SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

Y. MEYER

Théorie du potentiel dans les domaines lipschitziens, d'après G. C. Verchota

Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983), exp. nº 5, p. 1-16

http://www.numdam.org/item?id=SEDP 1982-1983 A5 0>

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1982-1983, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

91128 PALAISEAU CEDEX - FRANCE

Tél. (6) 941.82.00 - Poste N° Télex : ECOLEX 691596 F

SEMINAIRE GOULAOUIC-MEYER-SCHWARTZ 1982-1983

THEORIE DU POTENTIEL DANS LES DOMAINES LIPSCHITZIENS
D'APRES G. C. VERCHOTA

par Y. MEYER

Exposé n° V 14 Décembre 1982

1. NOTATIONS ET ENONCES DES RESULTATS

Dans tout ce qui suit $\Omega \subset \mathbb{R}^{n+1}$ est un ouvert connexe et borné. Nous dirons que Ω est un domaine lipschitzien si les conditions suivantes sont satisfaites : la frontière $V = \partial \Omega$ a un nombre fini de composantes connexes et, pour tout $\mathbf{x} \in \partial \Omega$, on peut trouver un repère orthonormé dont \mathbf{x} est l'origine, une fonction lipschitzienne $\phi \colon \mathbb{R}^n \to \mathbb{R}$ et deux nombres $\varepsilon > 0$, $\eta > 0$ tels qu'en appelant $V_{\mathbf{x}} \subset \mathbb{R}^{n+1}$ le voisinage de \mathbf{x} défini par

$$|x'| = \sqrt{x_1^2 + \ldots + x_n^2} \le \varepsilon$$
 , $-\eta \le x_{n+1} \le \eta$,

alors $\bigvee_{\substack{\mathbf{x} \\ \mathbf{0}}} \bigcap \Omega$ soit défini par $\mathbf{x}_{n+1} > \phi(\mathbf{x}')$, $|\mathbf{x}'| \leq \epsilon$ et $\bigvee_{\substack{\mathbf{x} \\ \mathbf{0}}} \bigcap \Omega^{\mathbf{C}}$ par $\mathbf{x}_{n+1} \leq \phi(\mathbf{x}')$, $|\mathbf{x}'| \leq \epsilon$.

Le but de ce travail est de démontrer que le problème de Dirichlet et le problème de Neumann peuvent être résolus dans $\,\Omega\,$ par la méthode usuelle du potentiel de double couche.

Soit $x \in \Omega$; la mesure harmonique ω^x sur $\partial\Omega$ est définie par la condition que $g(x) = \int_{\partial\Omega} g(y) d \, \omega^x(y)$ si g est continue sur $\overline{\Omega}$ et harmonique dans Ω . Différents choix de x conduisent à des mesures ω^x absolument continues les unes par rapport aux autres et les densités correspondantes sont uniformément bornées. Le lien entre la mesure harmonique et la mesure "élément d'aire" do sur $\partial\Omega$ est donné par le théorème suivant de B.E.J. Dahlberg ([4]).

Théorème 1 : Soit Ω un domaine lipschitzien. Alors la mesure harmonique ω est absolument continue par rapport à la mesure de surface σ sur $\partial\Omega$. La densité $k\left(y\right)=\frac{d\omega}{d\sigma}$ est un poids de la classe A^{∞} de Muckenhoupt. Plus précisément il existe une constante C telle que, pour toute boule

$$\Delta = \{z \in V, |z - z_0| \le r\} \quad \underline{ou} \quad r > 0 \quad \underline{et} \quad z_0 \in V ,$$

on ait

$$(\frac{1}{\sigma(\Delta)} \int_{\Lambda} k^2 d\sigma)^{1/2} \leq \frac{C}{\sigma(\Delta)} \int_{\Lambda} k d\sigma.$$

La mesure do est absolument continue par rapport à d ω .

Si Ω est un domaine lipschitzien, on peut trouver deux constantes $\alpha > 0$ et $\tau > 0$ ayant les propriétés suivantes . Pour tout $\mathbf{x}_0 \in \partial \Omega$, dans le repère orthonormé servant à définir $\partial \Omega$ comme un graphe lipschitzien, le tronc de cône d'équation $\alpha |\mathbf{x}'| < \mathbf{x}_{n+1} < \tau$ est tout entier contenu dans Ω . On désignera par $\Gamma(\mathbf{x}_0)$ ce tronc de cône et, si $\mathbf{u}:\Omega \to \mathbb{C}$ est une fonction harmonique on posera

(2)
$$u^{*}(x_{0}) = \sup_{x \in \Gamma(x_{0})} |u(x)|$$

et l'on dira que u(x) tend non tangentiellement en x vers une limite ℓ si lim u(x) = ℓ . $x \in \Gamma(x_0)$ $x \to x_0$

Le premier corollaire du théorème de Dahlberg est un théorème de trace permettant de définir dans certaines conditions les valeurs au bord de fonctions harmoniques.

Corollaire 1 : Soit u: Ω — C une fonction harmonique telle que u * \in $L^2(V;d\sigma)$.

Alors u a des limites non tangentielles $d\sigma$ - presque partout sur V et l'on a

(3)
$$u(x) = \int_{V} u(y) d\omega^{x}(y) , x \in \Omega.$$

Le corollaire 2 exprime que la "valeur au bord" u(y) est arbitraire dans $L^2(V;d\sigma)$.

Corollaire 2 : Soit $g \in L^2(V; d\sigma)$. Alors l'unique fonction harmonique u dans Ω telle que u $\in L^2(V; d\sigma)$ et dont g est la trace est définie par (3).

