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I. INTRODUCTION.

In this talk I present a mathematical discussion of some of the

problems arising in the quantum many-body theory. The fundamental question
I want to adress is :

When and why do many-body systems hold together and when and how do

they disintegrate ?
One of the leading aspects of this review is the interplay between

classical and quantum motions which is a unique feature of many-body

dynamics.

II. HAMILTONIAN.

Consider a quantum N body system in RV . Let E be its configuration

space. This is either a subspace of R vN or R B) N . 1tself depending on

whether the center-of-mass motion is removed or not. We equip it with the

inner product

depending on the masses mi&#x3E; 0 . The system is entirely described by its

Schrodinger operator (or Hamiltonian)

where A is the Laplace-Beltrami operator on E and V(x) = ZV ii(xi-xj),1. 1 J
J 

J

the sum of pair potentials. For all V’s of interest to us H is self-

adjoint.

III. BINDING.

The term binding describes the situation when a collection of particles
forms a stable cluster . In terms of the corresponding Schrodinger operator
this means that the bottom of its spectrum (the ground state energy) is

discrete eigenvalue. Otherwise, the system does not bind.

As an example consider a system consisting of a nucleus of charge
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Z and N electrons. The fundamental question from the point of view of

structure of matter is : How many electrons can such a nucleus bind ?

A theorem of Zhislin ([Zh]) states that it can bind N  Z electrons. In

other words, atoms and positive ions are stable. The first question we

adress is : Can a given nucleus bind an arbitrary number of electrons or

is there a critical number after which the systems disintegrates ? The

answer to this question is given in Saturation ,of binding theorem (Ruskai

[Ru]-, Sigal [Sigl]). There are no arbitrary negative ions in Quantum

Mechanics (i.e. atomic binding saturate~.More precisely, there is 

s.t. a nucleus of charge Z cannot bind more than Nmax(Z) electrons.

What can we say about N max (2)? The first step is

Theorem (Lieb [Li], Sigal [Sig2] (very large Z))

In particular, Lieb’s result implies that the double negative ion , H ,

of hydrogen (Z=l) is unstable (does not exist). The asymptotical behaviour

of N max (Z) was found in the following

Â symptotic bulk neutrality theorem (Lieb, Sigal, Simon and Thirring

[LSST]).

Thus the large Z-ions are in bulk neutral. Experiments show that

o(Z)  3 for the known elements. This non-periodic tact about the

periodic table is sometimes explained to be due to the electrostatic

repulsion between electrons (the next charge of ion being negative). This

explanation is wrong. Indeed, we have

Strong bosonic binding theorem (Benguria and Lieb [BL]) .
If the electrons were bosons then

Thus without the Pauli principle very negative ions would exist ! 1

Open problem. To give an estimate of the remainder in (1).
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Presumably very large Z nuclei can be realized as resonances or

in neutron stars. Anyway, it is important to understand what the Schrodinger

equation actually predicts. There is no physical argument or conjecture
in literature to what this remainder should be. We propose the following

Conjecture. The maximal number of extra electrons a nucleus can bind is

determined by the maximal capacity of the outer shell of the corresponding
atom. In particular,

If the outer shell is empty it presutuably can be filled out without

destabilizing the systems.

The methods used to prove the results above include the geometrical

spectral analysis and potential theory. The former refers to approach

based on the relation between the spectrum of H (global property) and

the geometry of V and of the configuration space E (local property).

IV. RESONANCES.

The concept of resonance is one of the central concepts in Physics.
In the last few years a geometrical theory of resonances has been inter-

sively developed for one-body systems ([BC DI,2,BC DS, GS,HeSj, Hi Si,He-Ma

Sig6]). Here we report on the work initiating a geometrical theory of

resonances in many-body quantum systems.

a. Star k effect. Consider an N electron atom with the Hamiltonian H .

Its (energy) spectrum look like

If the atom is now placed in a constant electric field the picture changes

dramatically. The new (perturbed) Hamiltonian is

where f.x is the electric field potential (the vector f E IR v Nis related
to the electric field strength). The continuous spectrum of Hf fills the
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entire axis (see [TitI-7,AH] for the one particle result, I was unable to

locate a many-particle one. Physical intuition suggests that the electric field

would tear the electrons off the nucleus and send them to 00 . In other

words Hf would have no eigenvalues. This fact was proven by Titchmarsh
[Tit 1-7] for the hydrogen atom and by Avron and Herbst [AH] (see also

[HeSi]) for more general one-body systems.

