WF Pu is invariant under the Hamilton flow on £ = p~1(0)

near w.

On X, this follows from the fact that the characteristics have constant multiplicity,
see [2, Th. 1.1]. Theorem 1.3 will be proved in section 5.

2. REDUCTION TO A FIRST ORDER SYSTEM

We assume P € ¥7, (X) satisfies (1.1)-(1.4) microlocally near w € £,. Since the result

is local and the conditions are invariant, we may assume X = R". Because ¥, is involutive
and II(¥2) = X, we may choose symplectic, homogeneous coordinates (z,£) € T*R"
near w € X, so that w = (0;(0,...,1)) and

(2.1) ¥y ={(z,¢) e T*R": ¢' =0},
where ¢ = (¢/,£") € R% x R"~%, We may also assume
(2.2) S1={(z,§) e T*R" : & =0},

near w. We rename z; = t, (22,...,24,) = ¢’ and (Zdo41,...,2) = 2'". Since Sj is
tangent to S; at ¥y, we obtain

(2.3) Si={t,z;7,§) e T* (R xR"): 7+ Bj(t,z,§) = 0},
with B; real and homogeneous of degree 1in €, 1 =0, and

(2.4) clg'[F*1/Igl*e <185 — Bel < CIE'™F/IEl™, j# kK Coe>0,

in a conical neighborhood of w. By taking k = 1, we obtain that §; vanishes of exactly
order ko + 1 at {¢' = 0}.

Next, we prepare P € ¥7; (X). Assume P to be given by the expansion p + pm_1 +
Pm—2 + -+, where p = 0(P) and p; € S7. Conditions (1.3) (with ¢; = t) and (1.4) give
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dip =0 at Zp when j < my, and *°p # 0, near w € X,. Thus Malgrange’s preparation
theorem gives, by homogeneity (see [5, Th. 7.5.5]),

mo
p=c E mo—jT’ near w € Yo,
=0

where 0 # ¢ € S™™ ™0, a; € C®(R,S7?) are homogeneous in ¢, ap = 1 and a; = 0 at
Y9, 7 > 0. By multiplication with an elliptic pseudo-differential operator, we may assume
m = my and ¢ = 1. By using Malgrange’s preparation theorem repeatedly, we get

mo
(2.5) Pz ZAmo—th] mod C*, microlocally near w,
=0

where A; € C*(R, \Il}’;hg) and Ag = 1. Now (1.3) gives more information about Aj;, but

we first have to introduce some symbol classes corresponding to the §;’s.
Let

(2.6) m(€) = 14 [¢']*+(¢) ",
where (£) = (1 + |¢[>)'/2, thus m ~ 1 + §;. Put
(2.7) 9(dz,d¢) = |dz|* + |d€'1?/((€)" + 1€'1)* + 1dE" 2 /(€)*  at (2,6),

where u = ko/(ko + 1), which gives h? = supg/g® = ((£)* + |€'|)™2 < 1. It is easy to
see that ¢ is o temperate, and m =~ (£) % h=%~1 is a weight for g. We shall denote
by S(mh’,g) the symbol classes in (z,&) of weight mh?, j € Z, depending C* on ¢, and
Op S(mh?, g) the corresponding (classical) pseudo-differential operators. (Thus we shall
suppress the ¢ dependence.) The reason for using these classes is that §; € S(m,g). Also,
if a(t, z,£) is homogeneous of degree j in £ and |a| < ¢mF, then a € S(m?,g). In fact, if
k < j, then a = 0, otherwise a vanishes of order > j(ko + 1) at X,.

LEMMA 2.1. Assume that P is given by (2.5) and satisfies (1.1)-(1.4) with m = mq and
S = {r = 0}, near w € &,. Then A; € OpS(m’,g) and

(28) b] = e—i‘PjP(ei(Pj Cl) € S(mmo—mj+r,g) near (tO,an&))a

for all a € S(mT,g), if ¢;(t,z,€) is homogeneous of degree 1 in £, (t,z,d; ;) € S
near (to, To, &0), (to, o, dt,c9j(to,%0,€0)) = w, and (t,z,ds ;) € Lo when {' = 0.

