SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

A. GRIGIS

Hypoellipticité analytique d'opérateurs transversalement elliptiques

Séminaire Équations aux dérivées partielles (Polytechnique) (1982-1983), exp. nº 4, p. 1-14

http://www.numdam.org/item?id=SEDP_1982-1983 A4_0>

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1982-1983, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

91128 PALAISEAU CEDEX - FRANCE

Tél. (6) 941.82.00 - Poste N° Télex : ECOLEX 691596 F

SEMINAIRE GOULAOUIC-MEYER-SCHWARTZ 1982-1983

HYPOELLIPTICITE ANALYTIQUE
D'OPERATEURS TRANSVERSALEMENT ELLIPTIQUES

par A. GRIGIS

Exposé n° IV 19 Octobre 1982

Nous présentons ici un travail en collaboration avec L. Rothschild. Il s'agit, en particulier dans le cas des opérateurs invariants à gauche sur certains groupes de Lie de rang 2, d'une extension du théorème de G. Métivier [10]. Nous obtenons entre autre une caractérisation de l'hypoellipticité analytique des opérateurs invariants à gauche sur le groupe d'Heisenberg, elliptiques dans les directions génératrices, même s'ils ne sont pas homogènes. Dans ce dernier cas, l'hypoellipticité analytique d'un exemple particulier a été montrée par E. M. Stein [18]; ce travail a inspiré le nôtre. Nous utilisons aussi des idées de Grušin.

I. INTRODUCTION

Les opérateurs transversalement elliptiques sont des opérateurs pseudo-différentiels classiques (sur un ouvert $\Omega \subset \mathbb{R}^n$) de symbole

(1.1)
$$p(x,\xi) \sim p_m(x,\xi) + p_{m-1}(x,\xi) + \dots$$

$$p_{m-j}(x,\xi)$$
 homogène de degré $m-j$,

tels que :

- i) l'ensemble caractéristique Σ = $p_m^{-1}(0)$ soit une sous-variété lisse de T $\Omega\setminus\{0\}$,
 - ii) p $_{ ext{m}}$ s'annule exactement à l'ordre k (k entier) sur Σ ,
- iii) p_{m-j} s'annule à l'ordre k-2j sur Σ pour $j \le k/2$.

Ces opérateurs ont été étudiés dans de nombreux travaux depuis Boutet de Monvel [1], Sjöstrand [15] et autres. Un exemple important est le laplacien de Kohn \square_{b} sur une hypersurface réelle de \mathbb{C}^{n} . Cette classe intervient aussi naturellement dans l'étude de l'hypoellipticité des opérateurs invariants à gauche sur les groupes de Lie nilpotents (voir par exemple Helffer-Nourrigat [6] et la partie 3 ci-dessous).

La condition iii) s'introduit naturellement si on considère le fait suivant (voir [2] § 5). Soit l'opérateur différentiel à coefficients séries formelles de T :

(1.2)
$$\sigma_{\mathbf{x},\xi}^{\infty} (P) = \sum_{\mathbf{j},\alpha,\beta} \frac{1}{\alpha! \beta!} (\frac{\partial}{\partial \mathbf{x}})^{\alpha} (\frac{\partial}{\partial \xi})^{\beta} p_{\mathbf{m-j}} (\mathbf{x},\xi) \mathbf{T}^{|\alpha|+|\beta|+2j} \mathbf{y}^{\alpha} \mathbf{p}_{\mathbf{y}}^{\beta}$$

Si on note $\sigma^k_{x,\xi}(P)$ le coefficient de T^k

(1.3)
$$\sigma_{\mathbf{x},\xi}^{\mathbf{k}}(\mathbf{P}) = \sum_{|\alpha|+|\beta|+2j=\mathbf{k}} \frac{1}{\alpha!\beta!} (\frac{\partial}{\partial \mathbf{x}})^{\alpha} (\frac{\partial}{\partial \xi})^{\beta} p_{m-j}(\mathbf{x},\xi) y^{\alpha} p_{y}^{\beta}$$

la condition iii) dit que en tout point $(x,\xi) \in \Sigma$

$$\sigma_{\mathbf{x},\xi}^{\infty}(P) = \sigma_{\mathbf{x},\xi}^{k}(P) T^{k} \pmod{T^{k+1}}$$
.

Notons d'autre part que de la formule de Leibnitz $\sigma^{\infty}(P \bullet Q) = \sigma^{\infty}(P) \bullet \sigma^{\infty}(Q)$ on obtient si Q est caractéristique d'ordre k':

(1.4)
$$\sigma_{\mathbf{x},\xi}^{\mathbf{k}+\mathbf{k'}} (P \circ Q) = \sigma_{\mathbf{x},\xi}^{\mathbf{k}} (P) \circ \sigma_{\mathbf{x},\xi}^{\mathbf{k'}} (Q) .$$

Rappelons pour mémoire que d'après le théorème 5.21 de [2] P est hypoelliptique avec perte de k/2 dérivées si et seulement si $\sigma_{\mathbf{x},\xi}^{k}(P)$ opérant dans $\mathcal{S}(R^n)$ est inversible à gauche pour tout $(\mathbf{x},\xi)\in\Sigma$.

