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II.1

1. The Cauchy problem for the wave equation

is not well posed if n &#x3E; 3 and Cauchy data are given on a time-like hypersurface,

for instance on {x1 - 0}. But if the solution of such a Cauchy problem exists,

then it is unique by Holmgren’s theorem. Furthermore, it was shown by John [5]

that one then has unique continuation of the data : if u = 0 on a relative-

ly open subset Q c {x1 - 0} , then in general u and 31U also vanish on a
strictly larger relatively open subset c {x1 - 0}, and one has u = 0 on a

n
neighbourhood of Q in n .

Similarly, uniqueness and unique continuation theorems can be proved

for improperly posed characteristic Goursat problems in 1Rn , with n &#x3E; 3, such as

see [2] .

In this paper, the corresponding boundary value problem for (1) will be

considered in the exterior of a characteristic double cone, say in

2 2 2
X = {x : x2  X21 +...+ Let Q be a relatively open connected subset of

n I n-I

r = 3X which contains the vertex {x = 01, and suppose that 0. It turns

out that, in order to ensure that u = 0 on a neighbourhood of Q in X, it is both

necessary and sufficient to make the additional hypothesis that u vanishes to

all orders as x --1, 0 in X. (Compare [1] for another unique continuation theorem

involving flatness of the solution at the manifold carrying the data). One then

also has unique continuation of the data, which can be summarized by saying that

uniqueness propagates along the bicharacteristics (the generators of r ), towards
the vertex. Similar results can be established locally for hyperbolic equations

of the second order with real analytic coefficients.

It would be feasible to use the results of [5] to analyze the problem.

But it is simpler to appeal to the partial analytic hypoellipticity of P, which

results from Theorems 4.1 and 5.1 of [4] . This was pointed out to me by L. H6rmander,

in connection with problem (2) and I want to thank him for several illuminating

conversations.
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Throughout we shall work in where n ~ 3. Points x,y... in En will

be written as (x’,x ), (y’,y )~...~ where x’,y’,..... E IR . The usual inner

product and norm in 
n-1 

are denoted by x’.y’ = x 1y1 +...+ xn-1yn-1 and by
1 1 1/2 n 

n-1 n-1

lx’l = (x’.x,)1/2, , respectively. In IR , n we also introduce a Lorentzian inner
product,

and write

The bicharacteristics of P (the d’Alembertian) are

where y E En is fixed, and t E ~ . Their projections on En will be called bicharac-

teristic curves, although they are actually straight lines. The union of all bicha-

racteristic curves through the origin are the generators of the characteristic double

cone

This, in turn, is the union of the two characteristic cones of P at 0,

Note that r is a topological space with the topology induced by that of 3R We
set

this is usually called the exterior of F .

We shall also need the forward and backward dependence domains of a

point 
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and put

if z E Dt(y) ; these notations extend in the obvious way to subsets of P n for
example D+(¿) = U {D+ (y) : y E E}. We can now state the main result of this paper.

Theorem 1 : Let fl be a relatively open connected subset of r which contains the

vertex 0 = f 0} , and fl r , S~ = Q fl r . Let u E C2 (X) n c (X), and
suppose that

(iii) for each integer N &#x3E; 0 there are constants C N &#x3E; 0, 6 N &#x3E; 0 such that

lu(x) I C when x E x and I x I ~6 . . Then
N N

n

(a) u = 0 on r¿, the union of all bicharacteristic curves from the vertex 0

to points and

Remark : By definition, D (S~ , S~+) is the union of all D+ (y) fl D (z) where y 
-

and z E n ; it is easy to show that this is not empty, and that it is the same as

D(Q ,r¿).

The theorem states that the conditions (i), (ii) and (iii) are sufficient

for the validity of (a) and (b). To show that they are also necessary we give an

example, with F = Q , in which (i) and (ii) hold, (iii) is violated, and u ~ 0 on

X. Let H (x’) be a homogeneous harmonic polynomial (A’H m = 0 in ~n 1), of degree
m &#x3E; 2, and define

where r = . One can check by computation that Pu = 0 on X. It is clear that

u E C2 (X) fl CO(XB {0}) . Also ,
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Hence u E C (X) as we have taken m &#x3E; 2, so we have a solution u --- 0 of Pu = 0 of

class C2 (X) fl which vanishes on r . Of course, (iii) does not hold.

