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We shall recall some constructions and results of [9] with emphasis on the

applications to the study of the microlocalization of the sheaf x of
holomorphic functions on a complex manifold X along real submanifolds

of X .

1 - Micro-support
Let X be a real manifold of class C , with 1 a  or a = w

, 
*

(i.e. : X real analytic). We denote by Jr : T X2013X the cotangent bundle
* 

,

to X , by Wx the canonical 1-form on T X . If Y is a submanifold of X
* *

we denote by T*X thé conormal bundle to Y . In particular T X denotes the
y 

* 
... 

x

zero section of T X , that one identifies with X .

We denote by D+(X) the derived category of the category of complexes,

bounded from below, of sheaves of abelian groups on X .

Thus an object F of D+(X) is represented by a complex of sheaves :

with F i = 0 for i « 0 . Moreover two complexes which are quasi -isomorphic
are identified in D (X), and any object F may be represented by a complex

of flabby sheaves.

Example 1.1. : Let A be a locally closed subset of the real manifold X .

The sheaf on X sat-i-sfies :

Assume A is closed in X . We have an exact sequence :

Thus we have an isomorphism in D+(X) :
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(one identifies a sheaf F with the complex ... -p 0 20132013~ F ~ 0 20132013~ ...

where is in degree 0, and 1. [d] is the shifted complex :

Now we return to the situation where X is a real manifold of class C

Définition 1.2. : Let F e The micro-support of F , denoted
*

SS(F), is the subset of T X defined by :
2013 

. 
*

p i SS(F)=====there exists an open neighborhood U of p in T X such

that for any x~ 1 c X , any real function (j) of class C , defined in a
neighborhood of xl with = 0 , e U , we have :

Recall that if Z is a locally closed subset of X (here Z = ~x;~(x)&#x3E; 0}),
the complex is calculated by representing F by a complex of

flabby sheaves and applying the functor rZ (. ) , where rZ (F) is the subsheaf
Z Z - .

of F of sections with sudport in Z . In this paper, we shall write H’(F)- 

. Z

instead of . 

z

Roughly speaking, when F is a sheaf , p ~ SS (F) means that F has no section,

and no "cohomology" supported by "half-spaces" whose conormal lies in a

neighborhood of p .

Similarly if u : FeG is a morphism in D + (X) , we define SS(u) as SS (H) ,
where H is the simple complex associated to the double complex 

(i.e. : : the "mapping cone" of u).
It follows immediately by the definition that :

*
- SS(F) is a closed cone in T X ,

* .
- SS (F) (1 T * X - SUPP(F), where suppHJ (F) is the support of

J
the complex F ,
- If 0 .~y Fl .‘.~ F2 ~ is an exact sequence of sheaves (or more

generally if we have a distinguished triangle

- One proves, using contact transformations (cf.§2 below) that SS(F) is



IV-3

* 
,

an involutive subset of T X , assumming of course a ~ 2 .

Example 1.3 i) Let Y be a closed submanifold of X . Then :

ii) Let be a real Cl-function, y = {x; cp(x) 0} , 1

Y + - ~ x; ~ (x) &#x3E; 0 } and assume d~ ~ 0 on ~ x; ~ (x) - 0} . Then :

Example 1.4 : Let X be a complex manifold, coherent module over

the sheaf of rings i) X of holomorphic differential operators (of finite order)

(cf. [17]) . Then :

where char(qq) denotes the characteristic variety 

II - CONTACT TRANSFORMATIONS

In this section we assume a &#x3E; 2 .
*

Let Q be a subset of T X , and set :

We introduce D+(X;~), the localization of D+(X) by N(~) (cf.[4]).

Then :

but a morphism u : in D+ (X) becomes an isomorphism in if

.

Example 2.1. : : Let X - 1R , and let x be a coordinate on X , (x,~) the
, , 

*
associated coordinates on T X . Let Q = ~(x,~) ; ~ &#x3E; 0} . Then :

Now let X and Y be two manifolds of the same dimension, Q X and Py two
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* * 
. 