Une démonstration simplifiée du théorème de Dahlberg a été obtenue par D. S. Jerison et C. E. Kenig. Ces auteurs ont également obtenu des résultats analogues pour le problème de Neumann ([6] et [7]).

Désignons par n(y) le vecteur unitaire normal à $\partial\Omega$, orienté vers l'extérieur et par ω_n l'aire de la sphère unité S $^n\subset\mathbb{R}^{n+1}$. On pose

(4)
$$\mathcal{K} f(\mathbf{x}) = \frac{1}{\omega_n} \int_{\partial \Omega} \frac{(\mathbf{y} - \mathbf{x}) \cdot \mathbf{n}(\mathbf{y})}{|\mathbf{y} - \mathbf{x}|^{n+1}} f(\mathbf{y}) d\sigma(\mathbf{y})$$

pour $f \in L^2(V; d\sigma)$ et $x \in \Omega$.

Théorème 2 : Si f \in L²(V; $d\sigma$), on a $d\sigma$ -presque-partout

$$\lim_{\xi \in \Gamma(x), \quad \xi \to x} \mathcal{K}_{f(\xi)} = (\frac{1}{2} + \kappa)_{f(x)}$$

$$\underline{ou} \quad \mathcal{K}f(x) = \frac{1}{\omega_n} \lim_{\varepsilon \downarrow 0} \int_{|y-x| \ge \varepsilon} \frac{(y-x).n(y)}{|y-x| \ge \varepsilon} f(y) d\sigma (y).$$

De plus l'opérateur K ainsi défini est continu sur L²(V;do).

Théorème 3: Pour tout domaine lipschitzien Ω , l'opérateur

(5)
$$\frac{1}{2} + K : L^{2}(V; d\sigma) \longrightarrow L^{2}(V; d\sigma)$$

est un isomorphisme.

 $\underline{\text{Si}}$ $g \in L^2(V; d\sigma)$, alors $u = \mathcal{K} (\frac{1}{2} + K)^{-1} g$ est l'unique solution du problème de Dirichlet suivant

$$\Delta u = 0$$

(7)
$$u^* \in L^2(V; d\sigma)$$

(8)
$$\lim_{n \to \infty} \lim_{n \to \infty} u = g \qquad \text{do } -\underbrace{\text{presque-partout}}_{n}.$$

Pour aborder le problème de Neumann, désignons par f l'unique fonction de L^2(V;d\sigma) telle que $(\frac{1}{2}-K^*)f_0=0$ et $\int_V^1 d\sigma=1$ et par L^2(V;d\sigma) le sous-espace de L^2(V;d\sigma) composé des fonctions d'intégrale nulle .

Théorème 4 : L'opérateur $\frac{1}{2}$ - K* : L²(V;d σ) \rightarrow L²(V;d σ) est un isomorphisme.

 ${\tt D\'esignons~par~S~l'op\'erateur~dit~"potentiel~de~simple~couche"~et}$ défini par

(9)
$$Sf(x) = -\frac{1}{(n-1)\omega_n} \int_{V} |x-y|^{-n+1} f(y) d\sigma(y).$$

alors on a

Théorème 5 : Soit $g \in L_0^2(V; d\sigma)$. Alors $u = -S(\frac{1}{2} - K^*)^{-1}$ g est l'unique solution du problème de Neumann suivant :

$$\Delta u = 0$$

(11)
$$\frac{\partial u}{\partial n} = g \quad \text{presque-partout sur V muni de do}$$

$$\int_{\mathbf{V}} \mathbf{u} \, \mathbf{f}_{\mathbf{O}} \, d\sigma = \mathbf{0}$$

(13)
$$(\nabla u) * \in L^{2}(V; d\sigma).$$

Là encore la condition de "sécurité" (13) assure l'existence de la trace $\frac{\partial u}{\partial n}\Big|_{V}$ et donne donc un sens à (11).

2. LE POTENTIEL DE DOUBLE COUCHE

Nous allons résolument nous placer dans le cadre où V est globalement le graphe d'une fonction lipschitzienne $\phi:\mathbb{R}^n\to\mathbb{R}$. C'est à dire que $\|\nabla\phi\| \leq M$ et l'on ne suppose pas que ϕ soit bornée. On désignera par Ω l'ouvert défini par $t>\phi(x)$ et l'on se propose de démontrer, dans ce cadre, les analogues des théorèmes 3, 4 et 5. Les adaptations nécessaires au cas borné sont de nature technique et n'apportent aucune idée nouvelle [8]. Observons qu'alors $L^2(V;d\sigma)=L^2(V;d\sigma)$ et que f n'existe pas.

Nous commençons par changer légèrement les notations. On désignera par X = (x,t) les élements de \mathbb{R}^{n+1} avec x $\in \mathbb{R}^n$ et t $\in \mathbb{R}$. Alors, on a, par exemple

$$(14) \frac{Y-X}{|Y-X|^{n+1}} \cdot N(Y) d\sigma(Y) = \frac{\varphi(x) - \varphi(y) - (x-y) \cdot \nabla \varphi(y)}{[|x-y|^2 + (\varphi(x) - \varphi(y))^2]^{\frac{n+1}{2}}}$$

si $X = (x, \phi(x), Y = (y, \phi(y))$ et si N(Y) est le vecteur normal unitaire en $Y \in V$, orienté vers le bas. Nous désignerons par $K(\phi; x, y) = K(x, y)$ le noyau singulier par l'un des deux membres de (14).

On a, dans ces conditions, le résultat fondamental suivant .

