SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

D. TARTAKOFF

Hypoellipticité analytique pour des opérateurs à caractéristiques multiples - Démonstration élémentaire

Séminaire Équations aux dérivées partielles (Polytechnique) (1980-1981), exp. nº 18 bis, p. 1-13

http://www.numdam.org/item?id=SEDP_1980-1981_____A20_0

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1980-1981, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

91128 PALAISEAU CEDEX - FRANCE

Tél. (6) 941.82.00 - Poste N° Télex : ECOLEX 691596 F

SEMINAIRE GOULAOUIC-MEYER-SCHWARTZ 1980-1981

HYPOELLIPTICITE ANALYTIQUE POUR DES OPERATEURS A CARACTERISTIQUES

MULTIPLES - DEMONSTRATION ELEMENTAIRE

par D. TARTAKOFF

Récemment, G. Métivier a démontré le théorème suivant :

Théorème: Soit P(x,D) un opérateur pseudo-différentiel analytique avec symbole $P \sim P_m + P_{m-1} + \dots$ où $\Sigma = P_m^{-1}$ (0) est une variété analytique et symplectique sur laquelle P_m s'annule exactement à l'ordre k, les P_{m-j} au moins à l'ordre k-2j, $j \leq k/2$. Soit P aussi hypoelliptique avec perte de k/2 dérivées. Alors P est microlocalement hypoelliptique analytique.

Nous voulons donner ici une démonstration complètement différente, suivant les idées de [T4,T5], c'est-à-dire, employant seulement des inégalités L^2 .

Rappelons que P est hypoelliptique (analytique) si $u \in \mathcal{E}'$ et Pu $\in C^{\infty}(\omega)$ (analytique réel dans ω), ω ouvert, implique aussi que $u \in C^{\infty}(\omega)$ ($\mathcal{A}(\omega)$). On dit que P est microlocalement hypoelliptique (analytique) si (x_0,ξ_0) & WF (Pu) (WF $_A$ (Pu)) \Rightarrow (x_0,ξ_0) & WF (u) (WF $_A$ (u)). Ici (x_0,ξ_0) & WF $_A$ (v) veut dire que il y a une constante C_v , un cône $_{}^{\mathsf{T}} \ni \xi_0$ et un voisinage ω de x_0 et pour chaque N une distribution $v_N \in \mathcal{E}'$, $v_N = v$ dans ω , avec

$$|\hat{\mathbf{v}}_{\mathsf{N}}(\xi)| \leq C_{\mathsf{v}}^{\mathsf{N}} \left(1 + \frac{|\xi|}{\mathsf{N}}\right)^{-\mathsf{N}}$$
, $\xi \in \Gamma$.

Remarques

- 1) Si P = $\sum_{j=1}^{2n} X_j^2 + X_0 + C$ dans R^{n+1} avec X_j deschamps de vecteurs réels et tels que $\left\{\{X_j^2, T\right\}$ forme une base de TR^{n+1} , la condition " Σ symplectique" n'est autre que la non-dégénérescence d'une matrice de Levi définie par $[X_j, X_j] \equiv C_{ij}T$ modulo $\{X_k\}$. P perd une dérivée si $C_{ij} \not\equiv 0$ en chaque point.
- 2) En général la condition que P soit hypoelliptique avec perte de k/2 dérivées est bien connue ; pour les opérateurs P dont les symboles s'annulent sur Σ comme dans le

théorème, c'est équivalent (voir [B1]) à l'injectivité dans \bigwedge (R n) de

$$\sigma_{(x_0,\xi_0)}^{k}(P)(y,D_y) = \sum_{|\alpha|+|\beta|+2j=k} \frac{1}{\alpha!\beta!} (\partial_x^{\alpha} \partial_{\xi}^{\beta} P_{m-j}(x_0,\xi_0)) y^{\alpha} D_y^{\beta}$$

pour $(x_0, \xi_0) \in \Sigma$.