Considérons maintenant la situation analytique. On suppose que P est un opérateur pseudodifférentiel analytique, Σ réelle analytique. On peut énoncer :

Théorème (Métivier [10]) : Soit P un opérateur pseudodifférentiel analytique à caractéristique k-uples et transversalement elliptique sur Σ . Soit $(\mathbf{x}_{_{\mathrm{O}}},\xi_{_{\mathrm{O}}})$ \in Σ . Supposons :

- (1.5) Σ symplectique (au voisinage de (x_0, ξ_0))
- (1.6) $\sigma_{\mathbf{x}_{0},\xi_{0}}^{\mathbf{k}}(P)$ inversible à gauche dans $\mathfrak{I}(\mathbb{R}^{n})$.

Alors P est microlocalement hypoelliptique analytique dans un voisinage de (x_0,\xi_0).

Rappelons que Trèves [20] et Tartakoff [19] avaient montré des versions moins générales de ce résultat et que Tartakoff en a écrit une autre démonstration (voir ce séminaire, année 1980-81). La preuve de Métivier consiste à construire une paramétrixe microlocale pour P sous la forme d'un opérateur pseudodifférentiel analytique de type $(\rho,\delta)=(\frac{1}{2},\frac{1}{2})$.

Rappelons que Métivier [10] dit qu'un symbole $a(x,\theta)$, $x \in \Omega \subset \mathbb{R}^N$ $\theta \in \mathbb{R}^n$ est analytique de degré μ et de type (1/2,1/2) si a s'étend holomorphiquement à un voisinage complexe $\widetilde{\Omega}$ de Ω et telle que pour tout $K \subset \subset \widetilde{\Omega}$ il existe C > O

$$\forall \alpha \in \mathbb{N}^n$$
 , $\forall x \in K$, $\forall \theta \in \mathbb{R}^n$, $|\theta| > C|\alpha|$,

(1.5)
$$|\partial_{\theta}^{\alpha} a(x,\theta)| \le c^{|\alpha|+1} (\alpha!)^{1/2} (1+|\theta|)^{\mu-|\alpha|/2} e^{C|\text{Im}x|^{1/2} |\theta|}$$

Pour les détails et les propriétés d'analyticité des opérateurs associés à ces symboles, voir [10].III.

L'hypothèse (1.5) est justifiée par les résultats de non hypoellipticité analytique de Métivier [11]. En particulier si par $(\mathbf{x}_0, \boldsymbol{\xi}_0)$ passe une sous-variété Γ de Σ telle que

$$\forall \rho \in T$$
 $\mathfrak{T}_{\rho}\Gamma = \mathfrak{T}_{\rho}\Sigma \cap (\mathfrak{T}_{\rho}\Sigma)^{\perp}$

où l'orthogonalité est prise par rapport à la forme symplectique, alors P (supposé à caractéristiques doubles) n'est pas hypoelliptique analytique en (x_0,ξ_0) . Dans ces cas il y a aussi des phénomènes de propagation des singularités : voir Bony-Schapira, Sjöstrand, Grigis-Schapira-Sjöstrand, [16] ch. 14 pour les références.

Cependant Sjöstrand [16] a montré l'hypoellipticité analytique de certains opérateurs à caractéristiques doubles pour lesquels (1.6) est vérifiée mais (1.5) n'est pas vraie.

Ici nous nous intéressons au problème de l'hypoellipticité analytique de P quand (1.5) est satisfaite mais (1.6) ne l'est pas. Alors que les résultats de [11], [16] ch. 14, [17] dépendent surtout de la nature symplectique de Σ et donc du symbole principal de P, nos résultats font intervenir les termes d'ordre inférieur et pas seulement ceux d'ordre $\geqslant m - \frac{k}{2}$ qui apparaissent dans $\sigma^k_{(x_0,\xi_0)}$ (P). Dans un cas particulier nous obtenons un critère d'hypoellipticité analytique.

2. RESULTATS

a) Le cas général et le cas simplifié

Il est très classique qu'on peut trouver localement des coordonnées symplectiques (t,y; τ , η) telles que Σ soit définie par les équations

(2.1)
$$t = \tau = 0$$
 $t = (t_1, ..., t_{n_1}), \quad \tau = (\tau_1, ..., \tau_{n_1}).$

En utilisant un opérateur intégral de Fourier associé à cette transformation canonique on peut donc se ramener au cas où P = P(t,y,D_t,D_) au voisinage de (0,y_0;0,\eta_0) \in T $\mathbb{R}_{t,y}^{1+n}$.

