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1. INTRODUCTION.

String theories have recently emerged as compelling candidates for

a unified theory of all fundamental interactions. Perhaps one way of conveying

the excitement over the subject is to retrace briefly some stages in its

development.

The original dual resonance models were actually proposed as

phenomenological theories of hadrons. That the masses squared of the states

rose linearly with the mode number suggested shortly afterwards their inter-

pretation as theories of one-dimensional extended objects or "strings", which

interacted by joining and splitting. The Virasoro constraints on physical

states could then be explained as gauge constraints arising from reparame-

trization invariance of the action, which was the area of the world-sheet

swept out by the string in space-time. Although the theory had strong

resemblances with the modern theory QCD of strong interactions (in particular
color flux tubes behave like strings, and QCD isbelieved to reduce to a string

theory in the infinite color limit) there were always difficulties in inter-

preting strings as a model of just hadrons. Besides the presence of tachyons

and the neccesity of working in critical dimensions to maintain Lorentz

invariance and decoupling of ghosts (the critical dimension is d = 26 for

the original bosonic model, and d = 10 for thefermionic model of Neveu-Schwarz-

Ramond), the spectrum of the theory contained massless particles, including

particles of spin 1 coupling likevector bosons, and particles of spin 2

coupling like gravitons. A drastic change of viewpoint was suggested in 1975

by Scherk and Schwarz, who proposed instead to interpret strings as models

of unified interactions including gravity, and to view the extra dimensions

as physical. Another key discovery was that the fermionic string projected
onto the even G parity sector was free of tachyons and supersymmetric at

each mass level. This space time supersymmetry was rather obscure in the

original formalism, and Green and Schwarz pioneered a new approach which put
it better in evidence. They classified fermionic strings into

Type I superstrings, consisting of open and closed strings, could

carry a classical group as Yang-Mills gauge group. This was done by attaching

group factors to the ends of open strings by the Chan-Paton method. One-loop

amplitudes indicated that the infinities of the theory could be absorbed into
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a renormalization of the string tension. It was feared however that potential

anomalies of both Yang-Mills and gravitational nature could render the theory

inconsistent ;

Type II superstrings consisted only of closed strings and was

expected to be finite. This theory contained no elementary Yang-Mills gauge

group, and hence certainly no gauge anomaly. Furthermore in the chiral N = 2

ten dimensional supergravity theory which is its low energy limit, gravita-

tional anomalies had been found by Alvarez-Gaume and Witten to cancel. The

problem here was that it seemed difficult to obtain the chiral fermions

observed in nature by compactifying à la Kaluza-Klein a theory without

elementary Yang-Mills group.
A breakthrough came in 1984 when Green and Schwarz discovered the

anomaly cancellation mechanism which singled out SO(32) as the anomaly free

gauge group for Type I superstrings. At the effective field theory level the

same cancellation worked for E8 x E8 , 3’ which started a search for an E 8x E8
superstring. Such a theory - the "heterotic string" - was found by Gross,

Harvey, Martinec, and Rohm, as a hybrid mixture of closed strings, with the

right sector being the corresponding truncated fermionic string and the left

sector a compactification from d = 26 to d = 10 of the bosonic string producing

exactly the desired gauge group. The phenomenological prospects of the E 8x E8
theory in particular are especially bright [1] .

It is thus urgent to improve our understanding of the principles
and techniques of string theory, in particular to formulate Feynman rules for

loop amplitudes. For scattering of pure particle states, the Feynman diagram
for closed oriented strings at the h-loop level is a compact surface

M with h handles, with insertion of the corresponding vertex operators.
In the Polyakov formulation of string theory [2] , the amplitudes are given

by functional integrals over all (super) geometries of M . Conformal and

reparametrization invariances in the critical dimensions suggest that the

amplitudes should reduce to integrals over the (finite-dimensional) moduli

space of M , and Feynman rules in the string case should correspond to an

explicit identification of the integrand as well as of the measure on moduli

space occuring in the amplitude. We shall show that the Polyakov quantization
of strings actually leads to the Weil-Petersson measure on moduli space,
and that the integrand is a combination of determinants and propagators for

the Laplacian and Dirac operators with respect to constant curvature metrics.