3) Après une transformation canonique analytique Φ au voisinage de (x_0,ξ_0) , $\Sigma=\{x_1=\ldots=x_v=\xi_1=\ldots=\xi_v=0\}$ et si on utilise un opérateur intégral de Fourier associé à Φ on rend P sous la forme

$$P = \sum_{i=1}^{\infty} C_{i}(x,D)A_{i}$$

$$A_{j} = \frac{\partial}{\partial x_{j}}$$
, $A_{v+j} = x_{j} \frac{\partial}{\partial x_{n}}$, $j \leq v$.

On ajoute des variables et on obtient

$$P = \sum_{i=1}^{\infty} (x,D)X_{i} \quad \text{où}$$

(1)
$$\begin{cases} X_{j}' = \frac{\partial}{\partial X_{j}} - y_{j} \frac{\partial}{\partial t} \\ X_{j}'' = \frac{\partial}{\partial y_{j}} \end{cases}$$

Aussi on peut multiplier par un opérateur elliptique de façon que, microlocalement,

(2)
$$P = \sum_{|I|=k} C_{I}(x,D)X_{I}$$

les $C_{\underline{I}}(x,D)$ étant des opérateurs pseudo-différentiels analytiques d'ordre 0. Les mêmes

hypothèses restent valables et l'hypoellipticité analytique de ce P implique celle du P initial. De plus, on sait d'après le travail de Helffer Nourrigat [H1] que

(3)
$$\sum_{|I| \leq k} ||X_{I}v|| \leq C(||P_{(X_{0},\xi_{0})}v|| + ||v||)$$

où
$$P(x_0,\xi_0)$$
 désigne $\sum_{|I|=k} C_I(x_0,\xi_0) X_I$.

- 4) Quand P est donné par (2) avec des coefficients variables, nous avions déjà résolu le problème (pour k=2, mais la démonstration reste applicable pour d'autres k) dans [T4], sous l'hypothèse (3) pour P au lieu de $P_{(x_0,\xi_0)}$. Trèves l'avait fait aussi dans [T6] pour k=2 dans le cas pseudo-différentiel. La démonstration de Métivier [M2] est assez proche de celle de Trèves où on construit des paramétrixes de type $(\frac{1}{2},\frac{1}{2})$.
- 5) A partir de (3), on peut permettre que les coefficients $C_{\rm I}(x,D_{\rm X})$ soient des matrices, c'est-à-dire, on peut aussi traiter des systèmes qui satisfont à (3).

Histoire et applications

D'origine, les opérateurs sous-elliptiques viennent de l'analyse complexe, le problème de $\overline{\partial}$ -Neumann, et le Laplacien complexe au bord $\Box_b \simeq \overline{\partial}_b$ $\overline{\partial}_b^* + \overline{\partial}_b^*$ $\overline{\partial}_b$. Là, le $\overline{\partial}_b$ est un complexe formé des champs de vecteurs L_j holomorphes et tangents au bord d'un ouvert $\Omega \subset \mathbb{C}^n$ à frontière $\partial \Omega \subset \mathbb{C}^n$ (ou analytique). Même dans le cas où Ω est strictement pseudo-convexe, on n'a que l'estimation

(4)
$$\sum_{i,j=1}^{2n-2} ||X_{i}X_{j}v||_{L^{2}} + ||Tv||_{L^{2}} \leq C(||\Box_{b}v||_{L^{2}} + ||v||_{L^{2}})$$

où les X_i sont les parties réelles et imaginaires des L_i et T, aussi tangent à la fron-

tière est indépendent des X_j . La forme de Levi peut dégénérer dans certains cas (où \Box_b opère sur des formes) sans perdre l'estimation (3) (c'est-à-dire que la condition Y(q) de Kohn permet, quelques fois, des valeurs propres de C_{ij} identiquement nulles).