En développant le symbole total de P en série de Taylor à partir de Σ et en regroupant les termes par quasihomogéneité relative aux dilatations

(2.2)
$$\lambda.(t,y,\tau,\eta) = (\lambda^{-1/2}t,y,\lambda^{1/2}\tau,\lambda\eta)$$

on écrit le symbole de P

(2.3)
$$p \sim 9^{\circ} + 9^{1} + \dots$$

(2.4)
$$\mathcal{P}^{i} = \sum_{2j+|\alpha|+|\beta|=k+i} \left(\left(\frac{\partial}{\partial t} \right)^{\alpha} \left(\frac{\partial}{\partial \tau} \right)^{\beta} p_{m-j} \right) (0,y;0,\eta) \frac{t^{\alpha} \tau^{\beta}}{\alpha! \beta!}.$$

On note $\mathcal{P}^{i}_{(y,\eta)}$ l'opérateur différentiel à coefficients polynomiaux sur \mathbb{R}^{n}_{t} dépendant des paramètres $(y,\eta) \in \Sigma$, qui a pour symbole $\mathcal{P}^{i}(t,y,\tau,\eta)$. L'idée de considérer (y,η) comme paramètre et de travailler en (t,D_{t}) remonte au moins à Gruśin [4].

En fait $\mathfrak{P}^{\mathsf{O}}(\mathsf{y},\mathsf{\eta})$ peut être considéré comme l'opérateur $\sigma^{\mathsf{k}}_{(\mathsf{o},\mathsf{y};\mathsf{o},\mathsf{\eta})}$ (P) opérant sur les fonctions indépendantes des n_2 variables qui n'apparaissent pas dans l'expression de $\sigma^{\mathsf{k}}(\mathsf{P})$. Donc l'hypothèse (1.6) est équivalente à l'inversibilité à gauche de $\mathfrak{P}^{\mathsf{O}}_{(\mathsf{y},\mathsf{\eta})}$ et celle-ci est équivalente à l'injectivité dans $\mathfrak{F}(\mathbb{R}^n_{\mathsf{t}})$ car $\mathfrak{P}^{\mathsf{O}}_{(\mathsf{y},\mathsf{\eta})}$ est globalement elliptique (voir § 2.b).

L'idée est de considérer la somme

(2.5)
$$\mathcal{P}(y,\eta) = \sum_{i=0}^{\infty} \mathcal{P}^{i}_{(y,\eta)}$$

comme une perturbation de $\mathfrak{P}^{O}(y,\eta)$. Même si les $\mathfrak{P}^{\dot{\mathbf{1}}}(y,\eta)$ sont de degré k+i

(degré total en t, D_t), qui augmente avec i, leurs coefficients sont après le changement de variable t \rightarrow t $|\eta|^{1/2}$ homogènes de degré m - k/2 - i/2 décroissant avec i. Ceci est apparent si on pose :

(2.6)
$$z = |\eta|^{-1/2}$$
; $\omega = |\eta|^{-1}\eta$; $t' = |\eta|^{1/2}t = zt$.

La somme (2.5) se réécrit

(2.7)
$$z^{2m-k} \mathcal{P}(y,\eta) = \sum_{i=0}^{\infty} z^{i} \left(\sum_{|\alpha|+|\beta| \leq k+i} a^{i}_{\alpha\beta}(y,\omega) t^{\alpha} D^{\beta}_{t} \right)$$

Les coefficients $a^i_{\alpha\beta}$ (y,ω) peuvent se prolonger dans un même voisinage complexe avec des majorations :

(2.8)
$$|a_{\alpha\beta}^{i}| \leq c^{|\alpha|+|\beta|+i+1} (\alpha!\beta! i!)^{1/2}$$
,

(la constante indépendante de α , β , i).

Dans la suite nous allons faire les :

Hypothèses simplificatrices :

- (2.9) Nous supposons que le symbole de P est indépendant de la variable d'espace y : $P = P(t,D_t,D_y)$
- (2.10) Nous supposons que $\mathcal{P}^{i}(\eta)$ est de degré k-i et non k+i en (t,D_{t}) ; donc $\mathcal{P}^{i}(\eta) = 0$ $(i \ge k)$.

Ce cas sera suffisant pour l'application que nous avons en vue. L'avantage de (2.10) est de pouvoir considérer $\P(\eta) = P(t,D_t,\eta)$ comme une perturbation compacte de $\P^0(\eta_0)$ quand $z = |\eta|^{-1/2}$ et $|\omega - \omega_0| = |\eta/|\eta| - \eta_0/|\eta_0|$ sont petits. Grâce à (2.9) les calculs sont simplifiés et on peut avoir un critère explicite comme dans le cas des coefficients constants.