PROOF: We obtain ¢; satisfying the conditions in the lemma by solving (3.3), according
to Lemma 3.1. To compute (2.8) for homogeneous a, we may use the formal expansion in
Lemma A.1l, and homogeneity, to find

b; ZLk(P, @;)a  mod ST,
k>0
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since b < (€)7#. Here Li(P,sp;) = s™FLi(P,¢;) is differential operator of order k
in (¢, z), with principal symbol
a(Le(P,¢;))(em) = ) (07ep)(t, 2, duaps) (0, 1) /R
|a|=k
Applying this to a € S(1, g), homogeneous of degree 0 in ¢, (1.3) gives that Li(P,¢;) =0
when k < mj, and that all coefficients of Li(P, ¢;) are bounded by cm™°™™i when k > m;

mo—k

(since m = myg). By homogeneity, all coefficients of Li(P, ;) are in S(m ,g) when

k > m;. Observe that this implies that p vanishes of order m; at Sj, and 97 51"55 €
S(mmo=lel g) |a| > m;, near w.
By induction we obtain that pm,,_; vanishes of order (m; — )4 = max(m; —¢,0) at S,

and
(2.9) 03 Pmo—i|5; € S(m™ 1 g), ol 2 m; —.

By using the expansion (A.4) for general a, we get (2.8). We obtain 4; € Op S(m', g), by
using (2.9) for j =1 (i.e. 7 =0).

LEMMA 2.2. Assume that P satisfies the conditions in Lemma 2.1. Then we can find
A, AreOpS(1,9), I =(t1,...,1r,) € N™, so that 0(A) =1 and

(2.10) P=AJ[QF + Y arJ]e7,
7=1 j=1

|7l<mg
ij<m;

microlocally near w € £,. Here Q; = D, + B;, Bj € Op S(m, g) and o(B;) = B;.
PROOF: Observe that the products in (2.10) are commutative modulo lower order terms.
We find that o(P) = p = Hq?j, where ¢; = 0(Q);), since it is a monic polynomial of
degree my in 7, vanishing of order m; at 7 = — ;. We shall consider the cases |¢'| Z ¢(£)*,
by using a partition of unity in S(1,¢). When |¢'| < ¢{€)#, we find S(m*,¢) C S(1,9), Vk.
Replacing DF by [] Qf’ , where ) k; = k and k; < mj, only changes terms of lower order
in D;. Thus we only have to consider |¢'| > ¢(¢£)*. The result will follow if we can write
Pmo—ks k > 0, on the form
(2.11) pmo—k= Y. di[[a}, dfesa,g),

J

0Lt <m;
[I|<mo

when €] > e(€)*.
The proof of Lemma 2.1 implies that pm,—& vanishes of order (m; — k)4 at {r = —f;}.
Since pmq—k/p is rational in 7, residue calculus gives
Pmo—k/P = Yoo ale)™

1<i<min(m; ,k)
J

By (2.9) and the fact that ¢;'|.—_g, = (8 — ;)" € S(m™",g) when |¢'| > c(£)*, we
find a}; € S(1,9) when [€'| > c(€)*. This proves (2.11) and the lemma.

Now it is simple to reduce (2.10) to a first order diagonalizable system. See Mori-
moto [11] for the details. Summing up, we obtain the following result.
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PROPOSITION 2.3. Assume that P € ¥, satisfies (1.1)-(1.4). Then, by conjugation
with elliptic Fourier integral operators and multiplication by elliptic pseudo-differential
operators, the equation Pu = f, u € D'(X), can be reduced to the Ny X Ny system

(2.12) DU + K(t,z,D,)U = F,

microlocally near w € ¥3. Here WFF = WF f, WFU = WFu, Ny = E;’f__"l mo!/s!, and
K € Op S(m, g) with principal symbol

(213) kl (ta z, é.) = (6jkﬂik )j,k=1,...,N0
being diagonal matrix, with real eigenvalues §; € S(m,g) homogeneous of degree 1 in &,
satisfying (2.4), and f; = 0.

3. THE CAUCHY PROBLEM

We shall study the Cauchy problem for the Ny x Ny system
(3.1) P = D.Idn, + K(t,z,D,),

having the properties in Proposition 2.3. Let 7; be the projection on the eigenvectors
corresponding to the eigenvalue f3;, along the others, thus k£ = E?:l Bjmj. We are going

to solve

PE=0
52 {

Elt:O = IdNO
microlocally near (0,(0,&),(0,&)), & = 0, with E: &'(R""!) —» D'(R"). We shall

use Lax’ method of oscillatory solutions. In order to do that, we must solve the eiconal

equations

(3.3)

forj =1,...,rp.