Théorème 6 : Pour toute fonction $f \in L^2(\mathbb{R}^n; dx)$,

(15)
$$\lim_{\varepsilon \downarrow 0} \int_{|x-y| \ge \varepsilon} K(\phi; x, y) f(y) dy = T_{\phi} f(x)$$

existe presque-partout. L'opérateur ainsi défini est borné sur $L^2(\mathbb{R}^n; dx)$ et s'appelle "potentiel de double couche".

Avant d'énoncer le théorème 7, nous avons besoin d'une nouvelle définition. Nous écrirons, pour une suite ϕ_j de fonctions lipschitziennes, $\phi_j \longrightarrow \phi \text{ si } \|\nabla \phi_j\|_{\infty} \leqslant \text{M et si } \phi_j(x) \longrightarrow \phi(x) \text{ au sens de la convergence simple (ou de la convergence sur tout compact).}$

(16)
$$\| T_{\varphi_{\dot{1}}}(f) - T_{\varphi}(f) \|_{2} \longrightarrow 0.$$

Nous nous proposons de démontrer ces deux résultats. Au départ, nous utilisons l'estimation suivante ([2] et [3]).

Lemme 1 : Soient $d \ge 1$ un entier, $A : \mathbb{R} \to \mathbb{R}^d$ une fonction lipschitzienne et $F : \mathbb{R}^d \to \mathbb{C}$ une fonction indéfiniment dérivable. On suppose $\|A'\|_{\infty} \le M$.

Alors l'opérateur maximal défini par

(17)
$$T_{*}f(s) = \sup_{\varepsilon > 0} \left| \int_{|t-s| \ge \varepsilon} F\left(\frac{A(s) - A(t)}{s - t}\right) \frac{f(t)}{s - t} dt \right|$$

est borné sur L²(IR;dt) et

(18)
$$\|T_*f\|_2 \le C(M,d,F)\|f\|_2$$
.

A l'aide de cette estimation de base et de la méthode des rotations de Calderón et Zygmund, on obtient le résultat suivant :

<u>Lemme 2</u>: <u>Soit</u> θ : $\mathbb{R} \to \mathbb{R}$ <u>une fonction paire et indéfiniment dérivable</u>. <u>Soient</u> A <u>et</u> B : $\mathbb{R}^n \to \mathbb{R}$ deux fonctions lipschitziennes.

Considérons alors le noyau K(x,y) =

(19)
$$\frac{A(x) - A(y)}{|x - y|^{n+1}} \theta \left(\frac{B(x) - B(y)}{|x - y|} \right).$$

Alors l'opérateur maximal défini par

(20)
$$T_{*}f(x) = \sup_{\varepsilon > 0} |\int_{|x-y| \ge \varepsilon} K(x,y)f(y)dy|$$

Ce résultat s'applique à chacun des noyaux

$$\frac{x_{k}^{-y}_{k}}{\left[\left|x-y\right|^{2}+\left(\phi(x)-\phi(y)\right)^{2}\right]^{\frac{n+1}{2}}} \quad \text{et à} \quad \frac{\phi(x)-\phi(y)}{\left[\left|x-y\right|^{2}+\left(\phi(x)-\phi(y)\right)^{2}\right]^{\frac{n+1}{2}}}$$

pour $1 \leqslant k \leqslant n$.

3. L'EXISTENCE PRESQUE PARTOUT DU POTENTIEL DE DOUBLE COUCHE

Il est bien connu qu'étant donnée une suite L_j d'opérateurs linéaires définis disons sur $L^2(\mathbb{R}^n)$ et à valeurs dans $C(\mathbb{R}^n)$, pour montrer l'existence presque partout de $\lim_{j \to +\infty} L_j f(x)$, $x \in \mathbb{R}^n$, il suffit de savoir que $j \to +\infty$

(21)
$$\lim_{j \to +\infty} L_{j}f(x) \text{ existe presque partout lorsque } f \in \mathcal{S}(\mathbb{R}^{n})$$

et

$$\|\sup_{j \geq 1} \|L_{j}(f)\|_{2} \leq C\|f\|_{2}.$$

Nous allons employer cette démarche dans le cas des noyaux tronqués ${\rm K}_{\epsilon}({\rm x,y}) \; = \; {\rm K}({\rm x,y}) \; \; {\rm 1\!\! 1} \\ |{\rm x-y}| \geqslant \epsilon \quad , \quad \epsilon > \; 0 \; , \; {\rm K}({\rm x,y}) \; = \; \frac{\phi({\rm x}) \; - \; \phi({\rm y}) \; - \; ({\rm x-y}) \cdot \; \nabla \; \phi({\rm y})}{\frac{n+1}{2}} \; .$

En effet on a :

<u>Lemme 3</u> : Si f \in $C_0^{\infty}(\mathbb{R}^n)$, on a, avec les notations précédentes

(23)
$$\lim_{\varepsilon \to 0} \int K_{\varepsilon}(x,y) f(y) dy =$$

$$- \sum_{1}^{n} \int \frac{x_{k} - y_{k}}{|x - y|^{n}} \lambda \left(\frac{\phi(x) - \phi(y)}{|x - y|} \right) \frac{\partial f}{\partial y_{k}} dy .$$

La fonction λ est définie par $\lambda(0) = 0$ et $\lambda'(t) = (1+t^2)^{-\frac{n+1}{2}}$.

En fait (23) se démontre grâce à la formule de Green et a lieu en tout point x où ϕ est différentiable, c'est-à-dire presque partout. Les détails ne présentent aucune difficulté et sont laissés au lecteur.