Le cas simplifié s'écrit donc :

(2.11)
$$P(t,D_t,D_y) = \sum_{i=0}^{k} \left(\sum_{\substack{\alpha \in A \\ i = 0}} \widetilde{a}_{\alpha\beta}^i(D_y) t^{\alpha} D_t^{\beta} \right)$$

avec $\tilde{a}_{\alpha\beta}^i$ symbole analytique homogène de degré $m - \frac{k+i}{2} + \frac{|\alpha| - |\beta|}{2}$, et or notera $\mathcal{P}(\eta) = P(t,D_+,\eta)$ l'opérateur différentiel sur $\mathcal{J}(\mathbb{R}^n_+)$.

b) Rappel sur les opérateurs a(t,D₊) globalement elliptiques

On considère la classe des opérateurs différentiels à coefficients polynomiaux sur ${\rm I\!R}^n$:

(2.12)
$$A = a(t,D_t) = \sum_{\alpha \in A} a_{\alpha\beta} t^{\alpha}D_t^{\beta} \qquad a_{\alpha\beta} \in C$$

qui ont la propriété d'ellipticité "globale" :

(2.13)
$$\sum_{|\alpha H|\beta | = m} a_{\alpha\beta} t^{\alpha} \tau^{\beta} \neq 0 \qquad 0 \neq (t,\tau) \in \mathbb{R}^{n}_{t} \times \mathbb{R}^{n}_{\tau}.$$

Ils ont été beaucoup étudiés par, entre autres, Grussin [4], Sjöstrand [15], Trèves [20], Métivier [10], Hörmander [7], Melin [8].

Il est facile de voir par une construction de paramétrixe que $A: \operatorname{H}^m(\operatorname{I\!R}^n) \to \operatorname{L}^2(\operatorname{I\!R}^n) \text{ , où } \operatorname{H}^m\text{est le domaine de } A \text{ est à indice. L'indice est nul si la dimension de l'espace, n, est supérieure à 1 (ce qui ne serait plus vrai si on considerait des systèmes <math>n \times n$) et est égal pour n=1 au "winding number" de l'application

$$(2.14) (t,\tau) \in \mathbb{R}^2 \setminus O \longrightarrow \sum_{|\alpha|+|\beta|=m} a_{\alpha\beta} t^{\alpha} \tau^{\beta} \in \mathfrak{C} \setminus \{0\}.$$

Si h(t) est une fonction propre de A, par exemple un élément du noyau, elle appartient non seulement à l'espace de Schwartz ${\mathfrak S}({\mathbb R}^n)$ mais de plus elle peut s'étendre en une fonction entière sur ${\mathfrak C}^n$ et il existe des constantes positives ${\mathfrak E}$, ${\mathfrak C}_1$, ${\mathfrak C}_2$ telle que pour t ${\mathfrak E}$ ${\mathfrak C}^n$

$$|t^{\alpha}D_{t}^{\beta}h(t)| \leq C_{1}^{|\alpha H\beta| + 1}(\alpha!\beta!)^{1/2}\exp(-\epsilon|Re|t|^{2} + C_{2}|Im|t|^{2})$$

et la transformée de Fourier h a les mêmes propriétés.

Si A est inversible dans $\mathcal{S}(R_t^n)$, son inverse B est un opérateur pseudodifférentiel dont le symbole b(t, τ) est dans S_{reg}^{-m} (\mathbb{R}^{2n}) (voir[2]) et peut s'étendre en une fonction entière sur $\mathfrak{C}_{t,\tau}^{2n}$ avec les estimées

$$|D_{t}^{\alpha}D_{\tau}^{\beta}b(t,\tau)| \leq C^{|\alpha + |\beta| + 1}(\alpha ! \beta !)^{1/2} \exp C(|\text{Im }t|^{2} + |\text{Im }\tau|^{2}).$$

Il en est de même pour les pseudoinverses de A. Soit E_1 un sous-espace de dimension finie de $\mathbf{S}(\mathbf{R}^n)$ tel que ker $\mathbf{A} \subset E_1$ et soit $E_2 = \mathbf{A}(E_1^\perp))^\perp$, l'orthogonalité étant prise dans $\mathbf{L}^2(\mathbf{R}^n)$. Soit \mathbf{B}_E l'opérateur qui inverse $\mathbf{A}: E_1^\perp \to E_2^\perp$ et qui est nul sur E_2 . Alors le symbole de \mathbf{B}_E^1 vérifie l'estimation (2.16).

Par les méthodes standards de stabilité et de perturbation on montre que si les coefficients de A dépendent analytiquement d'un paramètre et si A est inversible l'inverse B et notamment son symbole b dépendent analytiquement du paramètre. On a la même chose pour la projection sur un espace propre correspondant à un paquet isolé de valeurs propres et les pseudoinverses :

c) <u>Les énoncés</u>

Soit P = P(t,D_t,D_y) de la forme (2.11) et transversalement elliptique sur t = τ = 0.