For atoms and molecules with infinitely heavy nuclei the absence of

eigenvalue was shown by Sigal [Sig5].

Open problem. Show that atoms and molecules with finite mass nuclei have

no bound states in a constant electric field.

However, the eigenvalues of H do not disappear without trace. As

follows from a result of Graffi and Grecchi and Herb’st and Simon [He Si]

(see also a beautiful geometric proof by Hunziher [Hn2]) theyturninto
resonances. The resonance energies is what the physicicts compute by the

(divergent) perturbation theory and what accounts for the radiation

frequency shifts observed first by Stark. The feature distinguishing the

resonances is their life-time or width. For the hydrogen atom the bounds

on the width of Stark resonances were given by Oppenheimer [Op] (see e.q.

[Lan,LL]). The bounds were riporouslyjustified by Harrel II and Simon [HaSi]
who used after Oppenheimer (see also Eppstein [Epl,2] and Schrodinger

[Sch]) separation of variables in hyperbolic coordinates in order to

reduce the problem to O.D.E. Here we discuss the bounds of width of

Stark resonances for N-electron atoms given by Sigal [Sig8]. This result

extends (at least , partially) the classical Oppenheimer formula.

b. Deux chevaux method. To define the resonances we use the method of

spectral deformation of Hunziher [Hul] and Sigal [Sig4] (see also Cycon

[Cyc] and [BCDS,HiSi]) with a particular choice of a vector field. This

method goes back to fundamental works [AC,BC,Siml,2]. It was dubbed

"deux chevaux" by Combes for its simple and unassuming structure. There

is another parallel : one can get a lot of milage per gallon using this

method. Assume for simplicity that we have N electrons bound to an

infinitely heavy nuclei. The configuration space then is EvN (v=3).
Let
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a vector f ield on R VN, with a function w of the form

This vector field generates a global flow w 8 with which we associate

the group of unitary operators

Next, we introduce the family :

Under certain conditions on v , the flow (p and, consequently, 

have analytic continuations in 8 . The spectrum of Hf(0) with Im8 &#x3E; 0

looks like

The isolated eigenvalues of Hf(8) an independent of v and 8 as long as

they stay away from the continuous spectrum. Besides they are not real as

follows from [Sig5]. They are called the resonances of Hf(8). The real

and imaginary parts of a resonance are called its energy and width

(= 1/life-time), respectively.

c. Ener eticall forbidden region and its Riemannian structure. I describe

(in very impreciseterms) the Agmon-type Riemannian metric which plays a

central rôle in our analysis. To explain the meaning of this metric we

begin with the one-body case where the situation is rather simple. In this
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case the section of the total potential V f (x) - V(x) - f.x along the
field looks like :

Here Ei is an (unperturbed) eigenvalue of H. The domain between the
1 

- 

classical turning surfaces S and S is the classically forbidden regionf f

for the energy E. i (the classical conservation of energy law cannot be

fulfilled there). It supports the Agmon metric

which is the classical Jacobi metric for the instantons (the classical

particle in the imaginary time).
In the N-particle can we begin with the geometrical analysis of the

vN ..

configuration space We split the exterior of the ball of radius

jfj where S = 1/1+p , into the regions ù labeled by différenta,
ordered break-ups a = of the system {1,...,Nl. the

subsystem A is the half-space while the subsystems B is in

e . y ~ for some 1 n N :

Then the subsystem A is put into it ground state (with the energy EA)
and the subsystem B is allowed to move freely (it is too far from the
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origin to be in a bound state). For the latter subsystem we introduce

the Agmon metric

where VB f(x) is the potential of B , placed in the electric field,

p = E - EA , 9 the energy available to it if B ~ 0 and = E - min EA
A=/: { 1 , ... , N} 

"

if B = 0 . Here E is a fixed total energy of the system.Loosely speaking
the (energetically) forbidden region is a combination of the classically
forbidden region for B in each of these geometric domains :

d.Width of Stark resonances. I will sketch now the main result of [Sig].
Let Ei be an isolated eigenvalue of H and let Ei(f) be a resonance of

