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§ 1. INTRODUCTION.

We discuss, in more detail, the conormal progressing waves constructed

by Bony [1] . The goal is to show that if the wave ( ae solution) is classical

in the past, it remains so in the future. Given a certain minimal regularity

this is true provided the notion of classicality is slightly extended so as

to yield a class closed under nonlinear functions. ,

We begin with a brief review of the notions of conormal distri-

butions see [4 , §18.2]. If E CR: t x = x , x ,...,x is a regular hypersurfacex 1 2 d g yp

and V in the Lie algebra of vector fields tangent de E then a distribution

defined on a neighborhood of E is said to be conormal if for some s E R ,

and all finite sets VI...VN E U

We abbreviate by (/ u E Hs and denote the space by H¿ . In coordinates
E

with E = x=o} , such distributions have partial Fourier transforms with
respect to xl which are symbols

a E IR) . The correspondance s + p is made exact if in ( 1 ) the space

Hloc is replaced by the Besov space with s - - -1/2 . The resultingloc s loc
class is denoted IlJ . Recall

E

when is the normal dyadic component of u . Since

with a little loss one can pass from

example. Ifu is piecewise smooth in Q . that is and for each x E E

the restriction of u to each side of E has a COO extension to a neighborhood
of x , then u E I" with s = m + 1/2 where m is the smallest integer
such that .
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This example is the most classical of all conormal distributions.

We state our results for first order hyperbolic systems. The exten-

sion to higher order is immediate, and some of the results are valid for

simply characteristic hypersurfaces and general L ([8]).

Fix L a first order linear strictly hyperbolic system in

~ c R A regular characteristic hypersurface Z is given in the open set

Q and also a timelike function t with n in the domain of determineacy

of Q n  t  0} . We are interested in solutions u E Lool (o) to
ioc

where

Theorem 1. (Bony [1]). Propagation of conormal regularity.

Remark. The proof in [1] for HE is valid for the I .
Z Z

Our first "classical conormal" result is in the piecewise Coo

category.

Theorem 2. Propagation of piecewise smooth solutions.

If an addition, g is piecewise smooth and u is piecewise smooth

in ~- , then u is piecewise smooth.

In the linear theory a distribution u E Ip is called classical
. m 
if the symbol a E S h with Rem - ~ . That is, if there exist a . (x’,~1)Pg M-]
homogeneous of degree m-j with

example 1. If u is piecewise smooth and ct then

where [ ] denotes "jump in" . Then
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example 2. 7l , Re m - 11 , the general example is

For p 6 ZZ , there are annoying logarithms which appear in the description
in x-space. In the second example note that the distributions are continuous

exactly for p -1 , and it is in that range that nonlinear operations
are natural. The necessity of expansions (3) in the linear theory is easy

to understand since if one starts with Rem &#x3E; 0 and multiplies

by a smooth function (p , one has

In the E variables (x 1 +i0 ) Q appearshomogeneous of degree -t-I . Thus if

a term homogeneous of degree h appears in a symbol, one expects to

encouter terms of order h-n, n E Ð + . For non linear problems one must

multiply. Multiplying functions homogeneous of degree 21 and 22 yields
one of degree 21 + t 2 . In Fourier the degrees are -Ql-1 , -g 2 -I , and

. Thus if homogenerties h 1 and h 2 occur in symbols one expects to encounter
hl + h2 + 1. This leads to the following extension of the notion of classi-

cal conormal distribution, adapted to nonlinear problems.

Definition. Suppose H c {Re z  1} satisfies

(iii) For any M E]R , , {h E H : Re h M} is finite.

A distribution u defined an a neighborhood of E is said to be classical
TT

in the sense that for any M -

example. , The smallest H containing m with Re m  -1 is the set of all
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Theorem 3. Propagation of classical conormal regularity.

Suppose u as in Theorem 2 and H as in the definition.

