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1 A NEW SUP-E-Rl--IOSITION PRINCIPLE

OPTIMIZATION PROBLEM

Academy of Sciences, Moscow, USSR

The superposition principle in quantum mechanics and in wave optics
is an important prinary physical principle. However, it yields a fact
which is very simple in mathematical sense, I,e, linearity of equa-
tions in quantiim mechanics and wave optics. We show, that some new

superposition principles used to solve some nonlinear equations inclus-

ding the Bellman and the Hamilton-Jacobi equations lead to "linearity"
of these equations in some semi-modules, what allows to apply some
formulas and results of usual linear equations to this case.

Hopf has constructed a solution of a quasi-linear equation, starting
from Burgers equation with small viscosity and then passing to the
limit as the viscosity tends to zero. He used the fact, that the Bur-

gers equation may be reduced to the heat equation by a certain sub-

stitution.

First we consider this situation from a different viewpoint, using
an integrated variant of Burgers equation.
We show the main ideas using simple examples and omitting proofs. The
latter may be found in detail in 1 .

We obtain preliminary considerations from the following elementary

example. Consider the heat equation with the small parameter h:
-’II

This is a linear equation. Thus any linear combination A Y. u I 
of two solutions U t and l/z is a solution of (1) as well. By sub-

svitution

we reduce (1) to an integrated variant of the equation considered

by Hopf, natnely, 
-- " n n - 7

This equation is nonlinear. However, if and i/l/ z are solutions

of (2), then the combination 
-
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of these solutions is also a solution by virtue of the above substi-
tution.

This fact may be interpreted as follows. Consider a space of functions
with values in the ring whose elements are real numbers and opera-
tions are:

(generalized addition) and

(generalized multiplication which coincides with usual addition of
reals).
In this space the integrated variant (2) of Burgers equation is linear
i.e. if W and l4£g are solutions, then so is

Besides we note an important fact. The above substitution induces
the scalar product

.. 

and the resolving operator of (2) is self-adjoint with respect to
this new product, since the resolvent operator of (1) is self-adjoint
in 

,

The ring with the operations of addition and multiplication (4) and

(5),in which we set zero to be equal to arithmetical infinity and

unity to be equal to arithmetical zero, is isomorphic to the usual

arithmetic ring with usual addition and multiplication.
The situation is rather more complicated for the true Burgers equa-
tion. Here we discuss it briefly. Consider the space of pairsfU(J£C

being a function and C being a constant. We introduce the

operations: x
.e ..
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an involution

L / J l / V

and a "scalar -product" - the bilinear form

The (matrix) resolving operator for the pair of equations

is linear in the described space, endowed with module structure (7)-
(8). Note, that one of these equations is nothing else than Biirgers
equation. As we see the situation is more cumbersome but essentially
the same.

We considered above two similar examples. In both cases nonlinear

equations reduce to linear ones. But it is not so interesting. It is

interesting to find such a module or, more generally, semi-module,
in which given nonlinear equation will be linear itself, though we rla-

ve not any reduction. If such a seiiii-module exists, the methods and
results for linear equations may be applied to such nonlinear equa-
tions.

Next ve pass to the limit h-+O in our examples. In order .to obta.in

a quasi-linear equation one should pass to the limit h 0 in Burgers
equation (11). To simplify the calculations we consider here the va-
riant (2) of Burgers equation. The limit as for (2) is the

Hamilton-Jacobi equation:
- J -

rather than a quasi-linear equation. However, all the results presen-
ted are word for word valid for the quasi-linear equation.
Examine now the behaviour of the addition and multiplication opera-
tions as h-O. The multiplication operation (5) is independent of

h and remains, as above, the arithmetical summing.

As for addition operations (L~), for positive a and b 8- limit

exists:
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i.e. the generalized sum of a and b is the minimum of a and b.

The distributive law

for these two operations holds. The limit scalar product of two func-
tions ~i(x) and will be equal

The product t’! 7) being defined, one may consider generalized functions
(distributions). For example, the ct-function is given by

r. -- --,I"

The resolving operator of the Hamilton-Ja.cobi equation will be linear
with respect to operations (13),(15). In particular it means that we
have the so-called Green-type representation

of the solution, i.e. the solution S(x,t) may be represented in the
form of convolution of Green function with initial condition

Since the integral is the minimum over x and the product is
the arithmetical sum, this convolution reads

where

and since it satisfies equation (12) and initial condition

G(x, 0) is simply a delta-function in the new sense. Thus we have
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obtained the familiar formula, which expresses the solution in small
of the Hamilton-Jacobi equation in terms of the generating function