Hf (the Stark resonance) born from Ei(E. i (f) -~ E. i as Ifl +0). Then the width,

lIm E.(f)) , of this resonance is bounded as

where 2a 1/1+p , is the length of minimal geodesic between the ball

of radius If!-S and the exterior boundary of E F Rf (the exit surface) in

the Riemannian metric described above but for the energy E = E..
1

Note that in the one-particle can described above, is the length

of minimal geodesic between classical turning surfaces S- and S in the

(classical) Agmon Riemannian metric (3) :
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We emphasize that while in the semiclassical theory of resonances

in one-body systems (including the one-body stark effect) the leading

contribution comes from purely classical, instanton action, in the many-

body case this is not true anymore. The quantum data play a crucial rôle

in the underlying action. The latter is defined in terms of the eigenvalues

of subsystems (ions), geometry of multiparticle configurations and the

geometry of potentials.

Open problem. Show non-existence of bound states and existence of resonances

and estimate the width of resonances for x-dependent external electric fields.

V. SCATTERING.

Here I will discuss the long-standing problem of asymptotic completeness.
It consists of showing that as t+: 00 a many-body system in question

disintegrates into independently moving stable subsystems. I will describe

the results obtained jointly with A. Soffer and my understanding of the

many-body scattering is due, in the large part, to this enjoyful collabo-

ration. Reviews of other works on the subject can be found in [Co, CFKS, En,

RS 111, Sig2, TU].

There are two factors determining the character of the scattering

process : the range of potentials and the number of particles. As for as

scattering is concerned the potentials are divided into the short-range

(vanishing at oof aster than and long-range (vanishing at 00 as

or slower). When finer points of scattering are considered there is

a further subdivision of these classes with the boundaries at for

the shorfrange and at Y 
-1/2 

for the lon--range cases. As for the number of

particles there are two transitions : from 1-2 particles to three particles
and from three to four and more particles. The first transition requires the
introduction of the geometrical analysis of many-particle configurations
while the second, the phase-space (micro-local) analysis (see some discussion
in section d).

We consider a general N-body system. Its configuration space in the

center of mass frame is
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We assume that the pair potentials are real and obey

and with p &#x3E; 0 . This is, actually, more than is needed for the results

below. Under these hypotheses (in fact, n = 0 suffices) H is self-adjoint

on the Sobolev space H2(X).

a. Decomposed systems. Let a = (c.) be a partition of the set fl,...,Nl.
---;-, .u...-&#x3E; i n ".&#x3E;- n 1

Such a partition will be called the cluster decomposition and its subsets,
the clusters. Denote by Ia the intercluster interaction, i.e. the sum of

pair potentials linking different clusters in a. Introduce the truncated

Hamiltonians

They discribe the notion of independent clusters (decomposed systems). Let

Ha be the Hamiltonian of the internal motion of the clusters in a . It is

obtained from H a by removing the center-of-man motion of clusters :

where p a = - v (grad in the center-of -mass coordinates of clusters), the

cluster momentum.

b. Channels. To formulate the problem of asymptotic completeness in

mathematical terms we introduce the notion of channels. They describe

different scenarios according to which the scattering process can develop.
A channel is specified by a pair a = (a,m), where a is cluster decomposition
and m designates an eigenfunction of Ha , ’y i.e. the stable motion within

each cluster :
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Let lp a be the channel eigenfunction, i.e. the m-th eigenfunction of

Ha (the product of cluster eigenfunctions), and c(X , the corresponding

eigenvalue. The channel Hamiltonian is defined as

Given a total energy E , a channel a will be called

Open if E. , i.e. it is energetically allowed. We say that a is admissible
J

if there is a open channel with a cluster decomposition either a

or finer than a .

c. Asymptotic completeness. Short range potential. There are different

equivalent definitions of the N-body asymptotic completeness (AC). We

present the one given in [SigSofll : For any E L 2(X) and any e &#x3E; 0

2 . 
% 

.

there are L2-functions t of the cluster center-of-mass coordinates

so that

where $ t = e-iHt , the total evolution (the solution of the time-
dependent Schrodinger equation with the initial condition ). The terms

1p describe the propagation of free stable clusters. Thecpa e 
E 

descr1be the propagat10n of free stable clusters. The

E accounts for the fact that some of the clusters may have zero relative

velocities and their drifting apart is due to the spreading of wave-packets

(diffusion) rather than propagation.