Alors on s'est posé la question du lien entre les estimations sous-elliptiques (4) et l'hypoellipticité analytique, parce que d'après le travail de Kohn ([K1]) on sait déjà que (3) implique l'hypoellipticité C^{∞} (et, d'après [T1], dans les classes de Gevrey G^{g} s \geqslant 2). L'exemple de Baouendi-Goulaouic a montré qu'il existe des opérateurs de la forme $\sum X_{j}^{2}$ qui perdent une dérivée et qui sont hypoelliptiques dans G^{s} , s \geqslant 2, mais ne le sont pas dans l'analytique.

Mais en 1976 ([T2]) on a introduit une autre condition

(5)
$$\det (C_{i,i}) \neq 0$$

pour obtenir l'hypoellipticité dans G^S 1 < s < 2 et dans certaines classe quasi-analytiques. Ensuite en 1978, Trèves [T6] et l'auteur ([T4], [T5]) ont démontré le cas analytique sous cette hypothèse. La démonstration de Trèves, limitée au cas de caractéristiques doubles avec P_m réel mais permettant des coefficients pseudo-différentiels, mais scalaires, donne une paramétrixe; la nôtre n'était pas limitée à k=2, traitait des systèmes dont les coefficients étaient des fonctions et n'employait que des inégalités L^2 .

Après microlocalisation (voir ci-dessus) le théorème de Métivier n'est autre que l'ancienne situation avec des coefficients pseudo-différentiels, et outre les X_i , plusieurs T_k pour donner l'espace tangent, avec la condition $\det(C_{ij}) \neq 0$ généralisée à

(6)
$$\Sigma = P_m^{-1} (0) \qquad \text{symplectique} .$$

De plus, on sait d'après les travaux de Métivier [M1], Grigis [G1], R. Lascar [L1]

et Sjöstrand [S1] que l'on a besoin d'une condition sur Σ pour avoir l'hypoellipticité analytique. Si (6) est violée en chaque point de ω , on n'a jamais l'analyticité sur des groupes et sous la condition que P^* soit hypoelliptique en général.

Comme autre application de notre méthode, nous avons étudié, avec L.P. Rothschild, des cas d'opérateurs P invariants à gauche et homogènes sur le groupe de Heisenberg, qui ne sont pas hypoelliptiques mais qui le sont si on ajoute $\lambda T^{d/2}$, $|\lambda| \leqslant \epsilon$ (d = ordre homogène de P), comme par exemple \Box_b sur des fonctions. On écrit :

$$Q_{o} = \frac{1}{2\pi i} \int_{\Gamma} \lambda^{-1} (P + \lambda T^{d/2})^{-1} d\lambda, B_{o} = \frac{1}{2\pi i} \int_{\Gamma} (P + \lambda T^{d/2})^{-1} d\lambda$$

où Γ est un petit lacet dans $\mathbb C$ qui contient 0. On a $PQ_0 = I - T^{d/2} B_0$, $T^{d/2} B_0$ est le projecteur orthogonal sur $R(P)^{\perp}$ et, en appliquant nos estimations uniformément en λ à $(P+\lambda T^{d/2})$, on obtient que Q_0 et B_0 conservent l'analyticité localement. (Voir aussi [M3]).

Démonstration (esquisse) du Théorème

Nous n'avons besoin que d'adanter les méthodes de [T5] au cas des coefficients pseudo-différentiels. Signalons d'abord que nous avons pu simplifier la démonstration donnée dans [T5]. Nous esquissons ici la démonstration simplifiée du Théorème dans le cas des coefficients qui sont des fonctions, et nous indiquons ce qui change quand les coefficients sont pseudo-différentiels.