Si P est autoadjoint, ${\cal P}(\eta)$ et tous les ${\cal P}^1(\eta)$ le sont. De plus ${\cal P}(\eta)$ est globalement elliptique et a un spectre discret. On le considère comme un perturbé de ${\cal P}^O(\eta)$ dont les valeurs propres sont homogènes de degré m-k/2 en η .

Définition (2.16) : Soit $\eta_o \neq 0$ tel que $\mathcal{P}^O(\eta_o)$ ne soit pas inversible. On appelle petites valeurs propres de $\mathcal{P}(\eta)$ près de η_o les perturbées (quand $z = |\eta|^{-1/2}$ et $|\omega - \omega_o| = |\eta/|\eta| - \eta_o/|\eta_o||$ sont petits) de la valeur propre 0 de $\mathcal{P}^O(\eta_o)$.

Le lecteur scrupuleux rectifira de lui même tous les abus de langage de la définition.

Les petites valeurs propres sont donc celles qui vérifient

$$\lim_{ |\eta| \to \infty} |\eta|^{-m+k/2} \quad \lambda(\eta) = 0$$

$$\lim_{ |\eta| \to \infty} \omega \to \omega$$

Leur nombre est égal à la multiplicité r de la valeur propre 0 de l'opérateur ${\boldsymbol{\mathcal{G}}}^{\text{O}}(\eta_{_{_{\scriptsize{O}}}})$. Leur produit est un symbole analytique semi-classique en η (défini dans un voisinage conique de $\eta_{_{\scriptsize{O}}}$ et au voisinage de l'infini). On notera $d \leq (m-k/2)^r$ le vrai degré de ce symbole.

Théorème (2.17) : Supposons $P(t,D_t,D_y)$ comme ci-dessus et de plus autoadjoint. Les assertions suivantes sont équivalentes :

- i) P est microlocalement hypoelliptique analytique en (0,0;0, η_{o})
- ii) le produit des petites valeurs propres de $\,arPhi(\eta)\,$ est un symbole elliptique près de $\,\eta_{\,ullet}.$
- iii) $\exists \; arepsilon > 0$, C > 0 tel que $\mathscr{S}(\eta)$ soit inversible dans le domaine complexe :

$$\eta \in \mathfrak{c}^{n_2}$$
 , $|\eta| > c$, $|\eta/|\eta| - \eta_o/|\eta_o|| < \epsilon$

Remarque (2.18) : Si P vérifie les assertions du théorème (2.17) il est aussi hypoelliptique C^{∞} avec une perte supérieure à $\frac{k}{2}$ dérivées $(\frac{k}{2} + (m - \frac{k}{2})^r - d)$.

Dans [3] on a aussi des résultats dans le cas P non autoadjoint (particulièrement si 9 (η) est d'indice nul. Le cas homogène est traité dans Grušin [4].

Le théorème (2.17) s'obtient à partir du théorème de résuction suivant. Soit M(η) la "matrice " de la restriction de $\mathcal{P}(\eta) = \mathbf{E}_1(\eta) \longrightarrow \mathbf{E}_2(\eta)$ où $\mathbf{E}_1(\eta)$ et $\mathbf{E}_2(\eta)$ sont les perturbés des noyaux de $\mathcal{P} \mathcal{P}$ et $\mathcal{P} \mathcal{P}$ respectivement.

Théorème (2.19) : Soit P de la forme (2.11); on a l'équivalence

- i) P est hypoelliptique analytique en $(0,0;0,\eta_0)$
- ii) Le système $\mathrm{M}(\mathrm{D}_{_{\mathbf{V}}})$ est hypoelliptique analytique en $(\mathrm{O};\eta_{_{\mathbf{O}}})$

Le théorème (2.18) est donc à rapprocher des résultats pour les opérateurs à coefficients constants. Dans [12] Petrowsky a montré qu'un opérateur différentiel P(D) à coefficients constants est hypoelliptique si et seulement si il est elliptique. Ce résultat s'étend ainsi:

 $\frac{\text{Th\'eor\`eme 2.20}}{\text{y}}: \text{Soit P(D)} \text{ un op\'erateur pseudodiff\'erentiel \`a coefficients constants.}$ On a l'équivalence entre

- i) P est microlocalement hypoelliptique analytique en $(0,\eta_0)$
- ii) P est elliptique en $(0,\eta_0)$
- iii) $\exists \ \epsilon > 0$, C > 0 tel que le symbole $p(\eta)$ soit non nul dans le domaine complexe

$$\eta \in \mathfrak{C}^{n_2}$$
 , $|\eta| < c$, $|\eta/|\eta| - \eta_o / |\eta_o|| < \epsilon$.

Pour l'étude des systèmes carrés il suffit de considérer le déterminant pour avoir un théorème (2.20).