In the superstring case, zero modes of the gravitino field also appear,
which can be viewed as the super analogues of quadratic differentials. These
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ingredients in turn can be evaluated in terms of fundamental notions in the

mathematics of Riemann surfaces and number theory, such as Poincaré series,

prime forms, theta functions, and special values of Selberg zeta functions.

We would also like to call attention to other related recent develop-

ments, especially those described in [3] [4] (which are also based on the

Polyakov approach), [5] (based on a light cone gauge approach), and [6] (based

on methods of two dimensional conformal field theory).

2. THE BOSONIC STRING.

The simplest string theory is the purely bosonic one, whose treatment

can serve as an introduction to the more complicated superstrings. The original

action proposed by Nambu and Goto is the area of the world-sheet, which

however is difficult to quantize while preserving manifest covariance. In the

Polyakov approach we start instead from the action

which reduces to the Nambu-Goto action when 61/6g = 0 . Here g mn is a metric

on M , ~ and X~ ~ = 1,...,d = 26 describe the coordinates of the string in
flat Euclidian space-time. (Strictly speaking, renormalization effects will

require a cosmological term whose coefficient will be fixed later by requi-

ring Weyl invariance, and a coupling constant of the form exp(ÀX(M)). We shall

ignore them in this simplified discussion. Also the string tension has been

set to T = 1). Besides translational invariance in the X ,s , the action
v

possesses two fundamental symmetries :

(i) Invariance under any reparametrization n E Diff(M). The n’s which

are deformable to the identity can be represented by vector fields 8Vm.
The space of such ~’s will be denoted by Diff 0 (M), and the corresponding
infinitesimal changes in the metric are given by

There are however global diffeomorphisms which cannot be so deformed, and

the mapping class group Diff(M)/Diff o (M) will be of importance in the sequel ;

(ii) Invariance under Weyl scalings : 8g = ôag (3)
mn mn

The partition function is now given by
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and the key task is to factor out the volumes of the gauge groups. The result

is [7]

Here A is the scalar Laplacian, and PI is the operator sending vectors into

traceless symmetric 2-tensors given by

Note that Pl(sV) is precisely the traceless part of the infinitesimal changes

in the metric induced by 6V , and that Ker P~ 
I parametrizes infinitesimal

deformations of holomorphic structures, i.e., quadratic differentials. Both

â and PI in (4) are taken with respect to constant curvature metrics g .

To understand formula (4), we observe that the integral DX is Gaussian

and produces the issue is to carry out the Dg

integral over metrics. At this point conformal invariance is broken, and

according to [2]

for g = ecy Thus Dg should be viewed as an integral along a slice for Weyl
scalings, as well as along its orbits. A natural slice is the space M-1 I
of metrics of constant negative curvature -1 (for one loop choose instead

the metrics of zero curvature and area 1), from which Teichmfller space is

easily obtained, since it is just M_1/Diffo(M). Now M-1 is naturally a

Riemannian manifold on which Diffo(M) acts by isometries, so this provides
Teichmüller space with a metric, which is the Weil-Petersson metric. Explicitly,
it is obtained by representing tangent vectors to Teichm311er space by quadratic

differentials, and their inner products by pairing them and integrating over

M using constant curvature metrics. Next we parametrize metrics by a confor-

mal factor 6a , a Teichmüller parameter, and an infinitesimal reparametrization
6V E Diff0 (M). The Jacobian of this change of variables can be computed in

terms of the natural decomposition of infinitesimal changes of metrics (which

are just the symmetric 2 tensors) :
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A careful analysis taking sito account the zero modes of P/ gives a surprisingly

simple answer :

Thus in the critical dimension d = 26 the conformal anomaly cancels and formula

(4) for the partition function follows, after factoring out Dif f (M) /Dif fo (M)
as well, which means restricting the integration from Teichm311er space to

moduli space. With this it is rather easy to compute scattering amplitudes.

For example the vertex for the tachyon is

the amplitudes for p tachyons are

and the above arguments yield easily

In generalvertices for on shell particles (see e.g. [8] for the bosonic case,

and [9] for fermionic ones) consistent with the symmetries of the action can

be treated in the same way as partition functions, so we shall henceforth

restrict our discussion to this latter case.

