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Start with the usual Sobolev inequality on n &#x3E; 3 :

Apply H61der’s inequality to the right side to obtain

with p (x) = . The superscript 1 indicates that in (2) we are conside-

ring only 1 function, f . In general S ; in fact for all n &#x3E; Iy ’ g 
n n n

while Sn - 0 for n  3 . Eq. (2), unlike (1) has the following important

n+2

property : The non-linear term ,p n enters with the power 1 (and not n-2/n)

and is therefore "extensive". The price we have to say for this is 11 f 11 4/n inp y 2

the denominator, but since we shall apply (2) to cases in which Ilfll2 = 1

(LZ normalization condition) this is not serious.

Inequality (2) is equivalent to the following : Consider the Schr6dinger
n

operator on R

and let e 1 
= inf spec(H). (We assume H is self-adjoint.)

Then

with

Here is the proof of the equivalence in one direction (the other direction

is even easier.) We have
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Use (2) and H61der to obtain

Minimizing (6) with respect to X yields (4) .

So far this is trivial, but now we turn to a more interesting question.

Let e2 ~ ... ~ 0 be the negative spectrum of H (which may be empty).

Is there abound of the form

for some universal V and N independent constant L &#x3E; 0 (which, of course,
. I 

? 
.... 

n 
.

is  LI) ? The point is that the right side of (7) has the same form as the right
n

side of (4). More generally, given y &#x3E; 0 , does

hold for suitable L y,n ? When y = 0 , is interpreted as the number

of e. ~ 0 .
i

The answer to these questions is yes in the following cases :

n - 1 : All y &#x3E; 1 . The case y - 1 is unsettled. For y  2 there is no
201320132013 

Y 2 y 2 Y 2
bound of the form (8).

. There is no bound when y = 0 .

The cases y &#x3E; 0 were first donein [8] , [9] . The y = 0 case for n &#x3E; 3 was

done in [2], [4] , [11] , with [4] giving the best estimate for L . For a
o,n

review of what is currently known about these constants and conjectures about

the sharp values of L , see [6].
y,n

There is a natural "guess" 
. 

for L 
y,n 

in terms of a semiclassical approxi-
mation (and which is not unrelated to the theory of pseudodifferential operators):
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From (9) ,

It is easy to prove that

The evaluation of the sharp L is an interesting open problem - especially
~y , n 

c
L . In particular, for which y,n is L = Lc ? It is known [1] that
1, - y,n y,n 

. No other sharp values of L are known .
y,n

Just as (4) is related to (2), eq. (7) is related to a generalization

of (2). Let l’...N be any set of L2 orthonormal functions on Rn and
I N

define

Then

with K related to
n

We might call (15) a Sobolev type inequality for orthonormal functions. The

point is that if the P. are nerely normalized, but not orthogonal, then the

best one could say is

The orthogonality eliminates the factor N ~~~ . 11
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(17) can be easily extended to the following : Let

. Suppose and ~ is antisymmetric. Define

Then (15) holds (with the same Kn). This is a generalization of (13)-(15) since

we can take

One application of (8) is to the Riesz and Bessel potentials of orthonormal

functions 5 . Again, ~ ~P 1 &#x3E; ... &#x3E; ~PN are L2 orthonormal and let

Then there are constants L, B , A such that
p n

If the orthogonality condition is dropped then the right sides of (23)-(25)

have to be multiplied by N , N , Nl-l/p respectively. Similar results can bE

derived [5] for (-A+m 2)-ot/2 in place of (-A+m2)-1/2 . ~ with a  n when m = 0 .

Inequality (15) also has applications in mathematical physics.

Application 1. Suppose Q c En is bounded with volume I~I and consider

on Q with Dirichlet boundary conditions. Let X I-- x2 ... be the eigenvalues
of H . Let N be the smallest integer, N , such that
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We want to find an upper bound for N .

If 91 ~2’... are the normalized eigenfunctions then, from (13)-(15) with

with

Thus,

But

where

whence

Therefore

The bound (33) can be applied [6] (following an idea of Ruelle) to the

Navier-Stokes equation . There, N is interpreted as the Hausdorff dimension

of an attracting set for the N-S equation while V(x) 3/2 (x), where
v

E X = B)! 2013) 12 is the average energy dissipation per unit mass in a flow v .
3x

w is the viscosity.

Application 2. This is the original one [8] . In the quantum mechanics of
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Coulomb systems (electrons and nuclei) one wants a lower bound for :

on the LZ space of antisymmetric functions ~( x 1 &#x3E; ... x x. E Here N

is the number of elections (with coordinates x.) i and E I are fixed
I I

vectors representing the locations of fixed nuclei of charges 0 .

The desired bound is linear :

for some A independent of N , K, (assuming all z. i  some z).

The main point is that antisymmetry of ~ is crucial for (35) and this

is reflected in the fact that (15) holds with antisymmetry but only (17)

holds without it. By using (15) one can eliminate the differential operators

pi . The functional (,H), with (1jJ,1j) = 1 can be bounded below using (15)
1

by a functional involving only p(x) (called the Thomas-Fermi functional). The

minimization of this latter functional with respect to p is tractable and leads

to (35).

Application 3. Going from atoms to stars, we now consider N neutrons which
2

attract each other gravitationally with a constant K = Gm2 . (34) is replaced

by

(again on antisymmetric functions).One finds that

for some constant, C . Without antisymmetry, N 
-2/3 

must be replaced by N 1 .

(37) is proved in [10] . An important role is played by Daubechies’s genera-
lization of (15) to the operator (-A) 1/2 , namely (for antisymmetric ~ with

II ~II 2 = 1)
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with p given by (18). In general, one has

Application 4. The latest application is in [7] and concerns the stability
of atoms in magnetic fields. (xl,...,xN) becomes a spinor valued function,

N 2 3 2
i. e. is an antisymmetric function in 1B L (R ; !C ). The operator H of

1

interest is as in (34) but with the replacement

where °1 1 9cf 2 9 J 3 are the 2x2 Pauli matrices and A(x) is a given vector field

(called the magnetic vector potential). Let

after the replacement of (40) in (34). As (in a suitable sense),

E (A) can go to -00 
. The problem is this : Is

o

bounded below for all A ? In [7] the problem is resolved for K = 1 , all N

and N = 1 , all K . It turns out that E(A) is bounded below in these cases

if and only if all the z. i satisfy z. i 
 zc where zc is some fixed constant

independent of N and K .
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