Dans le cas général du 2 a), si (y_0,η_0) est un point où $\mathfrak{F}^0(y_0,\eta_0)$ n'est pas inversible il est encore possible de définir une matrice d'opérateur pseudo-différentiels $M(y,D_y)$ dans un voisinage conique de (y_0,η_0) tel que l'hypoellipticité analytique de P en $(0,y_0;0,\eta_0)$ soit équivalente à celle de M en (y_0,η_0) . Ceci a été fait par Sjöstrand [15] dans le cas \mathbb{C}^∞ . Les détails sont trop longs pour les écrire ici. De toutes façons l'étude de l'hypoellipticité analytique du système M est un nouveau problème, avec moins de variables toutefois.

d) Indication sur les preuves

Le théorème (2.17) s'obtient à partir des théorèmes (2.19) et (2.20). Pour montrer le théorème (2.19), on utilise la méthode de réduction de Grušin telles qu'elle est utilisée par Sjöstrand [15] ou Helffer [5] dans le cas C^{∞} .

Supposons pour simplifier que P soitautoadjoint et qu'il n'y a qu'une petite valeur propre : dim $E_1(\eta)$ = dim $E_2(\eta)$ = 1.

Soit $h(t,\eta)$ la fonction propre de $\mathcal{P}(\eta)$ convenablement normalisée. Grâce aux estimées (2.15) on peut montrer que $h(t,\eta)$ est un symbole analytique (η variable de phase) de type (1/2, 1/2) de degré $-\infty$ dans la région $t \neq 0$. De même le symbole $q(t,\tau,\eta)$ du pseudo inverse de $\mathcal{P}(\eta)$ est analytique de type (1/2,1/2) dans un voisinage conique de (0,0,0, η).

On construit l'opérateur de Hermite

$$H: \mathfrak{D}'(\mathbb{R}_{y}^{n_{2}}) \longrightarrow \mathfrak{D}'(\mathbb{R}_{t,y}^{n_{1}+n_{2}})$$

$$Hv(t,y) = (2\pi)^{-n_{2}} \int e^{iy \cdot \eta} h(t,\eta) \hat{v}(\eta) d\eta ,$$

et l'opérateur de Hermite adjoint

$$H^* : \mathfrak{D}'(\mathbb{R}^{n_1+n_2}_{t,y}) \longrightarrow \mathfrak{D}'(\mathbb{R}^{n_2}_{y}),$$

$$H^* u(y) = (2\pi)^{-n_2} \int e^{iy\eta} \overline{h(t,\eta)} \hat{u}^2(t,\eta) dt d\eta.$$

On a les propriétés d'analyticité (en notant WF_a le front d'onde analytique) :

$$\begin{aligned} & \text{WF}_{a}(\text{Hv}) \subset \{ \, (\text{t = 0, y, \tau = 0, \eta}) \; \; ; \; \, (\text{y, \eta}) \; \in \; \text{WF}_{a}(\text{v}) \, \} \\ \\ & \text{WF}_{a}(\text{H u}) \; \subset \{ \, (\text{y, \eta}) \; \; ; \; \, (\text{t = 0, y, \tau = 0, \eta}) \; \in \; \text{WF}_{a}(\text{u}) \, \} \end{aligned}$$

et les équivalences modulo des régularisants analytiques (en posant ici $H_1 = H_2 = H$ et Q de symbole $q(t,\tau,\eta)$) :

$$\begin{pmatrix} P & H_2 \\ * & O \end{pmatrix} \qquad \begin{pmatrix} Q & H_1 \\ * & -M \end{pmatrix} \equiv \begin{pmatrix} I & O \\ O & I_{E_1} \end{pmatrix}$$

$$\begin{pmatrix} Q & H_1 \\ * & -M \end{pmatrix} \qquad \begin{pmatrix} P & H_2 \\ * & O \end{pmatrix} \equiv \begin{pmatrix} I & O \\ O & I_{E_2} \end{pmatrix}$$

On en déduit le théorème (2.19). En particulier si N est une paramétrixe à gauche de M, alors $Q + H_1 N H_2^*$ en est une de P.

Pour montrer le théorème (2.20) on se réduit à la dimension 2 et on montre l'équivalence de ii) et iii) par une étude élémentaire. Si P n'est pas elliptique en $\eta_{_{\mbox{\scriptsize O}}}$ le symbole de P a des zéros complexes $\eta(\lambda)$, $\lambda > \lambda_{_{\mbox{\scriptsize O}}} > 0$ tels que $|\eta(\lambda) - \lambda \eta_{_{\mbox{\scriptsize O}}}|$ < C λ^{α} avec $\alpha < 1.$ Il est alors facile de construire une distribution qui est au mieux dans une classe de Gevrey mais non analytique et telle que Pu soit analytique. Pour les détails voir [3] .

3. APPLICATION

Nous nous intéressons aux opérateurs invariants à gauche sur un groupe de Lie nilpotent de rang 2.