3. THE NEVEU-SCHWARZ-RAMOND MODEL.

The action of the NSR model is that of a matter multiplet (X
coupled to two dimensional supergravity. In component language it can be written

as
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with Xp , p = 1,...,d = 10 coordinates of the string in Euclidean space

time $" are Majorana spinors g = 6 ea eb a metric on M , and X
a 

p 
mn ab m n m a

a spin 3/2 gravitino field. (For simplicity we omit scalar auxiliary fields

as well as some explicit formulas for symmetry transformations below). Besides

Lorentz invariance of the vielbeins ea and the reparametrization and Weyl
m

invariances described in (i) and (ii) of Section 2, the action is also invariant

under the superpartners of (i) and (ii) :

(iii) Supersymmetry :
o a

the connection given by

(iv) Super Weyl transformation

The partition function is now

where v,v represent summation over spin structures. In Euclidean signature,

this is done by splitting real spinors into sums of Weyl spinors and their

complex conjugates, using the holomorphic structure to separate their contri-

butions in the derivation of the measure, and assigning

independent spin structures to Weylspinors and their conjugates. Now in addition

to the metric g mn , the gravitino field X 
m 

is non-dynamical and should be

gauged away. In analogy with Pi the y-traceless piece of supersymmetry
transformations are PI/2s , and the gravitino modes decompose
as

The modes KerPI/2 are the ones that cannot be gauged away by supersymmetry

and super-Weyl transformations. They are usually called supermoduli parameters.
Their real dimension is 4h-4 when h is &#x3E; 2 , and 0 or 2 when h = 1 depending
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on the spin structure.

Our facturing out of the gauge groups will be based on the key assump-

tion of no local supersymmetry anomaly. In particular there will be no super-Weyl

anomaly if there is no Weyl anomaly. With this we may determine the quantum

measure by computing Faddeev-Popov determinants along any slice for combined

supersymmetry and super-Weyl transformations. We construct such a slice

(g ,x ) by writing g = ecg with g of constant curvature, and setting
mn m

e Xm with Xm ’ J = 1 ... 4h-4 an orthonormal basis for KerP t 1/2 g .xm xm xm J 1/2 g

Observe that such a slice is Weyl covariant, but not orthogonal to

(Range P1~2), so that Jacobians have to be computed carefully. The

result is

/.1-/.

where ~ is the supersymmetry transformation parameter and a. , j - 1,...,4h-4

are real anticommuting parameters for the space {X(i) 1. Next the integrals
m

over DX , D , and II da. can be carried out explicitly since the first two
J

are Gaussian while the third is a Berezin integral. We check that left and

right Weyl spinors remain separate, and that the conformal anomalies arising

from the DX and D~ integrals cancel exactly the ones from (8) and (12) in

the critical dimension d = 10 to produce [10]

The last factor is a contribution of the supermoduli parameters, and can be

expressed in terms of the 4 (i) Is and propagators for the Laplacian and Dirac
m

operator 0- . .
g

Measures for fermionic strings such as (13) usually involve combinations

of chiral Dirac determinants which should be holomorphic on Teichmuller space.

Using the recent constructions of connections on determinant bundles of [11] ,
characteristic classes computations for the Teichmüller curve [12] and the

pseudo convexity of Teichmüller space, it is possible to define holomorphic
determinants which however are not gauge invariants. This anomaly will cancel

for the above combination of determinants in the critical dimension d = 10

[13] . For a discussion of these aspects in terms of the curvature and torsion

of determinants bundles, we refer to [14] .
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We also remark that it would be valuable to have a manifestly super-

symmetric derivation of the measure. In superspace the multiplet (g ,x )
mn m

corresponds to a superzweibein. In the Wess-Zumino gauge all components of the

supercurvature and torsion can be expressed in terms of a single superfield

[15] . Setting this superfield to be constant provides a slice for Weyl and’

super-Weyl scalings which is supersymmetric. It is however difficult to identify

a slice for supersymmetry within this slice.