~

conic open subsets of T X and T Y respectively, ~ : : a

(homogeneous) contact transf°rmati°n. Let A (p be the associated

Lagrangean manifold ; is the image of nX by the antipodal map of
* 

XX

T X , and :

Let ql 1 and q2 be the Drojections from X x Y to X and Y respectively. To

K F- Ob (D+ (X x Y) ) we ass ociate the functor 1/JK f rom D+ (X) to D+ (Y) :

(Recall that q2i means the direct image by q2 with proper supports, and

IL and R mean the left and right derived functors).

Theorem 2.2. : Let Px E S"2X il *

There exists such that induces an equivalence of- K

categories :

,
*

If A = T_(XxY), where Z is a submanifold of X x Y , the sheaf K will
(j) Z -

satisf ies :

f or some shif t d .

Now assume X and Y are complex manifolds of complex dimension n , and

j) is a complex contact transformation. Assume f or simplicity that
* 

( 
.

A 
= f or Z a complex submanif old.

1 Theorem 2.3. : Assume :

Then one can find (non unique) isomorphisms :



IV-5

We can describe this isomorphism as follows. Let d = 

Let us choose a relative differential form v on Z above Y :

We have natural morphisms :

(restriction)

(multiplication by v)

This defines the morphism :

If Z is a hypersurface defined by the equation (p = 0 (with 0 on Z)

we ma y take v = where w is a volume element in ( 2n) .we may take v = where w is a volume élément 
xxy

III - MICROLOCALIZATION

We still assume X of class Ca ,a &#x3E; 2 . Let M be a submanifold,

F Recall (cf.[17]) that Sato’s microlocalization of F along M ,

denoted an object of D+(T*X) whose stalk at (xo °) e T * X isM - J M &#x3E; &#x3E; M

given by :

where U runs over the set of open neighborhoods of XO in X , and G runs

over the set of closed wedges in X along M whose polar (in a system of

local coordinates) is a neighborhood of . Remark l 

t-"1 - 1 * Y 11 -
X

Example 3.1. : Assume M = {x c X ; ~~ (x) - 0 } with 0 on M .

Then if x 0 E ’1 :
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Example 3.2. Let M be a real analytic manifold of dimension n , X a

complexification of M . The sheaf CM of Sato’s microfunctions on M is

defined by :

where w is the orientation sheaf on M , (cf . [ 17] ) .
-M

In order to state our next result, let us recall the classical notion of

"Maslov index" associated to three Lagrangean planes, (cf. [6], [11] , , [13]).

Let (E,a) be a (real) symplectic vector space, Xii, À2~ ~3 three Lagrangean
planes (plane = linear subspace). The index ~2’ a3) is the signature

of the quadratic form q defined by :

1 Theorem 3.3. : Let X and Y be two real manifolds of the same dimension,
* * 

,

pxc T*X and Q Y dT Y two conic open subsets, cp : 2x contact

transformation. Let M and N be two submanifolds of X and Y respctively,
and assume that ~ induces an isomorphism :

Let &#x3E; let VJK be the equivalence of categories
given by theorem 2.2. Then we have an isomorphism :

for some shift d .

*
Moreover assume A = T (X x Y) for Z a submanifold of X x Y, and K = 2Z. + a - -Z

m D (X x Y ; 1 Then :
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When X and Y are complex manifolds and (P is a complex contact transfor-

mation, we may combine theorems 2.3 and 3.3. First we introduce another

index.
*

Let X be a complex manifold, M a real submanifold. Let pET_X .We set :

(where a (p) - T * 
* 

X , ( ) - T 2013t 1 ( ) and T is the index associated to(where Àm (p) = T P. Tmx , x0(p) == 7ï(p) , and T is the index associated to
M p M o p p * p ’

the real symplectic structure of T X , that is, to 2Re dw X ).
Remark that s(M,p) is an integer. In fact s(M,p) may also be obtained as

follows.