To state the corresponding theorem for equations with variable coefficients,

some preliminary remarks are needed. (See for example [3] for a more detailed

account). Let &#x3E;

be a differential operator defined on an open set M c where n &#x3E; 3. We may as well

assume from the outset that the a.k’ b. andc are real valued real analytic functions,J~ J
and that M is simply connected. Suppose that the quadratic form

is non degenerate and has signature 2- n for all x E M, so that P is a hyperbolic

operator. It is helpful to make M into a Lorentzian manifold by equipping it with

the (pseudo-riemannian) metric

where the matrix (g,k) is the inverse of the matrix (a ). We shall assume that M isJ J
such that any two distinct points of M are joined by a unique geodesic of this metric,

in M; we denote this (oriented) geodesic by y (y, x) where x, y E M and x ~ y. The

tangent vectors V at x E M are called space-like if v,v&#x3E; x  0, time-like if v,v&#x3E; 
x 

&#x3E; 0,

and null if v,v&#x3E;x = 0. This classification carries over to curves and in particular
to geodesics (on which v,v&#x3E; is constant with the usual affine parametrization).

The time-like vectors constitute an open subset of TM which consists of two connected

components. We label the members of one of these as forward (or future-directed)

and those of the other one as backward (or past directed) .

If y is a point of M, we set

is time-like and forwardl,

is time-like and backward}
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and we set

one has D(y,z) ~ ø if z E D+ (y) or equivalently, y E D (z) . We now make the further

hypothesis that

one can then call M a causal domain.(Every point of a Lorentzian manifold has a

causal neighbourhood).

The null geodesics of the metric are the bicharacteristic curves of P.
*

(The bicharacteristics are the null geodesics, lifted to T M). So

are the two characteristic cones with vertex y. Let us assume also that M contains

the origin {x = 0} ; this entails no loss of generality. Write

and set

With these hypotheses and conventions, one has

Theorem 2 : If the hyperbolic operator P has real analytic coefficients, and

M is causal with respect to the associated Lorentzian manifold with metric (12),

then Theorem is valid, provided that X, r and D(y,z) are understood to be

defined by (18), (17) and (19) respectively.

Note that in hypothesis (iii), I x I can be replaced by some equivalent

distance fom 0, for instance one derived from an auxiliary Riemannian metric on M.
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2. The proof of Theorem 1 will now be given in outline. First, some lemmas :

Lemma 1 : Set

and define

Then the (continuous) function u satisfies Pu - 0 when regarded as a member of

Proof : If

where X ={x: ! I x’ ) I &#x3E; e, I x n 1  ~ I x’ ) - e } . Applying the divergence theorem, and
then removing the derivatives of u by partial integration (on bicharacteristic genera-

/v 00 

tors of one obtains (Pu, p) = 0 , (j) E G ( as claimed

Lemma 2

Proof : WFA is the analytic wave front set of u. The lemma follows from Lemma 1

and Theorem 5.1 of [4] . .

Lemma 3 : There is a 6 &#x3E; 0 such that u = 0 on

Proof : As Q is open in r and contains the vertex, one has
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if 6 &#x3E; 0 is sufficiently small. Clearly, {xi : lx’l  Ô} c One can

now easily deduce from Theorem 4.1 of [4] that

I . I

where p is (say)a polynomial, is real analytic on ( I x ’ I  6 ) .

(Here, the distribution pairing refers to the pullback of u under the

map (x’ , xn) for fixed x !) It follows from hypothesis (iii) that Fp has
n n p

a zero of infinite order at x’ = 0. Hence F =0on {x  } ; as p may be
P

any polynomial and u is continuous,the lemma follows.

Proof of part (a) of Theorem 1 : Let 16 1 1  1/V2}. With 6 as

in Lemma 3, take a fixed c E (0,26) and set

Then f : A x E+ ~ D+(0,-F- ) is a real analytic diffeomorphism. (The curves

IR+ 3 r~ f are just the forward time-like half-lines from (0,-£ ).) Let E be the

projection of f 1 ( S~+) on A . Clearly, Q + is connected; so E is a connected open

subset of A . It readily follows from Lemma 3 that OE il Q ° One also

easily checks that f*il (~ satisfies the hypotheses of Theorem 4.1 of [4].