Theorem. (Sigal and Soffer [Sig Sof 1]) Assume the pair potentials obey

(4) with p &#x3E; 1. Then the corresponding system is asymptotically complete.

d. Asymptotic clustering. First we reduce the AC problem to proving the

following geometrical statement (recall that we are dealing with the

short-range systems). Let EER . There is an interval A around E so

that for any E Ran E (H) there are 1jJ a so that
A a
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where the sum extends over the a’s with at least two clusters.

This statement will be called the asymptotic clustering at the energ E .

Proposition. Assume a system under consideration is asymptotically

clustering for any E c for all a . Then it is asymptotically complete.
a

Idea of the roof. Separates the discrete part of Ha and use the continuity
of the rest : in the obvious notations

In the last term we cut off a small neighbourhood of the Ha-thresholds
and throw it into the e-basket of (6).Then we apply the Ha-asymptotic
clustering to the rest. We continue this process till we wind up with

only stable clusters. D

The proof above follows the development of the actual physical process.

First, if the system is not at a threshold energy it disintegrates into

a number of independent subsystems. Those of the subsystems which are in

bound states are stable. The others, provided their energies are not

threshold , break down further into smaller subsystems. Those with

threshold energies disintegrate due to the diffusion.

Theorem. (Sigal and Soffer [Sig Sof 1]). Assume the pair potentials obey

(4) with y &#x3E; 1 . Then the system is asymptotically clustering for all

continuous non-threshold energies.

Thus this theorem and the proposition above imply the asymptotic

completeness theorem. We emphasize here that the asymptotic clustering is

a statement about the propagation. The argument taking care of diffusion is

trivial in the case of short-range systems : it is just the strong continuity
of the spectral projections E (Ha) on the orthogonal complements of the

point spectrum subspaces.

Below we outline the idea of the proof of the asymptotic clustering
theorem. We break the proof into three major steps. But first we need one

more definition.
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e.Interaction planes. The crucial feature of many-body Hamiltonians is

that their potentials do not vanish at infinity. Indeed, define the

subspaces

These are configuration spaces for the cluster centers-of-mass. For

a = ~(1)...(N)~, Xa =X and we exclude this case from consideration.
Clearly, V(x) does not, in general, vanish if along one of the

X’ s. We call X the interaction planes. We denote by x and E the
a a a a

projections of x E X and EX’ onto X and its dual X’ , respectively.
a a

We draw the "traces" of these planes on the unit sphere in the

configuration space X for three and four particles :

This shows the crucial difference between 3 and N &#x3E; 4 body systems. In

the three body case the interaction planes, X , 9 do not intersect ( except
a

at the origin), while in the N 4 body case all these planes are connected.

It allows to separate channels in the three body case geometrically and

reduce the problem to the free propagation estimates (away from the inter-

action planes).

f. Propagation set. The asymptotic completeness can be given the following

geometrical interpretation. As t ~ f: 00 , @the total evolution approaches a

superposition of a free (classical) motion along one of the X’s and a
a

bounded (quantum) motion in the perpendicular direction :
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Here we assume that the initial energy E is non-threshold (i.e. ~ ~a
for all a’) and we ignore the diffusion part of the motion.

s

The set of "classical" trajectories in the phase-space X x X’

corresponding to the motion described above is

Remark. Since PSE is a candidate for a propagation set, La,E cannot be
replaced by the channel energy shell H ( ) = E . This is, again, due to

a a

a possible motion of stable clusters with zero relative velocities. Such

a motion is not propagative.
The fact that the kinetic energy is of the form 2 is crucial here.

It allows us to define the velocities vlçal2 of separated but not neces-
sarily stable clusters.

We mention two properties of the set above :

(a) PSE is not classical, i.e. it cannot be determined in terms of the

corresponding classical Hamiltonian lçl2 + V(x) only.