{ 019 + Bi(t,z,d:¢;) =0
$i(0,z,m) = (z,n)

By Hamilton-Jacobi, this has a unique local solution, homogeneous of degree 1 in 7.

LEMMA 3.1. Let ¢; solve (3.3) with B; satisfying the conditions in (2.4), and ; = 0.
Then we find that ¢;(t,z,n) = ¢(t,z,n) — (z,n) satisfles

(3.4) Oyp;=0  whenn' =0, [|y|<ko, Vi

IDEA OF PROOF: Clearly (3.3) gives ¢; = 0 when n' = 0. Successively differentiating the
equation, we find that a,a;, ©; =0 when ' =0 and v < k.

Now we define E;: £'(R"™!) - D'(R"™), j = 1,...,n, as oscillatory integrals

(3.5) Bjult,z) = (2n) =" [ [ eoittem=m (e, 2, nyuty) dya,
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with a; € S(1,g). Assume that a; is supported in a conical neighborhood of {' = 0}. By
Lemma A.1 in the appendix, we get

(3.6) PEju(t,z) = (27)' " / / ¢! (9 (bmm=wmp;(t, 2, n)u(y) dydn,
where
(3.7) bi(t,z,n) = (0:4;Idn, + k(t,z,d.¢;))a; + Lja; + Rjaj,

R; is continuous S(m'h!,g) — S(m*h'*1,g), Vi, 5,1, and

Ljaj = .Dt(lj + Z(a& k)(t, x,dzd’j)Driaj + Afja]"

with M; € S(1,¢g). In general, we cannot find homogeneous a; making b; € S™°°. However,
we have the following result.

LEMMA 3.2. Assuming (2.13), we can find a; € S(1,g) such that b; € S(m~",g), VN,
in (3.7),5=1,...,r9, and

(3.8) > ajl,co = Idn,.

j
PROOF: Let aj ~ ag + a}l + -+, where a]-'k € S(m~*,g). The term in S(m~",g), r > 0,
in the expansion (3.7), is given by

Z ¢;(B; = B)mia; " + Lja;" + Rja;™",

where ¢7f = f(t,,d:4;), since h < m™! (a} = 0). For » = —1, we obtain a‘} €Imn; =
ﬂ#j Ker m;. If we take a‘} =m;att= 0, we obtain Za(}ltzo = Idy,. Now ¢;‘(ﬂz — ,BJ) €
S(m, g) is invertible modulo S(m ™!, g) according to (2.4), when j # 1, since d;+¢; = O(|n'|)

by (3.4). Thus, it suffices to solve successively, with suitable initial data,
(3.9) mi(Lja;" + Eja;-_r) =0, r>0,

where a} = 0, and (Idy, — m;)a; " has been determined in the previous step. Here fij is
continuous S(m‘, g) — S(m'~!,g), Vi.
Now fix j, let {v;}, be a base for Im ;, and consider ), a',-v;, a; € S(m~",g). We

: T __ %
obtain 7;L; Y=, a,v; = 7, v,v;, where

(3.10) ¥ =Do;+ > _ 6}(8,B;)Dy i + Y phay € S(1,9),
l l

with u} € S(1,9). If we introduce local g orthogonal coordinates, then Y, ¢3(¢, ;) D,
transforms into a uniformly bounded C* vector field. Thus, by adding a suitable linear
combination of v;- to each column of a; " we may solve (3.9) for all 1 < j < ro, with initial
data making (3.8) hold modulo S(m~""1,g).

