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§ 1. INTRODUCTION

Let A be a pseudo-differential operator of order 2 with

symbol a(x,g) which will always be assumed to be real. We shall consider

the general problem of determining the spectrum of A, which in the

present context can more precisely be divided into three parts :

(a) Find conditions on a(x,C) which would imply the posi-

tivity of A,i.e., estimates of the type

for some a &#x3E; 0 ;

(b) Determine the size of the first eigenvalue of A when

it is positive and large ;

(c) When the eigenvalues are diserete, estimate N(K) =

(number of eigenvalues  K of A counted with their multiplicities), or

better still, estimate the size of the N-th eigenvalue of A.

Answers to these questions would be useful in many situations,

among which the study of subelliptic and energy estimates. For example,

let T~(!R ) = U Q v be a classical partition of phase space into dyadic
cubes, and le (x , ) denote the center of Q ; then the subellipticv v v

estimate

simply asserts that the first eigenvalue of A microlocalized to Q is
at least of size 126. ’ More g enerall y an y estimate of the form 

is equivalent to the positivity of
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thus reduced to a question of lower bounds for pseudo-differential

operators.

The classical sharp Gtrding inequality corresponds to
(1) and a(x~) ~ 0. The significant improvement d = ~.

under the same condition was obtained by Hôrmander [51 and extended
to systems by Lax-Nirenberg [81 in 1966. More recently HUrmander [7j
established positivity with 0 = 6/5 under the condition a + Trace a"p y 2

0 , where Trace+ a" is a positive quantity associated to the Hessian
of a which had been introduced earlier by Melin [9]. (In fact, HHrmander’s

result is stronger but we have stated a weaker version for the sake

of simplicity). Thus bounds for A can be better than bounds for a(x,~),
as is best examplified by the Hermite operator with the well known

properties

upon which the H8rmander-Melin results are built.

Concerning eigenvalue distributions, when is elliptic
we have

result which is due to H8rmander [6]. Examples of Avakumovic show
that the bounds for the error are sharp. The main term on the right
hand side then justifies the familiar principle of quantum mechanics

that a reasonable set of unit size in phase space corresponds to an

eigenstate. A reformulation of this principle will play an important

role in this article and we shall return to it later.

When a(x,t) is not elliptic, asymptotic expansions for N(K)

have been obtained by several authors under various conditions, in
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particular when a(x,%) belongs to a class of subelliptic operators
with smoothness and non-degeneracy conditions on the characteristic

variety ( c· f. Menikof f - SjUstrand L10J, SiUstrand E 141, Mohamed Cl2]),
N 

2 ...
and when A = - E XÎ with (X.} a system a vector f ields whose Lie

j=1 J J 
~ , ,

bràckets span and satisfy a constant rank condition (c.f. Métivier L11J).

§ 2. THE CASE OF POSITIVE SYMBOLS :

Thé case is now reasonably well understood (see

answers to Questions (1),(2), and (3) are provided by
the following theorems :

Theorem 1 : The estimate (1) holds with OE = 2 when a(x,~) ~ 0.

To motivate the next two theorems we first give a heuristic

discussion of the uncertainty principle which under the form of bounds

for the Hermite operator already played a role in the Hdrmander-Melin

result. In mathematical terms, with suitable normalizations, it states

that only cubes in phase spaces of volume ¿ 1 may carry the essential

support of some function. This suggests that as long as the set

S(a,K) =f(x,g); a(x,~)  K) does not contain any cube of volume k 1

no part of the spectrum of A willlie under K. According to the theorem

of Egorov, conjugation with Fourier integral operators preserves bounds

for A, and hence not only should cubes in phase space be considered,

but also their images by canonical transformations. Thus define a

canonically twistéd cube to be a set of the form e(Q 0) where Q 
0 

is
o 0

the unit cube f(x,) ; )x) ’ 1,  S 1) and e is a canonical trans-

formation ; then we expect N(K) to be roughly the same as the number

of canonically twisted cubes which can be disjointly imbedded in the

set S(a,K).