4. THE HETEROTIC STRING.

A measure for the heterotic string in the Polyakov formulation has

been recently derived by Moore, Nelson, and Polchinski [3] . Here we brietly
indicate how the above methods for the NSR model apply to the heterotic case

to yield a formula analogous to (13). Covariant quantization is most easily

performed in the fermionic representation where the action is

Here we are again in space-time dimension d = 10, ~ yZ = (y 1 ± iy2)/1:2 , etc..., &#x3E;

y+~~ = 0 , Y-xa = 0 , and I = 1,...,32 are internal fermions. The

gauge symmetries of the heterotic string are simple modifications of those

of the NSR string, with however the following important restrictions.

(iii)’ N = 1/2 supersymmetry

(iv)’ Super-Weyl scalings

The partition function is

where again spin structures v and v for left and right movers are assigned

independently. Concerning the left movers we still have the choice of assigning
the same spin structure to all the ~ I, s , which corresponds to the
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Spin (32)/7l 2 string, or to split the I, s into two groups of 16, and assign

independent spin structures to each group. This would give the E8 x E8 string.

(For other choices and their string theories, see the recent developments in

[16]).

In the heterotic case the analogue of P is just Pl/2 restricted
to spinors C satisfying y C = 0 , and the supermoduli modes are the (2h-2)

complex basis vectors of negative chirality in * We can now proceed

as before by choosing a slice for supersymmetry and super-Weyl transformations

which is Weyl covariant, compute Faddeev-Popov determinants along the slice,

then the integrals DX D~+ D~I which are all Gaussian, and the integral over

supermoduli which is just a finite dimensional fermionic integral. Combining

with (8) for the Dg integral we easily see that all conformal anomalies cancel

in the crtitical dimension d = 10 , and the final formula is

Here all determinants are taken with respect to constant curvature metrics,

and K (g) is a (2h-2) x (2h-2) matrix arising from the contributions of the

supermoduli parameters. (It corresponds to the upper block of the matrix

K(g) encountered in the NSR model (13), if we write K(g) in terms of spinors

of definite chiral.ity) :

Finally we would like to mention the problem of consistency of global

phases of the chiral Dirac determinants. Invariance under the mapping class

group will provide powerful constraints on the phases of the spin structures

within each orbit, but the relative phases between different orbits will require
more subtle considerations.

5. EVALUATION OF DETERMINANTS.

We conclude by describing some of the recent progresses in the explicit
evaluation of determinants. In the one-loop case all the above formulas can
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be written explicitly in terms of theta and Dedekind eta functions, so we

restrict our discussion to the case of higher genus. For A , P1/2 ’ their

absolute values can be expressed in terms of special values of the Selberg

zeta function [17] . The Selberg zeta function is defined in terms of lengths

of closed geodesics on the surface M , which are more tractable geometric
invariants than the spectrum of Laplacians. In particular approaching the boundary

of moduli space corresponds to pinching the lengths of closed geodesics, and

in the limit one obtains the divisor of Riemann surfaces with nodes which is

the Deligne-Mumford way of compactifying moduli. A second advantage is that

Selberg zeta functions admit functional equations and Dirichlet series expansions

which can be exploited to estimate their values outside the region of their

absolute convergence. Rigorous studies of these questions have been undertaken
in [18]. The determinant of the Dirac operator has not been derived by these

methods up to this point. A very interesting different type of formula has

been proposed in [19]. We should also point out that the parametrization of

moduli by Schottky groups by Mandelstam also leads to remarkable zeta functions

[5]. In all the above it will be important to understand better the dependence
of (combinations of) special values of zeta functions on the complex structure

of moduli space.

In a different direction it would be natural to try to build amplitudes
for any number of loops out of a basic ingredient, in a tighter analogy with

the Feynman rules of field theory. Such an ingredient is the "pair of pants",
which corresponds to the three string vertex. In [20] it is shown that the

determinant of the Laplacian can be written in terms of Fenchel-Nielsen coordinates

and Green’s functions on pants. The Green’s fucntions can be expressed in

terms of prime forms on pants. We still need to understand better the changes

in the mapping class group as we sew on diagrams. Recent results [21] on the

homology of the mapping class group may help shed light on this issue. We shall

report on such investigations elsewhere.
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