Le lemme 3 fournit également la démonstration du théorème 7 lorsque $f \in C_0^\infty(\mathbb{R}^n) \text{ . En effet la fonction } \lambda \text{ est bornée ce qui permet d'appliquer le théorème de convergence dominée de Lebesgue au second membre de (23). Le cas général <math>f \in L^2(\mathbb{R}^n)$ s'obtient grâce à $\|T_{\pmb{\phi}}\| \leqslant C$ où C ne dépend pas de j et où la norme est la norme d'opérateur.

4. LIMITES NON TANGENTIELLES DU POTENTIEL DE DOUBLE COUCHE

On a le lemme suivant :

Lemme 4 : Soient $\varphi: \mathbb{R}^n \to \mathbb{R}$ une fonction lipschitzienne, $\alpha \in \mathbb{R}^n$, $a \neq \varphi(\alpha)$, w_n la surface de la sphère unité $S^n \subset \mathbb{R}^{n+1}$ et λ la fonction du lemme 3. Alors on a, si $f \in C_0^\infty(\mathbb{R}^n)$,

(24)
$$\frac{1}{\omega_n} \int_{\mathbb{R}^n} \frac{a - \phi(y) - (\alpha - y) \cdot \nabla \phi(y)}{\left[|y - \alpha|^2 + (\phi(y) - a)^2 \right]^{\frac{n+1}{2}}} f(y) dy = \frac{1}{2} sign(a - \phi(\alpha)) f(\alpha) - \frac{1}{2} sign(a - \phi(\alpha)) f(\alpha) + \frac{1}{2} sign$$

$$-\frac{1}{\omega_n}\int_{\mathbb{R}^n} \int_{1}^{\infty} \frac{\frac{y_k - \alpha_k}{y - \alpha_k}}{1 + y - \alpha_k} \lambda(\frac{\phi(y) - a}{|y - \alpha|}) \frac{\partial f}{\partial y_k} dy.$$

L'intégrale figurant au second membre de (24) est une fonction continue de $(\alpha,a) \in \mathbb{R}^{n+1}$. Pour le voir, il suffit de découper cette intégrale en $|y-\alpha| \leq \delta$ (partie dont la contribution ne dépasse pas $C\delta$) et en $|y-\alpha| > \delta$ (partie que l'on traite à l'aide du théorème de convergence dominée de Lebesgue).

Désignons par \mathcal{K} f(α ,a) le premier membre de (24), par $\Gamma(\mathbf{x}_{o})$ le cône $\mathbf{a} - \varphi(\mathbf{x}_{o}) > M' | \alpha - \mathbf{x}_{o}|$ où $M' > M \geqslant \| \nabla \varphi \|_{\infty}$ et montrons, pour toute fonction $\mathbf{f} \in L^{2}(\mathbb{R}^{n})$, l'existence de lim \mathcal{K} f(α ,a).

$$\begin{cases} (\alpha, a) \in \Gamma(x_0) \\ a \rightarrow \phi(x_0) \end{cases}$$

Là encore il suffit de vérifier cette existence lorsque f est régulière et de prouver l'estimation maximale. A savoir :

$$\|\sup_{(\alpha,a)\in\Gamma(x)}|\mathcal{K}_{f(\alpha,a)}|\|_{L^{2}(dx)}\leq C(M,M'\|f\|_{2}.$$

Cette estimation maximale s'obtient par des remarques géométriques. Si ϵ = a - $\phi(x_0)$, un calcul facile donne

(25)
$$\frac{a - \phi(y) - (\alpha - y) \cdot \nabla \phi(y)}{\frac{n+1}{2}} = K(x_0, y) \quad 1 \quad |x_0 - y| \ge \varepsilon + R_{\varepsilon}(x_0, y)$$
$$[|\alpha - y|^2 + (a - \phi(y))^2]$$

οù

$$K(x_{0},y) = \frac{\phi(x_{0}) - \phi(y) - (x_{0} - y) \cdot \nabla\phi(y)}{[|x_{0} - y|^{2} + (\phi(x_{0}) - \phi(y))^{2}]}$$

et où $|R_{\epsilon}(x_0,y)| \le C \epsilon^{-n}$ si $|x_0 - y| \le \epsilon$, $|R_{\epsilon}(x_0,y)| \le C\epsilon |x_0 - y|^{-n-1}$ si $|x_0 - y| \ge \epsilon$.

On sait que
$$\varepsilon \int_{|x_0 - y| \ge \varepsilon} |x_0 - y|^{-n-1} |f(y)| dy \le C_n f^*(x_0)$$
 où f^*

est la fonction maximale de Hardy et Littlewood de f et l'on a donc

(26)
$$\sup_{(\alpha,a) \in \Gamma(x)} |\mathcal{X}_{f(\alpha,a)}| \leq K_{*}f(x) + Cf^{*}(x)$$

οù

$$K_*f(x) = \sup_{\varepsilon > 0} \left| \int_{|x-y| \ge \varepsilon} K(x,y) f(y) dy \right|$$

et K est défini par (25).

Nous pouvons conclure

(27)
$$\lim_{X \to X_{O}} f(X) = \pm \frac{1}{2} f(X_{O}) + v.p. \int_{V} \frac{Y - X_{O}}{|Y - X_{O}|^{n+1}} .N(Y) f(Y) d\sigma(Y).$$

On rappelle que N(Y) est le vecteur normal en Y à V, dirigé vers l'extérieur de Ω (c'est-à-dire vers le bas) et le signe \pm dans le second membre de (27) est celui de t- $\phi(x)$ quand X = (x,t).