(b) The a-components, ~ra , of PSE do not, in general intersect.

g. Propagation estimates. Let E be a non-threshold point of continuum.
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We show that there is an interval A around E so that the évolution
starting at ~ E Ran E (H) "vanishes" as t+ +00 away from (a conical neigh-

bourhood) of the set PS. An analogous statement holds also for .

Loosely speaking , it can happen that a system can start (at t = 0 or

the distant past) at some component, 7 , but then it winds up in the
a.

remote future on a collection of other components

These facts translated into the framework of propagation of singularities

would mean that the characteris tics are not classical but defined in part by

the pseudodifferential operator itself and the singularities jump from

on characteristic to another (in general disjoint) characteristic.

To prove the propagation estimates we construct pseudodifferential

operators whose commutators with H restricted to an energy shell with a

non-threshold E are microlocally positive. Observe that the Poisson

brackets of the corresponding symbols are not positive in the basic cases.

Of course, one cannot expect to obtain non-classical propagation estimates

on the classical level. Our method is a logical step in the development of

the positive commutators method. It departs from the method of energetically
local commutators of Mourre [Mo] which, in turn, is a farreaching extension

of the method of (globally) positive commutators of Kato [Ka2] and Lavine

[Lal-6] . Note here the crucial difference with the method of positive
commutators of Hormander [Ho] in propagation of singularities. There all

the basic estimates are done on the classical, symbolic level and the

quantization comes in as a smoothing correction. Of course, the singularities
in this theory propagate along the classical trajectories (characteristics)

defined entirely in terms of the principal symbol. (Another distinction which

appears already in the one-body case is that the scattering theory requires
not only micro-local but also global estimates on the evolution.)
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h.Decoupling of channels. Let E be a non-threshold energy. We construct

a collection {ja E(x,pa)} of bounded pseudo-differential operators (we do

not specify here the class) satisfying

(i) It is a phase-space partition of unity in the sense

with e &#x3E; 0

(ii) On supp j a,E (x,g ) a the distance between the clusters in a grows

proportionally to the distance to the origin.

Due to property (ii) each ja E lives on the family of channels with
the same geometry. Property (iii) shows that this partition separates the

channels.

i. Microlocal wave operators. We claim that on supp j  the full
dynamics behaves as the truncated dynamics of independent clusters. To

demonstrate this we introduce the micro-local Deift-Simon wave operators

where A is a small interval containing E , if the limits exist.

(Deift and Simon [DS] have introduced such operators for cut-off functions

on the configuration space X alone).

The first step in the proof of existence of Wt follows the Cook-Kato
a,E

argument (see e.g. [Kal, CFKS]). Namely, let Wa(t) denote the operator
function standing after the sign of limit on the r.h.s. of (8). Writing
it as an integral of derivative (Fundamental theorem of calculus) yields

where Next, using the Cauchy criterion we reduce
a a iL 

the problem of existence of the strong limit (8) to the problem of

strong convergence of the integral on the r.h.s. of (9) on Ran E A (H).
To analyse the later problem we write
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(here we used (5)). Due to condition (4) on the potentials and property

(ii) of ja E we have

Due to a result of Perry,Sigal and Simon [PSS] (see also Mourre [Mo]) this

term leads to a convergent contribution to the integral, provided p &#x3E; 1.

(This is the only place where P&#x3E; 1 is required). Next, since

and due to property (ii) of ja E , ~ the second term on the r.h.s. of

(10) lives away from PSE and therefore leads due to the propagation estimates
to a convergent contribution as well. This completes the outline of the

proof of existence of (8).

Next, an elementary argument shows that the existence of for
a,E

some E implies the asymptotic clustering for the some E . Indeed, let

~ E Ran Ea (H). We have

where

Due to the existence of W± 
E 

and the absolute continuity of H (which is
a,E

one of the results of [PSS]),

provided E is non-threshold. This proves the asymptotic clustering (and
also provide the expressions for the amplitudes ~% in {7)).

a
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j. Long-range potentials. If the pair potentials are long-range (i.e.