G(x,I,t). We have given here a natural from the physical viewpoint
interpretation of the initial condition for the generating function.
Now, by using the same simplest example we demostrate, how one cm

apply the ideas of weak solutions of linear equations to the nonlinear
Hamilton-Jacobi equations.
So, let Lt be a resolving operator for Hamilton-Jacobi equation (12),
and let the initial condition

have the following and the graph of the deriva-

tive

has the form shown on 

Fig.1

The corresponding Hamiltonian system has the form

The solution of the Hamilton-Jacobi equation may be represented in

the form

The function p(x,t) is obtained by the shift of the curve (see

Fig.1) along the trajectories of the Hamiltonian system (25) for small

t, till this curve can be projected diffeomorphically on the x-axis.

One may see on lilig.21 that for t=1 the curve is projected non-diffeo-

morphically, and hence there is no classical solution for the Hamil-

ton-Jacobi equation.
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Fig.2 Fig.3

According to the theory of usual linear operators we shall consider
the adjoint resolving operator on a dense set of such initial func-

tions, for which classical solutions of this adjoint operator exist.
In our case such a dense set is the set of functions convex down-

wards, since they approximate the delta-function. The derivative of
such functions increase monotonically (see 

Fig.4

The adjoint operator to Lt equals Lt- Therefore, after a shift of
the curve P1(x) along the Hamiltonian system, we always obtain the
curve pl(x,t) which is projected diffeomorphically on the x-axis.

exists in large in the classical sense, thus it can be re-t
presented in the form
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We shows that this formula applies also in case of the initial con-
dition Yo(x), if we understand the solution in the generalized sen-
se, as it is done in the usual linear theory.
Really, we have

#0 ,  7 ..

Thus, like in the linear theory, can be

regarded as a weak solution of the Hamilton-Jacobi equation. We have

interpreted the answer, obtained by Hopi.

Everything told here for this one-dimensional simple example holds
for the more general Hamilton-Jacobi equation.

It turns out, that the resolving operator of the Hamilton-Jacobi equa-
tion is linear in the’ space of functions with values in the semi-ring
given above. Namely, let S1(x,t) and S2 (x t) be solutions of equa-
tion (29) with the Hamiltonian H. Then

is also a generalized solution of this equation.
One of the most important methods in the linear theory is that of

Fourier transform. We consider its analogue in the space of functions

with values in the semi-ring mentioned above. For this purpose we

consider the eigenfunctions of the shift operator:

Therefore, 5~/ (x) = /lx. As it is well known, the expansion in
terms of eigenfunctions of the shift operator is just the Fourier

transform. Thus we have:
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Thus the Fourier in this space coincides with the well known Legendre
transform, and the Legendre transform is "linear" in the space of
functions with values in the semi-ring.
Now the following principal question arises. Since the Hamilton-Jacobi

equation is linear in this space, one could look for difference sche-

mes, which approximate these equations and are also linear in these

spaces.

In order to write such a linear difference scheme, we shall use the

analogy.
We consider a general pseudo-differential operator in the Hilbert

space L2’ which is a difference operator with respect to t. It has

the form

If we change the integral and the multiplication in this operator,
as well as the Fourier transform, by the integral and by the Fourier
transform in the new sense, then we obtain the following expression

where L(v,x,t) is the Fourier transform of H(p,x,t). And it is just
the general difference Bellman equation. Hence, if we take a grid
with the step h in x we obtain for the Hamilton-Jacobi

equation

the difference scheme
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linear in the semi-ring with operations (13), ~15~.
The solution of Hamilton-Jacobi equation may be written in the form

Explain now, what the measure in such strange integrals is. In parti-
cular, what functions differ on the set of zero measure in the sense

of these new operations. First, for these new integrals, as well for

usual ones, the following two properties hold:

Property 1.

-- - I I

Really
I

Property 2.

Really,

Let $’ and / be two real functions on R~’, and being upper
semi-continuous. One can consider the integral off by measure

P(x)dx:

We give an example of theorem about measure. Let the closure 01

of the function be defined by
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Then

and we obtain the following theorem: two functions are equivalent with

respect to the measure .,P I if they have the same closure.
Explain now, what the weak convergence means with respect to the sca-
lar product (17~ given above.
Let X be a compact normal topological space, B be some subset of

the set of lower semi-continuous real functions. We denote by PB
the projector on the linear envelope of the set B ; the kernel of P B
is given by

Let r (x) oo be an arbitary sequence oi real-valued iunctions,Let be an arbitrary sequence of real-valued functions,

A be the set of all the continuous functions which are greater
than all the functions of the sequence P f .  ’ starting from

a certain number.