5. LE POTENTIEL DE SIMPLE COUCHE ET SON GRADIENT

Si n \geqslant 3, le potentiel de simple couche de f \in L²(V;d σ) est défini dans $\mathbb{R}^{n+1}\setminus V$ par

(28)
$$Sf(X) = -\frac{1}{(n-1)\omega_n} \int_{V} |X-Y|^{-n+1} f(Y) d\sigma(Y) .$$

En dimension 3 (n = 2), cette intégrale diverge. Pour la rendre convergente, on fixe $X_{o} \in V$ et l'on remplace le noyau $|X-Y|^{-n+1}$ par $|X-Y|^{-n+1} - |X_{o}-Y|^{-n+1}$. Seules interviendront dans la suite les dérivées partielles de Sf(X) et le choix de X_{o} n'a aucune importance.

On a, si $X = (x,t) \in V$,

(29)
$$\nabla \operatorname{Sf}(X) = \frac{1}{\omega_n} \int_{V} \frac{X - Y}{|X - Y|^{n+1}} f(Y) d\sigma(Y)$$

Lemme 6 : On a, avec les notations précédentes

(30)
$$\lim_{X \to X_{0}} \text{n.t.} \quad \nabla \text{Sf}(X) = \pm \frac{1}{2} f(X_{0}) \stackrel{\longrightarrow}{N}(X_{0}) + \frac{1}{\omega_{n}} \text{v.p.} \int_{V} \frac{X_{0} - Y}{|X_{0} - Y|^{n+1}} f(Y) d\sigma(Y) .$$

<u>L'égalité</u> (30) <u>et l'existence de la valeur principale sont assurées presque partout <u>et</u></u>

(31)
$$\|\sup_{\mathbf{X} \in \Gamma(\mathbf{x})} |\nabla \operatorname{Sf}(\mathbf{X})| \|_{L^{2}(d\mathbf{x})} \leq C \|f\|_{L^{2}(d\mathbf{x})}.$$

Pour démontrer ces résultats, on emploie la méthode canonique. On commence par vérifier l'inégalité maximale (31) et il suffit ensuite d'assurer (30) lorsque $f \in C_O^\infty(\mathbb{R}^n)$ ce qui permet d'intégrer par parties et de diminuer la singularité du noyau.

Pour démontrer (31), on pose $X_O = (x_O, \phi(x_O))$, $X \in \Gamma(x_O)$, $Y = (y, \phi(y))$ $\varepsilon = |X - X_O|$ et l'on remarque simplement que dans ces conditions

$$\frac{X-Y}{|X-Y|^{n+1}} = \frac{X_0 - Y}{|X_0 - Y|^{n+1}} \quad \mathbf{1}_{|X_0 - Y| \ge \varepsilon} + R_{\varepsilon}(X_0, Y)$$

 $\text{où } |_{R_{\epsilon}}(x,y)| \leqslant c \; \epsilon^{-n} \quad \text{et } |_{R_{\epsilon}}(x,y)| \leqslant c \; \epsilon \; |_{X_{0}} - \; y|^{-n-1} \; .$

On conclut comme pour (26).

L'existence de la limite non tangentielle lorsque f \in L^2(V;d\sigma) s'établit comme suit. On pose cos $\theta(y) = (1 + |\nabla \phi(y)|^2)^{-1/2}, -\frac{\pi}{2} < \theta(y) < \frac{\pi}{2}$ et l'on définit les vecteurs $T_1(Y), \ldots, T_n(Y)$, tangents en Y à V, par

$$T_1(Y) = (\cos \theta(y), 0, ..., 0, \cos \theta(y)) \frac{\partial \phi}{\partial y_1}$$

$$T_n(Y) = (0,...,0,\cos\theta(y),\cos\theta(y)) \frac{\partial\phi}{\partial y_n}$$

tandis que le vecteur normal unitaire N(Y) est défini par

$$N(Y) = (\cos \theta \frac{\partial \phi}{\partial y_1}, \dots, \cos \theta \frac{\partial \phi}{\partial y_n}, -\cos \theta).$$

On remarque que les longueurs de ces vecteurs appartiennent à $[\frac{1}{\sqrt{1+M^2}}, 1]$ si

 $\|\nabla \phi\|_{\infty} \le M$. Leur déterminant vaut $(-\cos\theta)^{n-1}$. Ce déterminant est uniformément minoré, en module.

Désignons par (T_1, \dots, T_n, N) la base duale de (T_1, \dots, T_n, N) . C'est-à-dire que pour tout Z $\in \mathbb{R}^n$ on a :

$$Z = (Z.T_1)T_1^* + ... + (Z.T_n)T_n^* + (Z.N)N$$
.

Nous appliquerons cette décomposition à $\frac{X-Y}{X-Y}$ et remarquons simplement que les vecteurs $T_j(Y)$ sont des fonctions mesurables et uniformément bornées (dans $L^\infty(\mathbb{R}^n)$). Ces vecteurs seront incorporés dans la fonction $f \in L^2(\mathbb{R}^n)$ à laquelle l'opérateur est appliqué. Nous pouvons donc ignorer les T_j et remplacer tout simplement $\frac{X-Y}{Y-Y}$ par $K_j(X,Y) = \frac{X-Y}{Y-Y}$. T_j^* ou par $K_j(X,Y) = \frac{X-Y}{Y-Y}$. N(Y).

Un calcul simple donne

(32)
$$K_{j}(x,Y) d\sigma(Y) = \frac{1}{n-1} \left\{ \frac{\partial}{\partial y_{j}} |x - Y|^{-n+1} \right\} dy$$

et cette identité est la raison d'être de la définition des vecteurs T_j .

D'autre part -K(X,Y) d $\sigma(Y)$ est le noyau du potentiel de double couche.

Enfin le lemme 2 fournit la continuité sur $L^2(\mathbb{R}^n; dx)$ de l'opérateur maximal associé à K_i et \widetilde{K} .