Soit $g = g_1 \oplus g_2$ une algèbre de Lie de rang 2 :

$$(3.1) \qquad [g_1, g_1] \leftarrow g_2 \quad \text{et} \quad [g_1, g_2] = [g_2, g_2] = \quad (0) \ .$$

On identifie $\mathcal G$ avec son groupe de Lie connexe et simplement connexe G par l'application exponentielle. On note (x,y) les coordonnées sur $\mathcal G_1 \oplus \mathcal G_2$, et (ξ,η) sont les coordonnées duales sur $\mathcal G_1^* \oplus \mathcal G_2^*$. Rappelons qu'il existe une famille δ_t , t > 0 de dilatations de $\mathcal G$ qui sont des automorphismes, données par

(3.2)
$$\delta_{t}(x,y) = (tx,t^{2}y)$$
 $t > 0$

et agissant sur $\,g^{\,m{st}}\,$ par dualité.

Pour $\eta \in \mathcal{G}_2^* \setminus \{0\}$, soit B η la forme bilinéaire anti-symétrique sur \mathcal{G}_1 définie par :

(3.3)
$$B_{\eta}(x,x') = \eta([x,x']) \quad x,x' \in \mathcal{J}_1$$
.

Comme dans Métivier [9], nous supposerons que G est un groupe de type (H) c'est à dire

(3.4) B_n est non dégénérée pour tout
$$\eta \in g_2^* \setminus \{0\}$$
.

Ceci implique que la dimension de \mathcal{J}_1 est paire et nous notons

(3.5)
$$2n_1 = \dim g_1$$
, $n_2 = \dim g_2$.

Remarquons que, si n_2 est égal à 1 alors le groupe G est un groupe d'Heisenberg. D'autre part, signalons que dans [3] est aussi considéré le cas où B est non dégénérée génériquement .

Soit $(x_1,\ldots,x_{2n_1},y_1,\ldots,y_{n_2})$ une base de $g=g_1\oplus g_2$. Tout opérateur différentiel L invariant à gauche sur G peut être décomposé ainsi

(3.6)
$$L = L_{m} + L_{m-1} + ... + L_{o}$$

où chaque L_{j} est homogène de degré j, c'est à dire de la forme

(3.7)
$$L_{j} = \sum_{|\alpha|+2|\beta|=j} a_{\alpha\beta} x^{\alpha} y^{\beta}.$$

L'opérateur L sera dit transversalement elliptique si :

(3.8)
$$\sum_{|\alpha|=m} a_{\alpha,0} \quad \xi^{\alpha} \neq 0, \qquad \forall \ \xi \neq 0.$$

Nous allons donner un critère d'hypoellipticité analytique microlocale pour les opérateurs L satisfaisant (3.8) sur les groupes de type (H). Rappelons $2n_1+n_2$ que G peut être considéré comme la variété analytique $\mathbb R$ et L est un opérateur différentiel à coefficients polynomiaux. En utilisant l'invariance par les translations à gauche sur G, on voit qu'il suffit d'étudier L au voisinage de l'origine. Comme d'habitude nous identifions la fibre de T G au dessus de l'origine avec g et la variété caractéristique g de L rencontre cette fibre aux points g points g de L variété caractéristique g de L variété g est symplectique. Enfin L est à caractéristiques m-uples donc g m, g m-k/2 = m/2.

Finalement rappelons que pour $\eta \in \mathcal{G}_2^* \setminus (0)$ on peut associer par la théorie de Kirillov à l'orbite de (O, n) une représentation unitaire irréductible de G (en fait une classe de représentations équivalentes). Nous notons π_n cette représentation et π_{η} (L) est un opérateur différentiel à coefficients polynomiaux agissant sur L² (\mathbb{R}^{n_1}); il est globalement elliptique à cause de (3.8). Si en plus L est autoadjoint, le spectre de π_n (L) est discret. Dans ce cas, on peut montrer que $\eta \rightarrow \pi_{\eta}$ (L) est une famille analytique d'opérateurs avec spectre discret et définir les "petites valeurs propres" de de |n| infini (celles qui ne sont pas elliptiques d'ordre m/2).

Théorème (3.9) : Soit G un groupe nilpotent de rang 2 de type (H) et L un opérateur différentiel invariant à gauche sur G, transversalement elliptique. Soit $\eta_0 \in \mathcal{G}_2^* \setminus (0)$. Alors L est hypoelliptique analytique en $(0,0,0,\eta_0)$ si et seulement si au voisinage de η_0 le produit des "petites valeurs propres" de $\pi_n(L^{\mathsf{L}})$ est un symbole elliptique.

Rappelons que le théorème de Métivier montre l'hypoellipticité analytique en (0,0,0, $\eta_{_{\mbox{\scriptsize O}}})$ si $\pi_{_{\mbox{\scriptsize D}}}^{}$ (L $_{\mbox{\scriptsize m}})$ est injectif. Dans ce cas il n'y a pas de "petites valeurs propres".

Dans le cas du groupe d'Heisenberg, le résultat s'énonce plus simplement encore car le dimension de \mathcal{J}_2 est égale à un.