Hence

is real analytic when p is a polynomial. Lemma 3 also implies that F =0 on a

neighbourhood of 8 = 0 (the projection of f-1(Q ) on A ). Hence Fp = 0 one ,

+ 
p

and one deduces that u = 0 on f(Z 

In particular, if y is a point of Q~, then u = 0 on the straight segment
with end points (0,- E) and y. This being so for any e E (0,26) it follows by

continuity that u = 0 on the bicharacteristic segment from the vertex to y (make

E 0 ) .

Hence u = 0 on ~+. Repeating the argument, with and 6 replaced by

Q and - E , respectively, one finds that u = 0 on too, and so part (a) of

Theorem 1 is proved.
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For the proof of part (b) one can now assume from the outset that

Two more lemmas are needed.

Lemma 4 : : Let y and 5 be points in Q and respectively, not on the same

generator of r , and set

»

where &#x3E; 0. Then there is an Eo &#x3E; 0 such that D(y,z) c X if 0  e  E .

o G 0

Proof : Since reD (z) , one has D (z) fl r = D (z) fl r+. A simple geometrical
arguments shows that D (z) fl r+ is a relatively open neighbourhood,in P , of the

bicharacteristic segment y with end points 0 and y, and that it shrinks to y

as c 0. So it follows from (25) that D (z) fl r + Q+ for 0  6 J’ say. Similarly
_ _ 

I

there is an E: &#x3E; 0 such that D+ (y) n r - D+ (y) n’r - c Q if 0  e  c2, and the
2 2

lemma follows if one = 
°lemma follows if one takes o 12

Remark : If y is a point of r and z is a point of F then D(y,z) is not empty,

unless y and z are on the same (bicharacteristic) generator of r . So the lemma

actually holds trivially in the excluded case.

Lemma 5 : Let y and z be points in IR n such that D(y,z) is not empty. Then there

exists a real analytic diffeomorphism

such that ( i ) II a f IIZ &#x3E; 0 and ( ii ) for any point x 
0 

E D (y, z ) , the projection
- 

t 
0 --1 

°

is proper.

Proof : A relatively simple way to construct such a diffeomorphianis to take a

vector field v which is time-like on D(y,z), and to integrate the differential

equation
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For example, one can take

For one then has

With this choice of v, explicit integration of (27) is possible, and gives

where

The assertions of the lemma can then be verified directly.

Proof of part (b) of Theorem 1 : Let § E -, , z be points such that
2013 

N

D(y) 0 , ’ and let y and z be as in Lemma 4, with 0  e  e o so that D(y,z) c XQ
With f as in Lemma 5, it follows from Theorem 4.1 of [4] that

is a real analytic function if p is a polynomial. Now, if f -1 ({Ol) = (w’,t ), then
0 0

the curve ae 3 x = f(w’,t) is time like and goes through the vertex of r.
0

It is thus disjoint from XB fOl and a fortiori disjoint from {x : 6 ,

where 6 is as in Lemma 3. The same lemma and a simple continuity
n 

’

argument then imply that F (w’) = 0 on a neighbourhood of w’ : hence F = 0 and
p o p

one concludes that u - 0 on D(y,z) by letting p range over all polynomials. But

D(y,z) c D(y,z) , so u = 0 on and so we are done.

For equations with variable coefficients, that is to say for Theorem 2,

the proof is along the same lines. In fact, Lemmas 1, 2 and 3 are proved virtually

as above, and this is also the case for part (a). (The straight lines from (o, - ~)

are replaced by time-like geodesics from a point in D (0) which is ultimately made to

tend to {o}). More is needed for part (b). In particular, one has to rework Lemma 5.

A possible choice for the vector field v is
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where T(x,y) is the square of the geodesic distance of any two points y and x

in M, and S ( &#x3E; 0) can for example be chosen such that T(x,y)/T(x,z) = e .
(Then v reduces to (28) if P is the d’Alembertian). The equation (27) can no longer

be integrated explicitely. So one has to use what are essentially routine

arguments in the theory of ordinary differential equations to establish a general

version of the lemma. The final step in the proof of (b) then carries over.
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