Prenons Pu = 0 dans ω . (Ceci ne limite pas la généralité du Théorème, d'après le Théorème de Cauchy-Kawalevski. Dans le cas microlocal on peut aussi prendre Pu = 0 microlocalement). Alors il suffit de montrer que dans $\omega' \subset \omega$,

$$||D^{\alpha}u||$$
 $\leq C^{|\alpha|} |\alpha|!$

ou bien, d'après le théorème de Nelson, que

$$||X^{I}T^{b}u|| \leq \hat{c}^{|I|+b}(|I|+b)!$$

(Microlocalement, on doit montrer qu'il existe $Q_N \equiv 1$ au voisinage de ω' et $\psi_N(\xi)$ à support dans un cône contenant $\xi_0 = (0, \dots, 0, \xi_n)$ et $\equiv 1$ dans un sous-cône $\Gamma' \cap \{|\xi| > 2N\}$ avec

$$|| X^{I} T^{b} \psi_{N}(D) Q_{N}(x)u ||_{L^{2}} \leq C^{N} N^{|I|+b} \quad \text{pour } |I| + b \leq N \quad .)$$

L'emploi de l'inégalité

(7)
$$\sum_{|K| \le k} ||X^{K} v|| \le C(||Pv|| + ||v||)$$

avec v = X^I Q_0 u, $Q_0 \in C_0^\infty(\omega)$ donne tout de suite le crochet [P,Q $_0$ X^I] qui contient C|I| termes de la forme (coef. de P) Q_0 X^{I+K'} Tu avec |K'| = |K| + k - 2. Itérant, on obtient $C^{|I|/2}|I|(|I|-2)$... (2) termes de la forme (coef.) Q_0 X^{K"} $T^{|I|/2}$ u avec $|K''| \le k$. Il est inutile de continuer sans bien localiser T^q parce que $[X,Q_0]$ T^q échange un X (donc $T^{1/2}$) pour Q'. La bonne localisation est donnée par :

$$(T^{S})_{Q_{0}} = \sum_{|\alpha+\beta| \leq S} \frac{(-1)^{|\alpha|}}{\alpha!\beta!} (X^{\alpha} X^{\alpha} Q_{0}) X^{\beta} X^{\alpha} T^{S-|\alpha+\beta|}$$

$$= Q_{0} T^{S} - \sum_{j} (X^{j}_{j} Q_{0}) X^{\alpha}_{j} T^{S-1} + \sum_{j} (X^{\alpha}_{j} Q_{0}) X^{j}_{j} T^{S-1} + \dots$$

ou
$$X'_{j} = X_{j} = \frac{\partial}{\partial X_{j}} - y_{j} \frac{\partial}{\partial t}$$
, $X''_{j} = X_{v+j} = \frac{\partial}{\partial y_{j}}$, $T = \frac{\partial}{\partial t}$.

$$[(T^s)_{Q_o},g] = \sum_{0 < i+2j+k' \leq s} C_{ijKs} c^{i+j} g^{(i+j+k')}$$

$$(9) \qquad |\mu| \leqslant i, |\nu'| + |\nu''| \leqslant |\nu| = j \qquad y^{\mu + \nu' + \nu''} \circ X'^{\nu - \nu' - \nu''} \circ (T^{s - i - 2j - k'})$$

$$Q_{o} \qquad (i + j + |\nu''|) \qquad (T^{s - i - 2j - k'})$$

 \underline{ou} C_{ijKs} = (s-i-j)! / i!j!k'!(s-i-j-k')! .

(Si on remplace g par un des $C_I(x,D)$ les $[X'^\beta X''^\alpha T^{S-|\alpha+\beta|}$, $C_I(x,D)]$ restent comme dans le Lemme puisque $[X,C_I]$ est très explicite, mais au lieu de $X'^\alpha X''^\beta Q_O$ on doit écrire $ad_{X'}^\alpha$ $ad_{X''}^\beta (Q_N(x) \psi_N(D))$ et son crochet avec $C_I(x,D)$ contient des termes donnés par la formule de Leibnitz (tous explicites) et un reste).