Let (E,6) be a complex symplectic vector space. One says that a real subspace

À is ]R-Lagrangean if À is Lagrangean for Re o . . For such a plane one says

that À is I-symplectic if Im o is non degenerate on À (cf. [18]). This is

equivalent to saying that 6) is a complexification of ( 1 q y g 
i 

P 
’1 Ih

Let p be a complex isotropic subspace of E . The symplectic forms a

induces a symplectic structure on the spacep+/p . To an R-Lagrangean plane

À in E one associates the R-Lagrangean plane X p of pl/p by setting :

Now take

Then À p is R-Lagrangean and I-symplectic in p / P .
Let ~o be a complex Lagrangean plane of E . One defines an Hermitian form

y on À o by setting :x 0

where u,v E À 0 and v is the complex conjugate to v in the isomorphism :
o 

-

Then one proves :
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Lemma 3.4 : One has :

1

Remark that :

It remains to apply this lemma with

Corollary 3.5 : Let X and Y be two complex manifolds, § a complex
contact transformation from S1 eT X to rlv c TV. Let M and N be

two real submanifolds of X and Y respectively, and assume ~ induces an
~ ~ * rv *

isomorphism S1y . ° Then :

*

i) the function s(M,p) - s (N, (p) ) is locally constant on TMX fl X ’
ii) locally on we may quantize (j) as an isomorphism :

Proof : Set q ==())(?).
First let as show that the function

*
T = T(x0 (q)~ 4) (~o (p) ) ’ XN(q» is locally constant with respect to

p E Let v (q) be a complex Lagrangean plane of T T X ,v (q)
MX q

being transversal to each of X 0(q), (‘o(p) )’ À (q). By the cocycle
property of the Maslov index we have :

This relation can be vizualized by the diagram :
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*

Since 0(q) , ~ (X 0(p) ) , v (q) are comnlex Lagrangean planes , T l 
= 0 .

*

Since dim ~ (x 0(p) ) n xN(q) (= n ÀM(P))) and dim(X0(q)n ~N(q))
are locally constant, we find that T 2 and T 3 are locally constant.

Now we have, writing X m(resp. x N) instead of ÀM(P) (resp. . À (q)) :
2(s(M,D) -s(N,q)) = T(BiB. (p)) - 4. - 0 N N 0

(We used the fact that the multiplication by i transforms T to - T ).

IV - APPLICATIONS

In this section we shall illustrate Corollary 3.5. Thus X is a

, , 2 
’ 

*

complex manifold, M a real submanifold of class C . . Let p E TmX . We set :
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We have already defined the integer s(M,p) as 1 r( (p), ix m (p), À 0 (p»2 
where T is the index associated to the symplectic form Re a(p) on E(p) .

Now we define s+(M,p) and s (M,p) by :

Remark that :

This number is of course equal to zero if M is a real hypersurface. More

generally 6(p) = 0 is equivalent to saying that the submanifold M is non

characteristic in X ~ for the Cauchy-Riemann system 7 -

Example 4.1. : Assume M is a real hypersurface, W (x) = 0 an equation of

M , with 0 on M . Let :

where 3 (pis the differential ofç with respect to the holomorphic variables.

Let L be the Levi form of on Recall that if (x .... gx ) is a system
(P x 1 n

of holomorphic coordinates on X , (xI’...’x ) the complex conjugate coordinates,1 .... n

then is represented by the matrix

Proposition 
4.2 : In the situation of Example 4.1, and 

are respectively the number of positive and négative eigenvalues of L 
cp 

on T0152M .
p x

The proof follows from Lemma 3.4 and [18, Proposition 1.6] .
In order to formulate our next result, let us denote by v(p) the complex line

*
of T T X generated by the Euler vector field, i . e . by where Wx isp 

. 

A A

the (complex) canonical 1-form on T X, and H the symplectic isomorphism
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Proposition 4.3 : Let M be a real submanifold of class c2 of X , pE E 
As s ume : 

0.

Sketch of the proof

We may interchange (T X, T ,p with (T Y, T*Y , q) by a complex contact. N

transformation, where now N is a real hypersurface of the complex manifold Y .