In establishing this fact it is perhaps natural to try
to adapt the modern microlocal analysis of wave packets to the classical

variational method of Courant-Weyl in the following monner. First

find a decomposition of T’(n) - U 

1 
UJ 

2 

Q 
v 

into disjoint canonically

vEi1ui 2
twisted cubes Qv with QVI v E J1 essentially fitting in S(a,K) and

J essentially fitting in T3~(~n) ~ S(a,K) ; then for functions
~Pv essentially supported in Q, suitably nommalized we might hope that
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Setting would thus yield subspaces H1 and H~

such that

For the Hermite operator the set S(a,K) is especially simple, the

Q’s can be chosen to be straight cubes whose sizes vary within goodv

bounds,the can be obtained from translations and dilations of a
v

fixed function intimately related to the operator, namely the gaussian
- lixi 2(x) = e 2 , and the program can be carried through. In fact there

is practically no loss of volume in fitting Q v in S(a,K) and N(K) ~

Vol S(a,K) as expected. For more general symbols S(a,K) could however

be quite complicated and the problem of imbedding disjoint canonically

twisted cubes in a given set is not well understood. There are further

serious difficultes ; for example given a canonically twisted cube

Qv it is not easy to obtain (P v essentially supported in Q v without a
much more general theory of Fourier integral operators than is presently

available.

On the other hand a direct study of the spectral function

e(x,y;~,) and its cosine transform K(x,y;t)

through the wave equation

also meets major difficulties since the symbol a(x,§) could be quite

degenerate.

At the basis of the proofs of theorems 1, 2, and 3
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is instead a method of reduction of the number of variables which

has the advantage of providing at the same time an algorithm to deter-

mine the spectrum of A. In view of applications to subelliptic estimates,

we shall state the answer to Question (b), theorem 2, in a localized

form. It will also show that not all canonical transformations need

be considered, but only those with certain bounds.

Theorem 2 : Let a(x,) 0 be a COO function satisfying the bounds

1 1

Fix e&#x3E; 0 and define

where e runs over all canonical transformations with the property

that

if F(XIC) = (y,),(yoo) _ denotes the mappingo 0

T(xt5) = (y-y o ,(- 0 )/M) and ô is a small positive number depending on s

and the dimension.

Subellipticity with sharp bounds for vector fields whose

Lie brackets span follows easily.

Theorem 3 : Let 0 be a compact manifold without boundary with a

given measure. Then there is on algorithm associating to each symbol

a(x,~) and number K a set Q(a,K) of disjoint canonically twisted ~

cubes i.n S ( a, K) such that for K ~ K o

1) c (number of elements in Q(a,cK)l

2) N(K) ~ C (number of elements in Q(a,CK)l
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Here Ko,c, C are constants and N(K) is the number of eigenvalues of

the quadratic form Re  a(x,D)u,u &#x3E;.

To conclude this section we mention briefly some questions
of symplectic geometry arising from the above theorems. This is a

largely unexplored area ; for example, it is not even known whether

the set S = xm2 ; contains a canonically

twisted cube. Recent results of A. Weinstein indicate that the answer

is probably negative. Next theorem 2 provides upper and lower bounds

for the N-th eigenvalue which would be interesting to compare. In

general we expect them to be of the same size. Finally when a(x,~)

is elliptic it is readily seen that our estimate for N(K) coincides

with the one given by the more preci.se formula in (4), but relating
the present results to those for the various classes of subelliptic

symbols mentioned earlier will require more careful arguments.

§ 3. THE CASE OF’ DIFFERENTIAL OPERATORS :

Despite the tact that there are many unsettled questions in

connection with disjoint imbeddings of canonically twisted cubes, the

algorithm appearing in Theorem 3 does permit to extract concrete infor-

mation in specific situations.

We shall consider here the case when A is a differential operator

of order 2 with symbol a(x,~) z 0 on a compact manifold without boundary
O. Fix a metric on 0 and denote by ~ the corresponding measure.

Define a vector X E T (0) to be admissible if .

x

an admissible curve of length p to be a curve Y : : with Y’(t)

admissible, and set

B(x,p) = ty E ne y can be joined to x by a curve of length p).

k 
2

When A = - E Xie X. real vector fields, then (5) is just
j=1 J J

equivalent to saying that X is in the subspace spanned by the Xs,
J

and the balls B(x,p) coincide with the ones introduced by Nagel, Stein,

and Wainger [13] in a différent context ~
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Subellipticity and eigenvalue distribution for A are then

characterized by the following theorem :

Theorem 4 : Under the above hypotheses

(1) The subelliptic estimate

holds if and only if

’or small p. Here BE(x,p) denotes the usual geodesic ball centered at
: of radius p with respect to the given metric.

(2) When (7) holds, the eigenvalues are discrete and

(Here equivalence , between two quantities A - B is taken in the sense

that c1 A £ B s c2 A for some fixed constants c1 and c2).

Finally, it should be stated that we have remained rather

sketchy throughout for the sake of simplicity. The reader interested

in more precise statements and details on the above is referred to

the articles L1J [2] [31 [4].
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