Si $g \in C_0^{\infty}(\mathbb{R}^n)$, on a, pour $X \notin V$,

$$\int_{V} K_{j}(X,Y)g(y)d\sigma(Y) = -\frac{1}{\omega_{n}(n-1)} \int_{\mathbb{R}^{n}} |X-Y|^{-n+1} \frac{\partial g}{\partial y_{j}} dy$$

et cette intégrale converge non tangentiellement en tout point $X_O \in V$ grâce au théorème de convergence dominée de Lebesgue. Elle contribue à la valeur principale qui apparaît dans le second membre de (30) tandis que le terme de saut vient du potentiel de double couche $\int_V \widetilde{K}(X,Y)g(y)d\sigma(Y).$ Les détails ne présentent aucune difficulté et sont laissés au lecteur.

Dans le résultat qui suit, nous commettrons l'abus de langage suivant :

 $\frac{\text{Définition 1}}{\text{v.p.}} : \underbrace{\frac{\text{Soit } K : L^2(V;d\sigma) \rightarrow L^2(V;d\sigma)}{(Y-X).N(Y)}}_{\text{n}} : \underbrace{\frac{1}{\omega} \frac{(Y-X).N(Y)}{|Y-X|^{n+1}}}_{\text{d} \sigma} \text{d} \sigma (Y) = K(X,Y). \underbrace{\text{Nous désignerons par } K^*}_{\text{Nous désignerons par } K} : \underbrace{\text{1'adjoint de}}_{\text{cet opérateur } K}.$

On a alors le résultat suivant qui sera essentiel dans l'étude des opérateurs $\frac{1}{2}$ \pm K .

Proposition 1 : Avec les notations précédentes, on a pour toute fonction $f \in L^2(V)$ et pour presque tout $X \in V$

(33)
$$\lim_{Y \to X} \text{n.t. } \nabla \text{Sf}(Y).N(X) = \pm \frac{1}{2} f(X) + K f(X)$$

où le signe est - si Y = (y,t), X = (x, $\phi(x)$) et t - $\phi(x)$ > M'|x-y| et le signe est + si, avec les mêmes notations t - $\phi(x)$ < - M'|x-y|.

Il s'agit d'une simple corollaire du lemme 6. En effet, on remarque que l'opérateur

$$\frac{1}{\omega_n} \text{ v.p. } \int_{V} N(X) \cdot \frac{X-Y}{|X-Y|^{n+1}} f(Y) d\sigma(Y)$$

est la limite (forte) des opérateurs définis par les noyaux tronqués $\underset{\epsilon}{L_{\epsilon}}(x,y) = \frac{1}{\omega} \underset{n}{N(x)} \cdot \frac{x-y}{|x-y|^{n+1}} \quad \text{$1 \hspace{-1.8pt}\rule{1.5pt}{1.5pt}{1.5pt}\rule{1.5pt}\rule{1.5pt}{1.5pt}\rule{1.5pt}\rule{1.5pt}{1.5pt}\rule{1.5pt}\rule{1.5pt}\rule1.5pt}\rule{1.5pt}\rule1.5pt|\hskip1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt|\hskip1.5pt}\rule1.5pt}\rule1.5pt}\rule1.5pt|\hskip1.5pt}\rule1.5pt}\rule1.5pt|\hskip1.5pt}\rule1.5pt|\hskip1.5pt}\rule1.5pt|\hskip1.5pt}\rule1.5pt|\hskip1.5pt}\rule1.5pt|\hskip1.5pt}\rule1.5pt|\hskip1.5pt}\rule1.5pt|\hskip1.5pt}\rule1.5pt|\hskip1.5pt}\rule1.5pt|\hskip1.5pt}\rule1.5pt|\hskip1.5pt}\rule1.5pt|\hskip1.5pt}\rule1.5pt|\hskip1.5pt|\hskip1.5pt}\rule1.5pt|\hskip1.5pt|\hskip1.5pt}\rule1.5pt|\hskip1.5p$

Finalement le noyau de l'opérateur L_{ϵ}^* est $\overline{L}_{\epsilon}(Y,X)$ si le noyau de L_{ϵ} est $L_{\epsilon}(X,Y)$. Cette remarque termine la preuve de la proposition 1.

On peut reformuler (33) en désignant par Ω_+ l'ouvert situé au-dessus des graphes de ϕ (et Ω_- celui en dessous) et en appelant $N_\pm(X)$, $X \in V$, le vecteur normal unitaire au graphe de ϕ dirigé vers l'extérieur du domaine Ω_\pm . On a, dans ces conditions

(34)
$$f \in L^2(V; d\sigma) \text{ et } u = S(f) \Longrightarrow \frac{\partial u}{\partial N_+} = (-\frac{1}{2} \pm K^*) f$$
.

Ceci en convenant que la dérivée normale en question est définie par le procédé de la limite non tangentielle des gradients dans les cônes d'approche non tangentielle.

6. L'INEGALITE DE PAYNE ET WEINBERGER

On reprend les notations précédentes. On suppose $f \in L^2(V; d\sigma)$, u = S(f) et l'on étudie le gradient de u, ∇u , que l'on décompose en $\nabla_{t} u + \frac{\partial u}{\partial N_{\pm}} \overrightarrow{N_{\pm}}$. On appellera $\nabla_{t} u$ le gradient tangentiel.