Now the symbols in (", S(m™",g) are integrable in 5'. We obtain new symbol classes
after integrating (3.6), according to the following lemma.
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LEMMA 3.3. Ifa(t,z,n) € Ny S(m~,g) has support where |n'| < c|n"'|, and ¢(t,,n) is
homogeneous of degree 1 satisfying (3.4), then

(3.11) &(t, x, yl,n") — /ei(‘P(t,l‘,"?H'(z’_y',ﬂ’))a(t’ :E’ 77) dnl E Si/’#’o ,
where v = p(do — 1), p = ko/(ko + 1), dy = codim 3. Here Sy , , is defined by
(3.12) ‘Df :c”D D ,,b(t T y nn)l <C afy L<77”>V+“|a +8'|- |7I/|

PROOF: If N(ko + 1) > doy + |a|, we obtain

k=N
(3.13) / ' (L4 ' [Fot (n)=%) " dr
[n'|<cln”|

—<- (nll)(|a|+do—])u/£la (1 + |€llk0+])_N dgl S Ca<nll)(|a|+do—l)[t,

by putting ¢’ = n'/(n")*. This gives || < C(n")”. When differentiating (3.11), the
derivatives falling on a gives the right factors. The derivatives falling on the exponent

gives either n' factors, or factors
akaaa " @(t x T]) < Cka-y”("]) 17"l m,

by (3.4) and homogeneity. The n' factors gives only (n")* factors by (3.13), and the
m factors are harmless since a € S(m~",g), VN. This completes the proof.

The lemma gives

(3.14) PEju = (2m)%~ "// i(a’ _y””’”>rj t,z,y' " u(y) dydn"

where r; € 57, 5, J =1,...,70. We shall compensate for these terms by adding a similar
term Ep: £'(R*!) — D'(R") with symbol ag € S, ;. By lemma A.2 in the appendix,
we obtain that PE, has symbol by € SY , , given by

(3.15) bo = Dyag + eXPvPOk(t, 2, E)ao(t,y,2',n") | y=s
§=(0,7"")

if k is the full symbol of K. By using Proposition 4.1, we may solve by = — > r;, 0 <t <,
apli=0 = 0, modulo S™°°. Since we can do this with ¢ replaced by ¢ — s, for small s, we

obtain

PROPOSITION 3.4. Let K(t,z,D;) € OpS(m,g) be an Ny x Ny system with principal
symbol k(t,x,€) satisfying (2.13). Then the Cauchy problem for |s| < €

D.E® + K(t,z,D,)E® >0, t>s,
(3.16) { ‘ ( )

E(3)|t=a = Idn, ,
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microlocally near (0, (0,&),(0,&)), & = 0, has a solution E®): g¢(R" 1) — D'(R™) on
the form .
s) __ +(s)
E® =3 E.

J=0

Here
B u(t,z) = (2m) " [ [ = 0ma e oty dydn, 521,

¢; solves (3.3), aj € S(1, g); and

Eu(t,z) = (2m)" / / e =V gy (b, 2,y 0 uly) dydn’

where ag € S , 0, V= w(do — 1), p=ko/(ko + 1), do = codim 3.

4. THE MICRO-LOCAL PSEUDO-DIFFERENTIAL OPERATOR

We are going to study the system

|
Dof + PPkt 2, 6)f(ty ") | e Erltyz "), 130,
(4'1) 'f=(0y7!”)

f(O,.’E, zl,"]") = fo(:l:, Z,’n")’

modulo §7°°, where fo, r € ST , o have values in CNe and k € S(m, g) is Ny X Np system
(see section 3). By lemma A.2 in the appendix, we have » € Sy, , if f € §7, . We shall
also assume that k is symmetrizable, i.e. 3 symmetric Ny x Ny system M(¢,z,€) € S(1,9)
such that 0 < ¢ < M and Mk — (Mk)* € S(1,9).

PROPOSITION 4.1. Assume that k(t,z,€) € S(m,g) is a symmctrizable Ny x Ny system.

Then, for every fo, 7 € SY ,,, the equation (4.1) has a solution f € Sy ,, in a conical
neighborhood of (0,0,(0,74)) € R x R?0=2 x T*R"~ %,

PRroOOF: We shall solve (4.1) by iteration, modulo S} %, it = ko/(ko + 1) < 1. By

1,,0
Lemma A.2, we have

(4.2) XPrPOR(t 2 €)f(t,y, 2 ") | y=o =Py POkF| = k(t,z,D0,n")f,
¢=(0,n") | ¢'=0

modulo terms in S} ,;’10. Also, we may assume k supported where |£ — (0,7"")| < e(n") and
|t| < c. By cutting off, we may assume v = 0, k, f supported where (n"') = (ng), and fo, r
having compact support. Put A = () ™# < 1, and choosc w = (z", X712/, Al/Eg!y as new
coordinates. If we make the symplectic dilation (y,n) = (A~!a’, A¢’), then it suffices to
solve the system