Ainsi c'est clair qu'il faut estimer généralement des choses comme les suivantes $(|I|+|J|\geqslant k)\;;\;\;\text{écrivant G_{A,Q_0} pour X^I $T^P(T^S)$}_{Q_0^{(r)}}\;T^Q\;X^J\;\;\text{où $A=(I,p,s,r,q,J)$, avec}\\ |A|=|I|+p+s+q+|J|,\;l'inégalité (7) donne,\;\;\text{avec le Lemme,}$

(10)
$$||G_{A,Q_o}u||_{L^2} \le C(||[P,G_{A_1,Q_o}]u|| + ||\sum_{j=2}^{2d+1} C_j G_{A_j,Q_o}u||_{L^2})$$

où $A_1 = (I_1, p, s, r, q, J_1)$ avec $|I_1| + |J_1| + k = |I| + |J|$ et les $C_j G_{A_j, Q_0}$ viennent

second terme à droite dans (7) et des crochets de quelques X avec $(T^S)_{Q_0}(r)$ si |I| n'est pas assez grand pour appliquer (7) directement. Ainsi chaque C_j G_{A_j}, Q_0 a A_j = $(I_j, p, s-1, r+1, q, J_j)$ avec $|I_j| + |J_j| = |I| + |J|$ et C_j = 1 ou A_j = $(I_j, p, 0, r+s+1, q, J_j)$ avec $|I_j| + |J_j| = |I| + |J| - 1 + s$ et C_j = $C^S/s!$ ou A_j = (I_j, p, s, r, q, J_j) , $|I_j| + |J_j| = |I| + |J| - k$.

Dans [P,GA1,Q0], les termes qui viennent de (coef.) [X, G_{A_1,Q_0}] sont exactement comme ceux ci-dessus avec aussi des cas où [X1,Xj] donne T : dans ce cas la constante $C_j \leq d(|I| + |J| - k)$ et $A_j = (I_j, p', s, r, q', J_j)$ avec $|I_j| + |J_j| = |I| + |J| - 2$ et p' + q' = p + q + 1. Pour l'instant nous laissons le terme [(coef. de P), G_{A_1,Q_0}]X k u.

Pour bien contrôler les autres, on voit que dans chaque cas, $|A_j| < |A|$, et quand $(T^S)_{Q_0^{(r)}}$ disparaît, il est remplacé par C^S $Q_0^{(s+r+1)}$ $X^S/s!$. On introduit une norme formelle

$$|||G_{A,Q_{O}}|||_{N} = C_{O}^{s} N^{|A|+r+s} / s !$$

et
$$|||_{\Sigma} C_{j} G_{A_{j},Q_{o}}|||_{N} = \Sigma |C_{j}| |||G_{A_{j},Q_{o}}|||_{N}$$
.

Ainsi chacun des termes que nous avons obtenu a (si $C_0 > C$)

$$|\|C_{j} G_{A_{j},Q_{0}}\|\|_{N} \leq C|\|G_{A,Q_{0}}\|\|_{N}$$
.

Alors, évidemment:

Il est convenable, pour traiter [coef., $G_{A'}$, Q_0], d'écrire X_g , T_g pour des champs de vecteurs qui n'agissent que sur g et X_* , T_* pour ceux qui n'agissent pas sur g. Ainsi, par exemple,

$$T^{a}(gv) = (T_{g}+T_{*})^{a} gv = \Sigma(a') (T_{g}^{a'}) (T^{a-a'}v)$$
.