Avec ces notations, on a (si u = S(f) et $f \in L^2(V; d\sigma)$):

Proposition 2 :

(35)
$$\int_{\mathbf{V}} |\nabla_{\mathbf{t}} \mathbf{u}|^2 \overrightarrow{N_{\pm}} d\sigma = \int_{\mathbf{V}} \left(\frac{\partial \mathbf{u}}{\partial \mathbf{N_{\pm}}}\right)^2 \overrightarrow{N_{\pm}} d\sigma + 2 \int_{\mathbf{V}} \overrightarrow{\nabla_{\mathbf{t}}} \mathbf{u} \frac{\partial \mathbf{u}}{\partial \mathbf{N_{\pm}}} d\sigma .$$

La démonstration de ce résultat se décompose en deux étapes. On commence par l'établir lorsque V est remplacé par le bord ∂B d'un domaine C^{∞} B tel que \overline{B} soit contenu dans Ω_{+} ou Ω_{-} ; alors \overline{N} désignera la normale extérieure à ∂B etc. En suite on approche l'ouvert Ω par une suite croissante B, d'ouverts réguliers. Dans le cas régulier, $\overline{V_{t}}u = \overline{V}u - (\frac{\partial u}{\partial N})\overline{N}$ ramène (35) à

$$\int_{\partial B} |\nabla u|^2 \overrightarrow{N} d\sigma = 2 \int_{\partial B} \overrightarrow{\nabla u} \frac{\partial u}{\partial N} d\sigma .$$

Cela revient à prouver que, pour tout a $\in \mathbb{R}^n$ fixé,

$$\int_{\partial B} \{ |\nabla \mathbf{u}|^2 \overrightarrow{\mathbf{n}}.\overrightarrow{\mathbf{a}} - 2(\overrightarrow{\nabla}\mathbf{u}.\overrightarrow{\mathbf{a}})(\overrightarrow{\nabla}\mathbf{u}.\overrightarrow{\mathbf{n}}) \} \ d\sigma = 0$$

ou encore que div $\{|\nabla u|^2 \overrightarrow{a} - 2(|\nabla u|\overrightarrow{a})| | \nabla u = -2(|\nabla u|\overrightarrow{a})| \Delta u = 0$. Ceci caractérise en fait les fonctions harmoniques.

Pour passer au cas général, on commence par supposer que f a un support compact. Alors $|\nabla Sf(X)| = O(|X|^{-n})$ à l'infini.

On appelle $\phi_j \in C^\infty(\mathbb{R}^n)$ une suite telle que $\phi_j(x) > \phi(x)$, $\phi_j(x) \to \phi(x)$ uniformément sur tout compact et $\|\nabla \phi_j\|_\infty \leq M'$, $\nabla \phi_j(x) \to \nabla \phi(x)$ presquepartout. On désigne par B_j une suite croissante de domaines réguliers ayant les propriétés suivantes

(36) B est contenu dans
$$y \ge \phi_j(x)$$

(37)
$$\partial_{B_{j}} = E_{j} \cup F_{j} \quad \text{où } E_{j} = \{ y = \phi_{j}(x) , |x| \leq j \} \quad \text{et où}$$

$$F_{j} \subset \{ |x| \geq j - 10 \}$$

(38) la surface totale de F_{j} ne dépasse pas Cj^{n} .

Le lemme 7 et le théorème de convergence dominée de Lebesgue entraînent

$$\int_{E_{j}} |\nabla_{t}u|^{2} \overrightarrow{N}_{j} d\sigma \longrightarrow \int_{V} |\nabla_{t}u|^{2} \overrightarrow{N} d\sigma$$

 $(j \rightarrow + \infty)$ et de même pour les autres termes.

Par ailleurs $\nabla Sf(X) = O(|X|^{-n})$ implique que $\int_{F} |\nabla Sf(X)|^2 d\sigma \longrightarrow O$ avec j⁻¹. La proposition est prouvée dans le cas particulier où f a un support

Pour passer au cas général, il suffit d'observer que, grâce au lemme 2, les deux membres de (35) sont des formes quadratiques continues sur $L^2(V;d\sigma)$. Puisqu'elles coı̈ncident sur une partie dense, elles sont identiques.

Corollaire 1 : Les trois normes $\|(\frac{1}{2} + \kappa^*)f\|_2$, $\|(\frac{1}{2} - \kappa^*)f\|_2$ et $\|\nabla_t Sf\|_2$ sont équivalentes sur $L^2(V;d\sigma)$.

En effet, on part de (35) et l'on fait le produit scalaire avec $(0,0,\ldots,0,-1)$. On a

$$N_{+}(X) \cdot (O,O,...,O,-1) = \cos \theta (X) \in \left[\frac{1}{\sqrt{1 + M^{2}}}, 1\right].$$

Si bien que (35) et l'inégalité de Cauchy-Schwarz donnent

$$\|\nabla_{\mathsf{t}}\mathbf{u}\|_{2}^{2} \leq \sqrt{1+\mathsf{M}^{2}} \quad (\|\frac{\partial \mathbf{u}}{\partial \mathsf{N}_{\mathsf{t}}}\|_{2}^{2}+2\|\nabla_{\mathsf{t}}\mathbf{u}\|_{2}\|\frac{\partial \mathbf{u}}{\partial \mathsf{N}_{\mathsf{t}}}\|_{2})$$

et également

compact.

$$\left\|\frac{\partial \mathbf{u}}{\partial \mathbf{N}}\right\|_{2}^{2} \leq \sqrt{1 + \mathbf{M}^{2}} \left(\left\|\nabla_{\mathbf{t}}\mathbf{u}\right\|_{2}^{2} + 2\left\|\nabla_{\mathbf{t}}\mathbf{u}\right\|_{2}^{2} \left\|\frac{\partial \mathbf{u}}{\partial \mathbf{N}}\right\|_{2}\right).$$