If in addition g E IH(0), u E I(Q ) then u E Is(0) -g 
E 

’ 
E E

Remark. The properties (i), (ii), (iii) of H imply that Re H  -1 . That

this is needed to obtain good results is seen in the following example.

, -

has all terms of

the same regularity if Re m - 0 , which corresponds to ReH = - 1. On the

other hand for Rem &#x3E; 0 ,(hence Re H  -1) the expansion (4) is perfectly

classical.

Once classical conormal waves are constructed it is natural to

study their interaction as in [2,3] . In fact, one of the main goals is

to create a multidimensional piecewise COO theory so the theorems of Rauch-Reed

[5] on the creation of singularities can be extended to higher dimensions.

So far, only the case of two speed operators has been carried out [6], and

there one has no such creation ! t

In §2 we prove a mild extension of Theorem 2 by an argument
different from that used to obtain Theorem 3. In §3 we sketch the calculus

avalable for studying the symbol of u in the special case of u piecewise
smooth. This also gives us the chance to describe the idea of the proof of

Theorem 3 which will be published elsewhere [8] .

§ 2. PROOF OF THEOREM 2.

We prove a slightly stronger result then Theorem 2. If u is a

conormal solution we show that if u is smooth on the closure of one side

of E in t  0 , this property persists in t &#x3E; 0 . Toward this end let 0 be

a neighborhood of E in 0 with 0’Z consisting of two components (? and

Or (left and right), and 0 in the domain of determinary  °

Theorem 4. Suppose u is a conormal solution as in Theorem 1 and that

in addition g E C"(0) and u E Coo fl -) . Then u E C( ) .

Proof. The proof consists of a local argument in a neighborhood of

x e z n {t = 0} and a patching. We omit the latter step.
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We will show that

symbolically From Bony’s theorem we know

Thus the case n = 0 is done.

We make a change of the variable u , and multiply the equation

by an inevitable matrix to convert L to an operator of the form (see [5])
r- ,

where the (k-1) x (k-1) matrix [*] is non singular.

To prove (5) for n = 1, first solve the final (k-1) equations of

Differentiating with respect to x, yields

The commutator [X,d¡] is tangential and we already know u

so (8) takes the form

With the normal form (6), all the surfaces xl = const. are characteristic

and X is the ray direction along these surfaces [7, lemma 2.3]. Thus (9)

is a linear ordinary differential equation for 3,u along rays. Since

backward rays from 0 n(t &#x3E; 0 } enter 0 g fl (t 0 } where 3 I u E HE’ I it follows

that 9.u E ). In fact, this conclusion is a consequence of Theorem 1,
I z g

and can be obtained directly by the usual commutation arguments since V.

This proves (5) for n = 1

For n &#x3E; I we reason by induction, assuming
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. Solving the last k-I equations for ax (u?..u~) and then applying

that the induction hypothesis yields

we find a transport equation

and it follows as for n = 1 , that

§ 3 . SYMBOLIC CALCULUS, IDEA OF GENERAL PROOF.

In this section we recall, from [7] the fact that once you know

that u is piecewise smooth it is not hard to find rules for computating
the jumps [3 u] across E = {x =0} . For example, given u E 

xl 1 E

s &#x3E; 1/2 we know that Given this trace, the jump in aX 1 u is

computed in the coordinates where L has form (6) according to

As in the last section, we can integrate this linear ordinary differential

equations along rays on E to determine from its values in t  0 .

Then we have 
x~ i

with r E CI along with all of its tangential derivatives. Thus

3r/3xjlz E COO(E). Given this trace, one can find the next jump [a2 ul ,

and so on. 

The proof in the general case follows these lines. For u E I ’
. E 

9

it follows that 3" 1 E C 00 (E) for j  t(p). Given these traces, the - principal
x, z,
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symbol a m is computed from its values in t  0 . Then

One then shows, and this is the technically difficult step, that r E I -P+ 111
that is one derivative better. Given the traces of r for j  
one can calculate symbol(s) of the next order, and so on.
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