4.3
(+3) £0,5,0) = foly,w),

XIII-g
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modulo S(A, |[dw|? + |dy|?), where kx(t,y,w,n) € S((n)*F1,gx), gr = A?|dy|? + |dw|* +
|dn|?/(n)? and fo, r € B, uniformly in A\. Here B™ is the set of C*° functions having
L bounds on all derivatives. By assumption, there exists a symmetric Ny x Ny system
0 < ¢ < My(t,y,w,n) € S(1,9), such that Myky is symmetric modulo S(1,gx). To
complete the proof we need to solve (4.3) with f € B*, uniformly in A. Going back, we
obtain a solution in S} , o to (4.1) modulo Sy %;.

Choose a partition of unity {x;(y)} € S(1,|dy|?), such that there is a fixed bound of
the diameter of the supports of x;, and on the number of overlapping supports. Replacing
fo, r with x; fo, x;jr, and translating in y, it suffices to solve (4.3) with f € S uniformly,
when fo, 7 € C§° uniformly with fixed support. Since

/\—l (k/\(ta Yy, w, 77) - kz\(ta0>w"’7)) €S (<y><77)ko+lagl) ) A < 1’
uniformly, we can replace kj(t,y,w,Dy) by ki(t,w,D,) = kx(t,0,w,Dy) in the sys-
tem (4.3). By taking Mx(t,w,n) = My(¢,0,w,n) we obtain that Myky is symmetric,
mod S(1,gx).
Now taking the Fourier transform with respect to y in (4.3), we want to solve
{ Do f(t,n,w) + kx(t,w, ) f(t,n,w) = #(t,n,w), t>0,
f(Oa M ’lU) = fo(’?»w)

The unique temperate solution to (4.4) is given by

(4.4)

t
(45) f(t’ 7, w) = FA(t$ 7 w) (fo(ﬂ, w) + z~/ F,\_l(s’ 7, ’LU)'IA’(.S, 7, w) ds) 3
0
if F)\(t,n,w) is temperate solution to

DtF/\(t,U,w) + k/\(t7w)n)F)\(tan’w) =0, t>0,
F,\(Ovnaw) = IdNo .
Thus the proof is completed by showing that f € S uniformly, which is done in the following

(4.6)

LEMMA 4.2. F), is temperate, and the mapping S X § 3 (fo,r) — f € S defined by (4.5)
is continuous, uniformly with respect to A.

PROOF: Since Fourier transformation and integration are continuous in &, it remains only
to prove that multiplication with F;H is uniformly continuous. This will follow from

(4.7) 0<c< |Fyt,n,w) <C
(4.8) D{DgDﬁ,FA(t,n, w)‘ < Cjapln) Do) +lalko

To prove (4.7), we let ||v]|, = (Mxv,9), v € CNo, then ¢ < ||'v||§/[v|2 < C uniformly.
We obtain by (4.6) that ‘at ||Fx0||§| < C"F,\v”?\, so Gronwall’'s lemma gives (4.7). By
differentiating (4.6), we get (4.8) by induction . This completes the proof.
REMARK 4.3. The unique f € S solving (4.4) with fo, r € S, gives a continuous map
B* x B*® — B®°, uniformly in ).

This follows easily by writing (4.5) as an oscillatory integral and integrating by parts,
using (4.8).
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5. THE PROPAGATION OF SINGULARITIES

We shall construct a microlocal parametrix for the Ny x Ny system P in Proposition 3.4.
As before, it suffices to consider w = (0,0,7{') € ¥,. Let g, be the restriction to {t = s},
and ¢ € S ; have support in a conical neighborhood of w, such that w ¢ WF(¢ — 1) and
N*{t = s}(YWF ¢ = 0, Vs, where N* is the conormal bundle. Then the composition g;0¢
is well defined, so for sufficiently small ¢ > 0 we may define

t
(5.1) Ef=| E®op,0pfds feD(R"),

—€

t € ]—¢,¢[, where E(*) is the solution to (3.16). Then E is a microlocal parametrix near
w, and we shall study the singularities of this parametrix. Recall that ¥ = U;°=1 S;, where
S; are non-radial hypersurfaces. Let C; C S; x S; be the forward (in ¢) Hamilton flow
on Sj,j=1,...,7, and A* the diagonal in T*R" x T*R".