Et comme norme formelle :

$$|\|\Sigma C_{j} X_{g}^{K_{j}} T_{g}^{t_{j}} X_{*}^{I_{j}} T_{*}^{P_{j}} (T_{*}^{s_{j}}) (T_{*}^{s_{j}}) T_{*}^{q_{j}} X_{*}^{J_{j}} |\|_{N,C_{g}}$$

$$= \Sigma |C_{j}| |||X_{g}^{K_{j}} T_{g}^{t_{j}} X_{*}^{I_{j}} T_{*}^{P} (T_{*}^{s_{j}})_{Q_{O}^{(r_{j})}} T_{*}^{q_{i}} X_{*}^{J_{i}}||| N, C_{g}$$

$$\text{avec } |||X_g^K \ \mathsf{T}_g^t \ X_*^I \ \mathsf{T}_*^P (\mathsf{T}_*^S)_{Q_0^{(r)}} \ \mathsf{T}_*^q \ X_*^J |||_{N,C_g} = C_g^{|K|+t} (|K|+t)! \, |||X^I \ \mathsf{T}^P (\mathsf{T}^S)_{Q_0} \ \mathsf{T}^q \ X^J |||_{N} \ .$$

Maintenant ce n'est pas difficile de calculer [coef., $G_{A'}$, Q_0] (voir (2.18)-(2.24) de [T5]). On obtient aussi que

$$|| [coef., G_{A_1,Q_0}]^{k}||_{L^2} \leq C \quad \underset{|A'| < |A|}{ supremum} \quad || G_{A',Q_0}u||_{L^2} \\ || || G_{A',Q_0}||_{N} \leq || || G_{A,Q_0}||_{N}$$

si on prend $C_0 \gg C_g$. (Quand |I|+|J|=k+1, c'est possible d'obtenir un A_1 avec |I'|+|J'|=k-1, p'+q'=p+q+1, $|A_1|<|A|$. Alors c'est impossible d'utiliser (7) complètement, mais peu importe ; après deux itérations le |A'| sera réduit comme cidessus).

Si on continue répétant tout ça quand |I| + |J| \geqslant k-1, éventuellement (\leqslant 2N $_0$ fois)

on n'aura que des G_{A',Q_0} "simples" : $|I| + |J| \le k$ et s = 0. Et si on commence avec

$$\sup_{|I|+b \leqslant N_0} || X^I T^b u || \leqslant \sup_{|I|+b \leqslant N_0} || X^I (T^b)_{Q_0} u ||$$

où $Q_0 \equiv 1$ au voisinage de $\overline{\omega}'$, les $G_{A',Q}$ simples qu'on obtient auront $r \in N_0$ et $p+q+|I|+|J| \in N_0/2$ (le $(T^b)_{Q_0}$ est devenu $(T^b)_{Q_0}$ et disparaît éventuellement, et les nouveaux T viennent seulement comme $[X_i,X_j]$). Compte tenu des |I|' $|I|_N$, on a

$$\sup_{|I|+b\leqslant N_0} ||X^I T^b u|| / N_0^{|I|+b} \leqslant$$

(12)
$$\leq C^{N_{O}} \sup_{r \leq N_{O}} \left(\frac{|Q_{O}^{(r)}|}{N_{O}^{(r)}} \right) \sup_{|I'|+b'} \frac{||X^{I'}T^{b'}u||}{N_{O}^{N_{O}}} L^{2}(\{\text{supp } Q_{O}\})$$

Pour les Q, on prend une suite Q = Q_0 ,..., $Q_{\log_2 N_0}$, $Q_j = 1$ sur $\omega_j \subset \omega_{j+1}$, $Q_j \in C_0^{\infty}(\omega_{j+1})$, $\omega_0 = \omega'$, $\omega_{\log_2 N_0} = \omega$ avec $d_j = \frac{d}{2^j} = \text{dist}(\omega_j, \omega_{j+1}^C)$ et

$$|D^{\alpha}\hat{Q}_{j}| \leq C_{1}^{|\alpha|+1} N_{0}^{|\alpha|-|\alpha|} \text{ si } |\alpha| \leq N_{0}/2^{j}$$

avec C_1 universelle. (Ces Q "presque analytiques" sont dues à Mandelbrojt-Enrenpreis).