Théorème (3.10) : Soit G un groupe d'Heisenberg et L transversalement elliptique. Les assertions suivantes sont équivalentes :

- 1) L est hypoelliptique analytique en $(0,0;0,\eta_0)$.
- 2) Ker $\pi_{r\eta_o}(L) = 0$ pour r >> 0. 3) L est hypoelliptique C^{∞} en $(0,0;0,\eta_o)$.

Donc L est hypoelliptique analytique sur G si et seulement si $\ker L \cap L^2(G) = (0).$

L'équivalence entre 2) et 3) et par suite la dernière assertion du théorème (3.2) sont dues à L. Rothschild [13].

Pour montrer ces théorèmes, on se ramène à l'aide d'un opérateur intégral de Fourier et d'une réduction du nombre de variables à la situation simplifiée du § 2. L'étude microlocale de L se ramène à celle d'un opérateur P(t,D_t,D_y) sur $\mathbb{R}_{t,y}^{n_1+n_2}$, polynomial en t et D_t mais seulement pseudodifférentiel en D_y (en fait le symbole de P dépend de manière algébrique de η).

Dans [18] , E. M. Stein a étudié l'hypoellipticité analytique de l'opérateur suivant qui est invariant sur le groupe d'Heisenberg de dimension 3.

(3.9)
$$L = -(x_1 - ix_2)(x_1 + ix_2) + \mu \qquad \mu \in C$$

avec

(3.10)
$$x_1 = \frac{\partial}{\partial x_1} + \frac{1}{2} x_2 \frac{\partial}{\partial y}$$

$$x_2 = \frac{\partial}{\partial x_2} - \frac{1}{2} x_1 \frac{\partial}{\partial y}$$

Rappelons que $x_1 + ix_2$ est l'opérateur de Hans Lewy et qu'il n'est ni hypoelliptique (même C) ni localement résoluble.

Les valeurs propres de $\pi_n(L)$ sont :

(3.11)
$$2n |\eta| + |\eta| - \eta + \mu \qquad n = 0, 1, 2, ...$$

Pour η < 0, elles sont toutes elliptiques de degré 1 et L est microlocalement hypoelliptique analytique en (0,0;0,-1). Par contre pour η > 0, il y a une "petite valeur propre" obtenue pour n = 0 et égale à μ . Celle-ci est donc elliptique si et seulement si $\mu \neq 0$ et L est donc hypoelliptique analytique si et seulement si $\mu \neq 0$.

BIBLIOGRAPHIE

- [1] L. Boutet de Monvel : Hypoelliptic operators..., CPAM 27 (1974).
- [2] L. Boutet de Monvel, A. Grigis, B. Helffer : Paramétrixes...
 Astérisque 34-35 (1976).
- [3] A. Grigis, L. Rothschild: A criterion for analytic hypoellipticity...

 Preprint (1982).
- [4] V. V. Grušin : Pseudodifferential..., Funct. Anal. Pril. 4, 4 (1970).
 V. V. Grušin : On a class of elliptic..., Mat Sbornik 84 (126) (1971).

- [5] B. Helffer: Sur l'hypoellipticité... Bull. Soc. Math. France 51-52 (1977).
- [6] B. Helffer et J. Nourrigat : Caractérisation..., CPDE 4,8 (1979).
- [7] L. Hörmander: On the subelliptic... CPAM, 33 (1980).
- [8] A. Melin: Parametrix constructions..., CPDE 6(12) (1981).
- [9] G. Métivier : Hypoellipticité analytique... Duke Math. J. 47, 1 (1980).
- [10] G. Métivier : Analytic hypoellipticity, CPDE, 6(1) (1981). et séminaire Goulaouic-Meyer-Schwartz 1980-81.
- [11] G. Métivier : Non hypoellipticité analytique..., Seminaire Goulaouic-Meyer-Schwartz 1981-1982, exposé 12.
- [12] Petrowsky : Sur l'analyticité..., Mat. Sb. 5, 47 (1939).
- [13] L. P. Rothschild : C^{∞} regularity..., preprint (1982).
- [14] L. P. Rothschild, D. Tartakoff : Analyticity..., Annalesde l'E.N.S. (à paraître).
- [15] J. Sjöstrand: Paramétrices ..., Arkiv för Mat. 12 (1974).
- [16] J. Sjöstrand : Singularités analytiques microlocales... Prépublications Orsay (1982).
- [17] J. Sjöstrand : Régularité analytique..., Colloque Hörmander, Orsay 82, preprint.
- [18] E. M. Stein : An example... Actes de St Jean-de-Monts (1982), exposé XV et Inventionnes 69, 2 (1982).
- [19] D. Tartakoff : The analytic hypoellipticity..., Acta Math. 145 (3-4) (1980)
- [20] F. Trèves : Analytic hypoellipticity..., CPDE, 3 (1978).

* *