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§ 0. INTRODUCTION :

We shall give some notes about the effective hyperbolicity. We think there

are two ways to explain a notion. The first one is to find out an equivalent
notion from a different point view. And the other one is to give some interes-

ting examples of applications of the notion. For the first one, we have a

proposition for single partial differential operators that to be effectively

hyperbolic is equivalent to be strongly hyperbolic. The strong hyperbolicity
means the stability of solvability (well posedness) of the Cauchy problem

under changing lower terms. The effective hyperbolicity defined later is a

geometrical notion on the principal symbols of partial differential operators.
The sufficient part of the above proposition, that is, the Cauchy problem
is well posed if it is effectively hyperbolic, is very important for appli-
cations and does not always require that partial differential operators are

single and even linear. So, we may replace the effective hyperbolicity for

the strict hyperbolicity used usually and frequently because the previous
notion is wider than the later.

Many partial differential operators in applications are non linear.

So, we have to extend the results in the linear cases to ones in the non linear

cases in order to find out interesting examples. In the present stage, this

extension is very easy because we know already a very famous abstract theorem,

so called the Nash-Moser implicit function theorem.

Here, we explain that this theorem is also applicable to our cases. We shall

remark we needed some minor change of expression of the Nash-Moser implicit
function theorem in order to obtain a sharper result for the non linear Cauchy

problem making it possible to apply directly to the Monge-Ampere equation.

§ I. RESULTS OF LINEAR CASES :

Let P be a polynomial of homogeneous order m in E E En+1 with
.. n+1 ...coefficients C -functions in x E . We assume it is normal ,

o

Definition 1. We call Pm effectively hyperbolic (on an open set in x) if

Pm is hyperbolic in g o and if at the critical points of the characteristics
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{P = vp = ol , the fundamental matrices F of P have non zero real
m m m

eigenvalues, where the fundamental matrix F is defined by

Let us consider a system of partial differential operator P of order

m with a diagonal principal part, namely,

where the lower term Q = (qi.) is a system such that order a. -a. + m-1
J 1J i J

with respect to a multi-index a of integers.

Theorem 1 . Let P m in (1.1) be effectively hyperbolic on a neighborhood of

the origin. Then, there exist a conic domain Q = I  0 , À &#x3E; O}

and a constant Eo &#x3E; 0 such that for all c (0  E  Eo) , the Cauchy problem
o o

, 
00 00

has a unique C -solut10n u on Q 
e 

for any C - datum f onQ 
c 

supported

on {xo &#x3E; 01 , where 0F- = S~+(E,O,...,0). Moreover, for some suitably fixed Jt ,

they satisfy the estimate for all s &#x3E; 0

where 11 .ll 
s 

is the Sobolev norms on it and a stands for coefficients of the
s e

partial differential operator P . We should remark that the constants C s are
uniform on P belonging to a suitable neighborhood of a fixed effectively

hyperbolic operator in the space of hyperbolic operators with the type

(1.1) on a neighborhood of the origin.
When we usually call the Cauchy problem (1.2) well posed, we do not

require the estimate (1.3), especially, the existence of the constant k

independent of s . However, almost all cases which we know wellposed, have

the type (1.3) of estimates, and this is important to use the Nash-Moser

implicit function theorem. So, we introduce a notation for convenience.

Let us consider the problem (1.2) for a set P of general system P

of partial differential operators.
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Definition 2. We call a set P strongly wellposed if the conclusion of Theorem 1

holds for any element P of P , especially, if 9 0 and constants 
o s

of the estimate (1.3) are common on P .

Remark. Let P be a r x r system of partial differential operators. Define

the principal symbol P pr as usual. Assume that det P pr is effectively hyperbolic.

This is reduced to Theorem 1 so that it is strongly wellposed.

§ II. NONLINEAR CASES :

We consider a nonlinear system ;

where a and $ are multi-indices of integers.
The linearization DP of this system is given by

and the principal symbol

Now we extend the strong well posedness to this type of system.

Definition 3. We call a nonlinear system P (2.1) strongly wellposed if there

exist two linear system Q and R satisfying the following conditions ;

1 ) Coeff icients of Q and R are also functions of and ) ,

respectively, where we put the unknown function aBu in nB and the parameter
function a h in ç S . 

2) The linearization DP are decomposed as

3) There exists a neighborhood
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such that {Q; u E U} is strongly wellposed in the sense of Definition 2.

We shall later explain by an example the reason why we do not define simply

as {DP} are strongly well posed. Roughly speaking, we assume the existence of

a parametrix of DP toward Pu = 0 . Under this assumption we can conclude the

following unique extension theorem of a solution.