Definition. The lower bound of the set yL will be called the "upper

Theorem. For functions

There is a notion in radiophysics. It is called a modulating signal
baseband. It means, that the lower frequency is imposed on the high
frequency. Namely, we have a rapidly oscillating function, which has
the envelopes: the upper and the lower.
And just the lower envelope is in our sense a weak limit of the ra-

pidly oscillating function.
For example, the sequence of functions

/

weakly converges to the envelope
as the semi-ring with operations Q = inf, ~ = + .
Thus we have the mathematical interpretation of the notion: modula-

ting signal.
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Another very simple example can demostrate the strength of the method
described above. Just the problems of such type showed the author
that it was necessary to construct this theory.
One may approach the linear theory of the wave equation starting from
the problem of perturbation propagation in a crystal lattice. In the
same way the problems of behaviour of computational medium with a

great number of homogeneous elements leads to the conception presen-
ted here.

Again we consider an elementary example, namely, the medium activity
equation for the so called Kung processor. We assume here, that the

processor can be switched on only after the upper and the left pro-
cessors were switched on. And it is switched on only under the condi-

tion, that the signal has come to it.
"We shall set, that if the processor is ON, the state of it is equal
to unity, and if the processor is OFF, the state of it is equal to

zero. Thus, there are two states. Moreover, if the signal F is app-

lied, it is unity, if the signal is not applied, it is zero.

So, the equation, which describes the state S of the processor

(m,n) at time k+1 , has the form:

It may be seen, that such an elementary equation has the solution:

only unity or zero. Therefore, it seems at first sight, that there is

no connection with differential equations, even if there are many

processors. However, it is not so. We shall see, that the weak limit

of a solution of such an equation (weak in the sense mentioned above)
will converge to a solution of some Hamilton-Jacobi differential equa-

tion.

Note the following: the operator T on an integer-valued lattice,

given by

is linear in the space of functions on an integer-valued lattice with

values in the semi-ring:
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Note, that this is just the operator, which is in the medium activity
equation without the signal F . The adjoint operator T has the

form:

As a matter of fact we have equation (46) which still has the signal
F , by analogy to the right-hand side of the differential equation.

We can get rid of the right-hand side just in the same way as it is
done in the usual linear theory. We can send the right-hand side into
the initial conditions according to the Duhamell principle, and obtain
instead of (46) with initial conditions

another equation:

Besides

Now we consider the adjoint medium activity equation

We note the following: the sense of it is not so closely connected

with the processors. And we can set for this equation not necessary

two-valued initial conditions (zero, unity):
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We shall give the initial data which vary very slowly from one point
to another. Namely, we shall consider on a three-dimensional grid in
the space (t,x,y) with the step h such functions, which are the tra-
ces on this grid of a smooth function uh( tlxly ):

Then the adjoint equation will have the following form:

If we take for this equation smooth initial data, then as h- 0

it will be reduced since

to a nonlinear differential equation

Thus we know the convergence of adjoint operators. Further, we can
act like in the linear theory. Namely, we apply the resolving opera-
tor to the initial function and multiply it scalarly by a smooth func-
tion. Then we apply the adjoint operator to the smooth function and

pass to the limit. In this way we obtain the weak limit of the solu-

tion of our equation. In order to make the analogy more clear, we

write the integrals in the new sense instead of infimum.

According to the Duhamell principle the solution of the medium acti-

vity equation can be represented in the form:

where 0)(h) f is the solution of the homogeneous problem witht

initial condition f(x,y).
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The usual technique leads to the following:

Here the x and y integrals are over the entire space, 
is a smooth function and t is the resolving operator for the li-
mit problem (57)*
Thus, if we take the solution S k ( m,n ) of the medium activity
equation and consider a smooth function ~( x, t s ~ ~ , which has
the values S ( m n at the points t = kh, x -- mh, y = h ’
weak limit in the new sense on the smooth function (x, y) is ex-

pressed in terms of the solution of problem (57) with the initial con-
dition :

The main ideas of the author’s theory are described by using only
elementary examples. We did not give here general theorems, in par-

ticular, the existence theorems for the solutions of quasi-linear

equations. They can be found in [1J - 3 .
Further, we considered only the semi-ring, in which the addition

operation is minimum, and the multiplication operation is summing.
In another semi-rings are considered in detail. For example, the

semi-rings, in which the addition is minimum, and the multiplication
is maximum, namely, the space with values in the Boolean algebra is

considered.
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