PROPOSITION 5.1. Let P = D;+ K(t,z,D,) be an Ny X Ny system, with K € Op S(m, g)
having principal symbol k satisfying (2.13). If E is the parametrix for P defined by (5.1),
then WF' E C (U;"=1 C;) U A*, microlocally near (w,w) € ¥ X Xj.

PrOOF: We have WF(p,0f) = ﬂ(WF(gof))|,=,,, where m: (t,2;7,6) — (¢,z,€) is the
projection. Thus, it suffices to show

(5.2) WF(E® fy)|,5, C U Ciot T (WF fo), fo€ D'(R™),

J=1

where o*: T ,R™ — T*R™! is the dual to the inclusion of R"~! as the surface {t = s}
in R™. Now, (5.2) holds for E}a)fo,j > 0, since @; solves (3.3). It is clear that

WF(ES? fo) li>s € Coo0 2 {(WF fo), fo € D'(R™),

where Cy C X5 X X is the set of (w, w) such that w; and w, are in the same leaf of £, and
t(w;) > t(wz). Thus it suffices to prove that E( € C° microlocally near (¢,z, (0,7g), 2,
(0,mg)) when z' # z'. By translation we may assume s = 0.

Now applying P to E(g ), we obtain by (3.15) and Lemma A.2 in the appendix

Dtao + ei(Dy"Dfl)’E(tax’ z'a'f’, 77")‘10(t, yl,xn’ zl, 77”) &' =0 = ROaO, t> 0,
ylle

(5.3)
ao(0, z,2',n'") =

mod S§7°°, microlocally when [z’ — 2’| > ¢ > 0. Here Ro: Sf , ¢ — S;”;,lo, Vv, and k is the

full symbol of K. (This follows since (5.2) holds for E;O), j >0.) Also, (5.3) is determined

mod S~ by the restriction of ag to {|y' — 2’| > ¢/2}, and % to {|¢'| < C(n")}. We shall
prove ag € S™* in {z' # 2}, by showing that ap € S} , o = a0 € Sf’;f:,/z, Vv, there.
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Thus assume ap € Sy, , near (to,Zo,2,7), |2o — 29| =2 ¢ > 0. By translation and
localization, we may assume z; = 0, a9 € S}, , supported where (n") = (ng), and k
supported where |¢'| < C(n") = C(ny). Let A = (ny)~#, and change variables as in
section 4. Then ao(t,y,w) € S(A\™*/#,e), k(t,y,w,n) € S((n)*°*1, g») uniformly, where e
is equal to the Euclidean metric and we may assume v = 0. Clearly |w| > pA™?, and (5.3)
holds mod S(AY,e€), VN, when |y| = [A\71z'| < pA71/2. Choose ¢(s) € CS°(R), such that
¢(s) = 1 when |s| < 1/2, ¢(s) = 0 when |s| > 1, and put x(y,w) = ¢(4\|y|?/e® + |w|?) €
S(1, Aldy|? + |dw|?). Then by = A~1/2xaq, satisfies

(5.4) {Dtbo + ko(t,w,Dy )by =11, 0<t<e,

bo |t=0 =To,

where ko(t,w,n) = k(t,0,w,7), and r; € C§° are uniformly bounded in B*®. In fact,
xao € S(AN,¢€), VN, at t = 0. Also, the calculus gives

A7 2 (ko (t,w, Dy), x] € Op S((n)*, ),

and
A™Y2x(k(t,y, w, Dy) — ko(t,w, Dy)) € Op S({n)*°*2, §»),

where §x = A|dy|? + |dw|? + |dn|? /(n)?. Then Remark 4.3 gives that by is uniformly in B*,
0 <t < e. Thus xao € S(A!/2,¢), and since this is uniform in A when |z’ — 2’| > o > 0, we
obtain the proposition.