Theorem 2. Let a nonlinear operator P(2.1) be strongly wellposed. If there

exists a neighborhood Q 0 of the origin such that u = 0 is a solution of Pu = 0

at {x 
0 

 then there exists uniquely a C solution u of Pu = 0

on a neighborhood Q of the origin such that u = 0 on { xo  0} fl S. .

Corollary 3 . We assume that the principal symbol Par of P (2.1) are decompo-

sable as well as Definition 3 such that

where Qo and Ro satisfy the conditions for Q and R in 1) and 4) of Defini-

tion 3 , respectively, and where Qo is one of the type of effectively

hyperbolic operators treated in Theorem 1 or uniformly reducible to one of this type

for example, det Qo is effectively hyperbolic, for all u of U in 3).

Then, the conclusion of Theorem 2 holds.

This Theorem 2 is no more than a translation from the abstract Nash-Moser’s

theorem into the category of the Cauchy problem. However, it requires the

improvement of expression of the Nash-Moser’s theorem, because we assume a

weaker condition than as usual, namely, we assume the existence of parametrices
of the linearization DP instead of the existence of exact inverses.

We follow the expression of the Nash-Moser’s theorem by L. H6rmander [1] .

~0 
is a Banach scale, in other words, interpolation spaces by means

of a smoothing operator.
. 

oo g .

Let (D(u) be a nonlinear operator on B = n II . Assume the existence
s

of the first and second derivatives in u and their estimates as similar as

(2.2). The different point is to assume that the right (left, resp.) parametrix ~
of the first derivative Dv exists on a neighhorhood of the origin of (u,4l)
such that

where e depends on u and v , , and satisfies
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for a fixed m and for all s .

Then, there exist neighborhood V , W of u = 0 and 0 = 0 such that

Therefore we can conclude the existence and the uniqueness only for ~(u) = 0 .

In the proof, we need only an addition of the error terms in the argument of the

existence of 0 , which is estimated as well as other error terms are. If

considering the scale basing on the Sobolev spaces or the H61der spaces of

functions on Q e supported on {xo &#x3E; 0} , then the strong wellposedness assures

the existence of the right and left parametrix ~ . The non essential cases

will be excluded since the norm on Q tends to 0 as e tends
s e

to 0 .

§ III. AN EXAMPLE :

The Monge-Ampere equation

is elliptic if f &#x3E; 0 , strictly hyperbolic if f  0 and of Tricomi type

if Vf 0 0 at the points f = 0 and if it is kowalevskian. They are very classi-

cal and well known. So we treat more singular cases. Since we are treating
the Cauchy problems, we consider the case where f  0 . In this case, the

equation is hyperbolic if it is kowalevskian. More generally, we consider

where A = 3 2 u + C(x,u,3u), C is a symmetric matrix and f is also a function

in A typical example is the Gauss curvature K(x) of a hypersurface

{y = u (x)} ~ x E]Rn

Now, we prepare some notation to state the result.
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The equation is

If we take the Frgchet derivative in u , then

We assume the following (3.2-4).

where L is a vector field defined

N 
,

Theorem 4. Let u be a formal solution of (3.1 ) at xo = 0 and satisfy (3.2-4)

on a neighborhood of x = 0 . Then there exists a unique C~ solution u of

4l(u) = 0 on a neighborhood of x = 0 such that u - is flat at x =0

=0, a ). 
o

0

Example.

In fact, let us put eigenvalues and eigenprojections of Ac° by 6. and p.
J J

(i = 0,...,n), and are eigenvalues of A. Then 6. = and eigen
J J * J 

spaces of 0 4nd X. are the same, so their projection is o.. The assumption (3.3)i J J
gives us the existence of n positive eigenvalues, so we denote them by
À. . &#x3E; 0 (j = 1,...,n).
J
Since det A = X 0 ... Xn= f  0 at u = u and x 

o 

= 0 , so X 
0 
 0 , there. Hence

0 his near non positive axis if u is near -u that is, remainding eigenvalue
X is separated from the others X i ( j &#x3E; 1 ) .
o J
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Therefore 8 = Àj...À and P are defined smoothly. So A CO is written as
o I n o

Then we can decompose

as

and

Here Q o (3) - 12 + f . (an elliptic operator with respect to the transversal

directions to L ).

Since f  0 , and 0 at f = 0 , &#x3E; so Qo is effectively hyperbolic. And

also R 0 (a) - 0 at ~ = 0 . Therefore Aco (a) satisfies the conditions of Corollary 3

Using some speciality of the Monge-Ampere equation, we conclude the existence

theorem from the unique extension theorem.

Other examples of effectively hyperbolic operators will be found in

N. Iwasaki [2] , where you can see the further informations about this note.
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