p  1 in (4)), even as clusters depart from each other the intercluster

interaction cannot be discarded entirely. Let 8 à (s) be a smooth function,

= 0 for s  à and = 1 for s &#x3E; 26 . Denote

lx 1
where I (x ) = I (x ) 8 (-~--a--~) (the low velocity is cut-off) with I (x ) ,

a,t a a a à t a a

the restriction of 1 (x) to X . We pick 6 depending on the total energya a 
.E (fixed in advance) ’ say ô - 1(E-E 2 a ). Let S 

a 
( 

a 
,t) be a solution to the

Hamiltonian-Jacobi equation

obeying = 0 or a sufficiently high (depending on p ) iteration of

this equation. We formulate the asymptotic completeness for the long-range

scattering as follows : For an E L2 X and any e&#x3E; 0 there are

± 
E 

E L2 ( X a) so that
’a.e a

To justify this definition we have to assume that the bound states u

p E L(X©X , E: 
&#x3E;0 . Namely, this la * 0E LZ x &#x3E;s dxa ) withe &#x3E; 0 . Namely, this allow us to set xa -= 0

in the last term in (11). Here xa is the projection of x into 
a

If p&#x3E; 1/2 in (4) then the leading term in the expansion

suffices for the definition of asymptotic completeness. Moreover, due to

the specific form of the kinetic energy term in H (in other words since

the center-of-mass motion separates) we have that

which is independent of dynamics (i.e. the bound states).

This allows to formulate the asymptotic clustering in this case. Define
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Let U a (t) be the evolution generated by H a (t) :

We define the asymptotic clustering at one energy E similarly to the

short-range case but with (7) replaced by

Open problem. Formulate the asymptotic clustering for the very long-range

systems (i.e. pI/2).

Theorem. (Sigal and Soffer [SigSof2]) let the pair potentials obey (4)

with p = 1 (i.e. the potentials are Coulomb-type). Then system in question

is asymptotically clustering at any non-threshold energy.

Open problem. Prove the asymptotic clustering at non-threshold energies
for long-range systems with p &#x3E; 1/2 and N &#x3E; 4 .

k. Sharp propagation estimates. The propagation estimates discussed in

sections f and g hold for pair potentials of arbitrary decay. However, they

are not sufficient to prove the asymptotic clustering for long-range

systems. First of all the propagation set must be specified more precisely.
We suggest the following definition :

In other words, the asymptotic free evolution is modified and the coefficient

of proportionality between the position and velocity(the time)is introduced.

More importantly, the estimates defining the propagation set must be

strengthened. More precisely, we must show that w "vanishes" outside a9 
LR 

t

parabolic conical neighbourhood of PSE For a two-cluster a we haveh
to show that t "vanishes" on the domain
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Note that in the one-body case Sigal [Sig] has shown that for

for 1!; 

1. Asymptotic Energy Distribution. There is an obstruction in the long-range

case for deriving asymptotic completeness from the asymptotic clustering
at non-threshold energies. Namely, the energy for decomposed systems is

not conserved anymore : ~ E E~ (H a (0)) # U a (t)j E E~ (H a (t)). This makes

controlling the diffusion at zero relative velocities non trivial. However,

Sigal and Soffer [SigSof3] have shown that for p &#x3E; 1/2 the cluster energy

is conserved asymptotically in the sense that the limits

exist. Here cont is the projection onto the orthogonal 1 complement of theexst. Here 
a 

s the proJecton onto t e ort ogona comp ement ote

sdan of all eigenfunctions of Ha. This provides a half-way through the

obstacle. The remaining part requires the strong continuity of the asympto-
tic energy distribution

So for we have failed to prove this fact when ù shrinks to a threshold of
aHa . Actually, we conjecture that it might not be true, in general, for

N&#x3E;4 due to the phase-space tunneling. The later refers to the phenomenon

when the system in question oscillatesbetween two open channels (i.e. diffe-

rent components of PSE) one of which is a threshold channel (the relative

velocity between two of the stable clusters is zero) :



XXIII-20

As a result the probability for the system to be outside of the propagation set

vanishes too slowly to garantee the strong continuity of Et . Consequen-
a,Q

tly, asymptotic completeness might fail for long-range systems.

Open problem. Determine whether the asymptotic energy distributions,

Et , are continuous or not near the thresholds of Ha for Coulomb-type
a,S1

potentials (u=1) and for N &#x3E; 4.

The domain of long-range scattering for p 1 and N&#x3E;4 is almost

unexplored. I wish good luck toyoungresearchers.
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