On appelle C(M) la constante $\sqrt{1 + M^2} + \sqrt{1 + M^2 + \sqrt{1 + M^2}}$ et l'on a $\| \nabla_t \mathbf{u} \|_2 \le C(M) \| \frac{\partial \mathbf{u}}{\partial N_1} \|_2 \quad \text{et}$

$$\left\|\frac{\partial \mathbf{u}}{\partial \mathbf{N}_{\pm}}\right\|_{2} \leq C(\mathbf{M}) \left\|\nabla_{\mathbf{t}} \mathbf{u}\right\|_{2}.$$

Ceci montre que les normes $\|(\frac{1}{2} \pm K^*)f\|_2$ sont équivalentes à $\|\nabla_+ Sf\|_2$.

$$\|f\|_{2} \leq \|(\frac{1}{2} + \kappa^{*})f\|_{2} + \|(\frac{1}{2} - \kappa^{*})f\|_{2}$$

et l'on utilise alors le corollaire 1.

7. LE SCHEMA HILBERTIEN ET SON APPLICATION

<u>Lemme 7</u>: <u>Soient T</u>: $H \to H$ <u>et T</u>: $H \to H$ <u>des opérateurs linéaires continus sur un espace de Hilbert. On suppose qu'il existe deux constantes $C > \delta > O$ telles que</u>

$$\delta \|\mathbf{x}\| \leq \|\mathbf{T}_{j}(\mathbf{x})\| \leq C\|\mathbf{x}\|$$

et que

(40)

$$\lim_{j \to +\infty} \|T_{j}^{*}(x) - T^{*}(x)\| = 0 \quad \underline{\text{pour tout }} x \in H.$$

Alors si les T, sont des isomorphismes, T est surjective.

Remarquons d'abord qu'il est possible de construire des isomorphismes isométriques T_j qui tendent fortement vers une isométrie non surjective. Par exemple, on pose $T_j(x_1,\ldots,x_j,\ldots)=(x_j,x_1,\ldots,x_{j-1},x_{j+1},\ldots)$ avec $H=\ell^2(N)$. Alors $\|T_j(x)-S(x)\|_2 \to 0$ où $S(x_1,\ldots,x_j,\ldots)=(0,x_1,\ldots,x_j,\ldots)$.

La preuve du lemme est par ailleurs facile et laissée au lecteur.

Pour appliquer le schéma hilbertien, on désigne par $\phi:\mathbb{R}^n\longrightarrow\mathbb{R}$ une fonction lipschitzienne arbitraire et par ϕ , $\in C_0^\infty(\mathbb{R}^n)$ une suite de fonctions vérifiant

$$\| \nabla \phi_j \|_{\infty} \leqslant C \qquad \text{et} \quad \phi_j(x) \ \rightarrow \ \phi(x)$$

uniformément sur tout compact de ${\rm I\!R}^n$.

Appelons T_j l'opérateur - $\frac{1}{2}$ + K_j où K_j est défini par le noyau K(ϕ_j ; x, y) du théorème.

Alors le théorème 7 donne $\|\mathbf{T}_{\mathbf{j}}^*\mathbf{f} - \mathbf{T}^*\mathbf{f}\|_2 \to 0$ pour toute fonction $\mathbf{f} \in L^2(\mathbb{R}^n; dx)$. Montrons d'abord que chaque T_j^* est un isomorphisme. Le corollaire 2 donne (39). D'autre part, on remplace ϕ_j par $\lambda\phi_j$, $0 \le \lambda \le 1$, et au lieu de T_j^* , on obtient T_j^* , pour lequel on a encore (39). Finalement le théorème 7 montre que l'application de [0,1] dans $\mathcal{L}(L^2(\mathbb{R}^n)$, $L^2(\mathbb{R}^n)$) qui à λ associe T_j^* , est continue. On peut donc appliquer le théorème de l'indice et les T_j^* , sont des isomorphismes. L'opérateur $-\frac{1}{2} + K$ est surjectif. Le corollaire 2 montre que cet opérateur est un isomorphisme de $L^2(\mathbb{R}^n)$.

La même démonstration s'applique à $\frac{1}{2} + K^*$. Finalement les deux opérateurs $\pm \frac{1}{2}$ + K sont également des isomorphismes.

Les théorèmes 3 et 5 (du cas ouvert non borné) sont alors évidents. Rappelons que dans le cas du théorème 5, les contraintes du cas borné disparaissent.

BIBLIOGRAPHIE

- [1] L. Carleson : On the existence of boundary values for harmonic functions in several variables. Ark. Mat. 4 (1962) 393-399.
- [2] R. R. Coifman, G. David et Y. Meyer : La solution des conjectures de Calderon. A paraître aux Advances in Mathematics.
- R. R. Coifman, A. McIntosh et Y. Meyer : L'intégrale de Cauchy sur les [3] courbes lipschitziennes. Annals of Mathematics 116 (1982) 361-387.
- [4] B. Dahlberg : Estimates of harmonic measure. Arch. for Rat. Mech. and Anal. 65 (1977), 275-288.
- [5] D. S. Jerison and C. Kenig : An identity with applications to harmonic measure. Bulletin A.M.S. Vol. 2, n° 3, May 1980, 447-451.
- D. S. Jerison and C. Kenig : The Dirichlet problem in non smooth domains. [6] Annals of Mathematics 113 (1981) 367-382.
- [7] D. S. Jerison and C. Kenig : The Neumann problem on Lipschitz domains. Bull. A.M.S., Vol. 4 (1981) 203-207.
- [8] G. C. Verchota : Layer potentials and boundary value problems for Laplace equation in Lipschitz domains. University of Minnesota, Minneapolis (June 1982)