Assume we know that :

Applying corollary 3.5, we find :

where :

Let us write s(M) , À , etc... instead of s(M,p), s(N,q), ÀM(P),
ÀN (q) etc.... Ve have ’

Similarly :

If we choose N such that s-(N,q) - 0 , then we can take a = 0 : in fact
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0 by the principle of holomorphic extensiorl Similarly if we
y q 

choose N such that s (N,q) = 0 then we can take S = 0 : this follows from

a theorem of Malgrange [14 1 which asserts that Hi = 0 for j &#x3E; n and any
z x

locally closed subset Z in X , hence in particular ( 0’x» = 0 for j &#x3E; n . .

This completes the proof.

2 
*

Proposition 4.4. : Let M be a real submanifold of class C 2 p c Tmx---. -- - -.. 

---- 

o L

Assume : 
-

ii) s (M,p) - à(p) is constant in a neighborhood of p .
o

Set

Then 
p 
o 

= 0 , and for j = j 
o 

this space is infinité dimen-

sional. 
0

Sketch of the proof.

As for the proof of Proposition 4.3, we may interchange, by a complex contact
* * * *

transformation ({).(T X, TMX , po) and (T Y, TNY, q ), where now N is a real
’ ’ 

_ 

M o No

hypersurface, and s (N,q ) = 0 . On the other hand one proves easily that
o

under the hypothesis ii) , s (N,# (p) ) - à(É(p)) is locally constant. Since N

is a hypersurface, 6(~(p)) == 0 , and s- (N, q) - 0 for q in a neighborhood of

q . Thus N is the boundary of a pseudo-convex open set (cf. H8rmander [5,
o

Theorem 2.6.12 ] ), and we g,t :

The same calculation as in the proof of Proposition 4.3 gives the result.

Remark 4.5 : Let us denote by T X the bundle T*X - and by fi the projection
. * 

. 2 .. ,

T X X . Let M be a real submanifold of class ç2, of codimension m ,

and assume 6(p) = 0 that is, TM + i Tl4 = TX . Let ~ be the orientation sheaf
on M . We have a triangle (cf. [17)) :

Applying Proposition 4.3, we get H-’(p()) = 0 for j  m , and we have anm X
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exact sequence :

Thus :

, , 
*

_ 

ii) Assume there exists a closed convex proper cone r in TMX such that
s (M,p) &#x3E; 0 r . Then any section u of Hm( ) is represented byP P m x P

(i.e. : is the "boundary value of") a function f holomorphic in a wedge along

M whose polar is contained in r (f is unique modulo e ) -X Fi

.*
iii) Assume now that on an open subset U of T X , we have

. *Á. *. °* +

À(p) = 0 . Let y denote the natural map TMX SX = Tr1X/JR .

Then the sheaf is flabby on y(U) (here p e U),

since it is isomorphic to the sheaf of boundary values of holomorphic functions

on the boundary of a strictly pseudo-convex open set (corollary 3.5). This

allows us to obtain results of the type "Edge of the wedge theorem", but we

leave the exact formulation to the reader (for example, cf.[3]).

Remark 4.6 : Assume M is real analytic and 6(p) = 0 . Then is
m x

isomorphic to the sheaf of hyperfunctions on M solution of the induced

Cauchy-Riemann system. More generally, under the same hypotheses, u (l9‘’) [m]M X

is isomorphic to the complex of microfunction solutions of the induced Cauchy-

Riemann system, (cf. Kashiwara-Kawai [7] , [8]). In this situation the result

of Proposition 4.3 is not new, and follows from [17, chapter III, Theorem

2.3.10] , (cf. also Naruki [16]). In fact an extensive literature exists on

this subject, starting may be with H. Lewy [12] and A. Andreotti - H. Grauert

[1] . Let us only quote some of the most recent works related to Proposition 4.3

or Remark 4.5 : Nacinovich [15] , Baouendi - Chang - Trèves [2] , Sj8strand [19]

Ta j ima [20] . .

Remark 4.7 : We give an application of Proposition 4.4 to the study of systems
of micro1ifferential equations with simple characteristics in [ 10 ] .
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