Si on itère (12), la prochaine fois avec N $_{\rm O}$ remplacé par N $_{\rm O}/2$ partout et Q $_{\rm O}$ par Q $_{\rm I}$, on arrive à la fin à

$$\sup_{|I|+b\leqslant N_0} ||X^I\mathsf{T}^b\mathsf{u}|| \leqslant \widetilde{c}^{N_0} N_0^{N_0}||\mathsf{u}|| + \mathsf{H}^d(\omega)$$

avec $\widetilde{\mathsf{C}}$ indépendant de N_{O} . Cela donne l'analyticité.

Dans le cas où les coefficients sont pseudo-différentiels, la démonstration suit les mêmes lignes ; bien sûr c'est plus compliqué de passer d'une $Q\psi$ à une autre et il y a plusieurs cas où l'on doit estimer des opérateurs à symboles nuls et aussi des crochets $[Q(x),\psi(D)]$ et un reste qui interviennent quand on veut remplacer $P_{(x_0,\xi_0)}$ dans (3) par P. Les détails seront publiés ailleurs.

BIBLIOGRAPHIE

[A1] K.G. Anderson:

Propagation of analyticity of solutions of partial differential equations with constant coefficients;

Arkiv für Mat. 8(1970) 277-302.

[B1] L. Boutet de Monvel, A. Grigis et B. Helffer:

Paramétrixes d'opérateurs pseudo-différentiels à caractéristiques multiples; Astérisque 34-5(1976) 93-121.

[B2] L. Boutet de Monvel et P. Krée:

Pseudo-differential operators and Gevrey classes; Ann. Inst. Fourier Grenoble 17(1967) 295-323.

[G1] A. Grigis:

Propagation des singularités sur des groupes de Lie nilpotents de rang 2; A paraître.

[H1] B. Helffer, J. Nourrigat:

Hypoellipticité pour des groupes nilpotents de rang de nilpotence 3; Comm. in P.D.E., III (8) (1978) 643-743.

[K1] J.J. Kohn:

Harmonic integrals on strongly pseudo-convex manifolds I ; Annals of Math. $\underline{78}$ (1963) 112-148

[L1] R. Lascar:

Propagation des singularités et hypoellipticité pour des opérateurs pseudodifférentiels à caractéristiques doubles; Comm. in P.D.E. III (3) (1978) 201-247.

[M1] G. Métivier:

Une classe d'opérateurs non hypoelliptiques analytiques ; Indiana J. Math., à paraître.

[M2] G. Métivier:

Analytic hypoellipticity for operators with multiple characteristics; Comm. P.D.E. Janvier, 1981.

[M3] G. Métivier:

Hypoellipticité analytique sur des goupes nilpotents de rang 2; Duke Math. J. 47 (1980), 195-221.

[S1] J. Sjöstrand:

Propagation of singularities for operators with multiple involutive characteristics;

Ann. Institut Fourier Grenoble 26 (1) (1976) 141-55.

[T1] D.S. Tartakoff:

Gevrey hypoellipticity for subelliptic boundary value problems; Comm. Pure Appl. Math. 26 (1973) 251-312.

[T2] D.S. Tartakoff:

Local Gevrey and quasi analytic hypoellipticity for \Box_b ; Bull. A.M.S. 82 (1976) 740-742.

[T3] D.S. Tartakoff:

On the global real analyticity of solutions to \Box_b ; Comm. P.D.E. I (1976) 283-311.

[T4] D.S. Tartakoff:

Local analytic hypoellipticity for $\mbox{\ \ }_{b}$ on non-degenerate Cauchy-Riemann manifolds ;

Proc. Nat. Acad. Sci. U.S.A. 75 (1978) 3027-3028.

[T5] D.S. Tartakoff:

The local real analyticity of solutions to \mathbf{a}_b and the $\overline{\partial}$ -Neumann problem; Acta Mathematica 145 (1980) 77-204.

[T6] F. Trèves:

Analytic hypoellipticity of a class of pseudo-differential operators; Comm. in P.D.E. III (1978) 475-642.