PROOF OF THEOREM 1.3: As mentioned before, we only have to consider w € ¥,. By
Proposition 2.3 it suffices to prove the propagation of singularities for the system P =
D.Idn, + K(t,z, D,) with principal symbol satisfying (2.13). The adjoint P* satisfies the
same conditions, so by Proposition 5.1 we can construct a parametrix E for P* such that
WF'E C (UC;)UA*, microlocally near (w,w) € X3 x L;. Cutting off, we may assume
u € & and w € ¥y \ WF Pu. Then u & E*Pu modulo C'*, and since we may change ¢
to —t, this gives the result.

APPENDIX. SOME CALCULUS LEMMAS

We are going to study the composition of conormal distributions having non-standard
symbols. Let a,(z, D) € D'(R" x R") be given by

(A.1) ay(z, D)u(z) = (27)™" /ei((z—y,n)+¢(r,n))a($,n)u(y) dydn,

u € C°(R™), where a € S(mF, g), and ¢(z,n) € C°(T*R"™\0) is homogeneous of degree 1
in the n variables, satisfying (3.4). Here g, m are defined by (2.6)—(2.7). The composition
with p(z, D) is given by p(z, D)a,(z, D)u(z) = b,(z, D)u(z), if p, a € S, where

(A.2) b(z,n) = eXPrDod f(z,8;y,7)

6=nq
=z
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if we put

1
(A.3) 0=¢— / do(z + s(y — ), 1) ds,
0

. d(y,6) | _
and f(xaoa Y "7) = p(w,f)a(y, ’7), smce !ﬁ%' =1

LEMMA A.l. Assume ¢(z,n) € C®(T*R"™\0) is homogencous of degree 1 in then variables
and satisfies (3.4). If a € S(mF,g), k € Z, has support in a sufficiently small conical
neighborhood of {n' = 0} and p € S(m,g), then the composition of p(z, D) and ay,(z, D)
is equal to by(z, D), where b € S(m**1,g) satisfies (A.2), and has the expansion

N-1
(A.4) b(z,n) = Y (i(D¢, Dy — (86/8y)D¢)Y plx, €)aly,n)/5 ! ——
i=o E=n+dzo(z,m)

modulo S(m*+*hAN g), with 8 given by (A.3).

IDEA OF PROOF: If ¢ = 0 then (A.4) follows from the Wzyl calculus, since g(¢,—)
= g(t, 7) (see Th. 18.5.4 and 18.5.10 in [5]). Now p(z, )a(y,n) € S(M,G) where M(£,n) =
m(€)m*(n) is a weight for G = g, e(dz,dé) + gy (dy,dn). Since dex = (0,1d;0,0)
and 8,x = (0,06/dy;1d,0), the result follows by proving x*S(M,G) = S(M,G), where
x: (z,&vy,1) = (z,86;y,n) is a diffeomorphism, using Lemma 8.2 in [4].

Next, let S} , o be the symbol classes defined by (3.12), p = ko/(ko +1). For a € S7 , 0,
we define a(z, D") € D'(R™ x R") by

(A.5) a(z, D" Ju(z) = (2m)" " / / ¢ G,y 0" yuly) dydn”,

u € CP(R™). If p, a € S, then the comporition is given by p(z, D)a(z, D")u(z) =
b(z, D" )u(z), where

i
. |
(A.6) bz, 2, n") = P Pp(z. £)a(y, 2" ") | y=a
[s=n")
LEMMA A.2. Ifpe S(m,g) and ¢ € S¥ , ,, then the composition of p(z, D) and a(z, D"
1,p,0 \
is equal to b(z, D"), where b € SY , , satisfies (A.6) and

(A.7) bz, 2, 77") — Dy ’D‘f')p(:v, ¢ T]")a(y', 2"z, 7}//} ¢=0 t Ra,

yl__-xl

where R: SY , o — S{";’lo is continuous. Alsc, b and Ra are determined modulo S™° by
the restriction of a to {|y — z| < €}, and p to {|€ — (0,7'")] < e(n")}, Ve > 0.

IDEA OF PROOF: The composition is well defined since the metrics and weights are A tem-
perate with respect to the diagonal, if A(z,€,y,2',n") = (y,{). By using e{Dy:D¢) —
' Dy :Der) o ¢Dy:Dern) | we obtain (A.7) since the restrictions of the metrics and weights
to {z"" =y" A€" ="} also are temperate.
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