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In this work we give optimal estimates for the Dirichlet problem

for the biharmonic operator ~2 on an arbitrary bounded Lipschitz domain
D in En , with the boundary values having first derivatives in L(3D),
and with the normal derivative being in L2(aD).

In recent years, considerable attention has been given to the

Dirichlet and Neumann problems for Laplace’s equation in a Lipschitz
domain D , with LP(DD) data, and optimal estimates. We now know optimal
estimates for both these problems in the optimal range of p’s and we

also have good representation formulas for the solution in terms of layer

potentials. (See [4], [5], [lo], [11], [13] and [7]).

In this work we initiate the corresponding study for the Dirichlet

problem for the biharmonic operator 82 . . The main idea in our work is

to reduce the Dirichlét problem for the biharmonic operator, to bilinear

estimates for harmonic functions in D . These bilinear estimates are

Lipschitz domain generalizations of a (weak) version of the fact that
2 1

the paraproduct ([3]) of two L2 functions is in L1 . Our estimates are
obtained by using the results in [6] and [11], integration by parts and

the results of Coifman, McIntosh and Meyer [2].

For C1 domains in the plane, J. Cohen and J. Gosselin ([ 1 ] )
have established results analogous to ours, in LP , 1  p  00 , by the

method of multiple layer potentials. G. Verchota ([14]) has shown how

to modify our approach to obtain Lp results, 1  p  ce , for C1 1 domains

in IRn .
Our main result is

Theorem : Let D be a bounded connected Lipschitz domain in IR n with
connected boundary.

(a) Let f E L 2(DD), g E Then there exists a unique function u1 ,g ( ) q
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where L2( D) denotes the space of all functions with one derivative in1 p

L2(aD) n Q the unit normal at Q E aD r(Q) the non-tan g ential region

{X E D : IX-QI  and M(Vu) is the non-tangential

maximal function M(Vu)(Q) = sup .

xEr (Q)

(b) There exists e = e(D) &#x3E; 0 such that the above result holds with

2 replaced by p , where 2-e  p  2 + e .

(c) Given p  2 there exists a bounded Lipschitz domain D c ]R 2 ~ with
connected boundary, and a biharmonic function u in D , with

, 

a
M(u) E M(Vu) E u = 0 on 0 on 3D , but

3n

u f 0 on D .

Remarks : Part (c) shows that the results in part (b) for p  2 are sharp

in the class of all Lipschitz domains. What happens for p &#x3E; 2 remains

an open problem. The results in parts (a) and (b) deal with non-tangentiel

convergence. There are also corresponding Sobolev space results. For example
B. Dahlberg and C. Kenig ([8]) have shown that the solution in (a) belongs

to the Sobolev space H 3/2 (D).
Part (b) is an automatic real variable consequence of part (a). (See [9] for

the details).

We will now sketch the proof of the existence part of part (a), in the

special case when the domain D is given by D = {(x,y) : y &#x3E; w(x)1 ,

where (P : IR n-1 - IR is a Lipschitz function. Because of the results in

~11], it is enough to consider the case when f = 0 .

Let G(X,Y) be the green function for A ou D . Since 0 , we should

have

Since u is biharmonic, w(Y) , should be harmonic, and we make

the guess that W(X) = a V(X), where X = (X,y), and v is a harmonic function
.. 2 ay 

,in D , with L2(dD,da) data. In fact, we claim that the operator

is an invertible map of onto In fact, using the Green’s

potential representation, Fubini’s theorem, and the fact G(.,Y) is
3n

the density of harmonic measure at Y E D (see[41), we have
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This shows that if T : -~ L2(DD,da) is bounded, it will have

a bounded inverse. To establish the boundedness of T , it is enough

to show that if u(X) = I Gx,Y&#x3E; a v(Y)dY , thenD 0 D n

This also shows the estimate in (a).

But, u is the sum of a harmonic function H and a Newtonian potential
1 ....

If we can show that

then, as the boundary values of H

But then, by the results in

[11] , since H is harmonic,

and we would be done. We have therefore reduced ourselves to establishing
the following lemma.

Lemma : Let v be harmonic in D , and define N(X) =

Then,

Proof : Let B be the fundamental solution for the biharmonic equation

Let e. , j = 1 , n be the standard basis of Rn . We recall the definition
J

of the Riesz transforms, R.v of v , j - 1 , , n-l. They are harmonic
J

functions, which together with v satisfy the generalized Cauchy-Riemann
1

Using the summation convention, the integrand for the Newtonian potentiel
we are considering is
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where  , &#x3E; is the inner product in 1Rn , and

, 

Note that a, i 1) i = 1 , , n-1 are divergence free vectors, and so,

by integration by parts,

Because of [6] and classical arguments (see [13] for the details in a

similar situation),

simply a sum of boundary potentiels of the form

The fact that M(VN) is in L 2(aD, dcr)

now follows from the results of Coifman, McIntosh and Meyer [2] .
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