
Séminaire Équations aux dérivées
partielles – École Polytechnique

H. KOMATSU
Hyperbolic equations and irregularity

Séminaire Équations aux dérivées partielles (Polytechnique) (1980-1981), exp. no 9 bis,
p. 1-16
<http://www.numdam.org/item?id=SEDP_1980-1981____A11_0>

© Séminaire Équations aux dérivées partielles (Polytechnique)
(École Polytechnique), 1980-1981, tous droits réservés.

L’accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) im-
plique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/conditions).
Toute utilisation commerciale ou impression systématique est constitutive d’une infraction
pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=SEDP_1980-1981____A11_0
http://sedp.cedram.org
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


SEMINAIRE GOULAOUIC-MEYER-SCHWARTZ 19~0-19~1

HYPERBOLIC EQUATIONS AND IRREGULARITY

par H. KOMATSU

Exposé n’ IXbis 16 D6cembre 1980





1

1. GEVREY CLASSES OF ULTRADIFFERENTIABLE FUNCTIONS AND ULTRADISTRIBUTIONS

In many of his works H8rmander discussed infinitely differentiable

solutions and distribution solutions of linear partial differential equations

with simple characteristics. On the other hand, in the works of Sato-Kawai-

Kashiwara and Bony-Schapira they assume very little about multiplicity of

characteristics and discussed real analytic solutions and hyperfunction

solutions.

We are interested in inbetween. There are infinitely many classes of

functions between the infinitely differentiable functions and the real analytic

functions and also infinitely many classes of generalized functions between

the distributions and the hyperfunctions. The most important among them are

Gevrey classes of ultradifferentiable functions and corresponding classes of

ultradistributions.

Let s &#x3E; 1. An infinitely differentiable function on an open set

Q in R is said to be an ultradifferentiable function of class (s) (resp.

{s}) if for any compact set K in 0 and any h &#x3E; 0 there is a constant C

(resp. there are constants h and C) such that

*

We denote by * either (s) or {s} and by E (S) the space of all

*

ultradifferentiable functions of class * on Q. The subspace D (S) of all

*

elements in E (S) with compact support has a natural locally convex topology

and an ultradistribution of class * on 0 is by definition a continuous
*

linear functional on D (S) .
m

We denote by D (Q) the space of all ultradistributions of class

’ on Q and endow it with the strong topology as the dual of the locally
*

convex space D (). Since there are partitions of unity composed of ultra-

differentiable functions of class *, the notion of support is defined for

ultradistributions in the same way as for distributions ([9], [101, [111).
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It is often convenient to regard Schwartz’ E as E (x&#x3E;) , the

distributions D’ as P ’, the real analytic functions A as E and

the hyperfunctions B as 

2. IRREGULARITY OF CHARACTERISTIC ELEMENTS

Let

be a single linear partial differential operator defined on an open set 0 in

Rn and let

be its characteristic polynomial. We assume that P(x, a) is non-degenerate

or that for every x E Q there is an a with jai = m such that a a (x) ~ 0.
Then the multiplicity d of P(x, 3) is defined to be the supremum of the

multiplicities of algebraic varieties 0153n; ; ~)} = 0 as ~ ranges

over S2. It is determined only by the principal part. As Hormander shows,

multiplicity is a good index. However, there are also many results in which

lower order terms play an essential role. Taking this into account we intro-

duced another invariant named irregularity in [13].

We assume that the coefficients aa(x) are real analytic so that

they are continued to holomorphic functions aa(z) on a complex neighborhood

0(C of S~. Then the characteristic variety V = { (x, E) x c~; ~ · p(x, ~) = 0 }

is an analytic-algebraic set. A non-singular characteristic element (x, ~)
o

is by definition a point in the non-singular part V of V.

0
For each non-singular characteristic element (x, ) we can find an

irreducible homogeneous polynomial q(x, ’ ~) e 0 § [E] with coefficients in the

ring 00 of germs of holomorphic functions at the point x such that V
x

coincides with the zeros of q near (x, ) and (X, ) is a simple zero of
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q. We have

Lemma 1 : Let q(x, ) and b(x,) be homogeneous polynomials in 0.[E].
x

If q (x, ) is irreducible and if b (x, ) vanishes identically
x

c n

on 
the zeros of q (x, ) on a neighborhood of (x, ) in Qae x C , then there

I is a homogeneous polynomial Z(x, E) e 0.[~] such that

0
Hence if d is the multiplicity of V at (x, ), then we can find

a polynomial k (x, E) c 00[£] such that
m x

0

E) 0 0. Let Q(x, 3) and Lm(x, 3) be differential operators

with coefficients in 00 whose characteristic polynomials are equal to q(x, )
x

and 
m 
(x, E) respectively. Then P(x, a) - L 

m 
(x, 3)Q(x, ]3) is an operator

of order at most m - 1. Applying Lemma 1 to the characteristic polynomial of

P - L d and so on, we have the following.

Pro osition 1 : There are d. 1 c {0,1,2,...,°°~ and differential operators

L.(x, 3) with coef f icients in ( o such that
i x

d.
where either d. =00 and L. = 0 or else ord(L.Q 1) = i and 0

1 1 1 1

on V near (x 4).

(4) is called the De Paris decomposition of P relative to Q after

De Paris [4].

Definition : The irregualrity a of the non-singular characteristic element
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(~, 4) is defined by

The De Paris decomposition is not unique but the irregularity is

uniquely determined by (x, ~). It actually depends only on the operator P

0

and the connected component of V.

J. Leray did not like the author’s proof of invariance and proposed

to start with a decomposition of P(x, a) of the form

where

(i) J is a finite subset of X;

(ii) .(x, ) t 0 on (q(x, E) = 0);
J 

(iii) w(j) = ord(LiQj) increases strictly with j c J.
J

Then

Two definitions are clearly equivalent. Leray’s proof of invariance

of irregularity is longer than the author’s but more natural. His approach has

another advantage, i.e. it applies to pseudodifferential operators as well.

Employing the Weierstrass type division theorem of Sato-Kawai-

Kashiwara [22], Aoki [1] has proved the existence of the strict De Paris

decomposition (6) for pairs of pseudodifferential operators (P, Q) such

o j

that 0 Thus he considers also a class of degenerate operators

including ordinary differential operators at their singular points as discussed
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in [12].

Clearly we have 1  a  d. An operator P is said to satisfy Levi’s

o’
condition at (I, E) if a = 1 there. De Paris [4J calls such an operator

"bien d6composable".

Let ~(z) be a holomorphic solution of

and let W.(t) be a sequence of wave forms satisfying
J

When the operator is of simple characteristics J. Beudon, J. Hadamard,

P. D. Lax, D. Ludwig, Mizohata [20], Wagschal [23] and many others constructed

a solution u(z) of

of the form

where the amplitudes A.(z) are holomorphic functions defined on a neighborhood
J

U of x and satisfying the estimates

for a constant C. De Paris [5] proved the same for operators with Levi’s

condition.

When the multiplicity d is greater than 1, Hamada [7], [8] con-

structed a solution u(z) of (10) of the form
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We have shown in [131 that the amplitudes A.(z) satisfy (12) and
J

By the method of Ouchi [21J we can show that (14) is the best possible.

Since A.(z) are independent of the wave forms W,(t), we can
J J

construct many solutions of (10). We proved in particular the existence of

null-solutions for analytic characteristic surfaces of constant multiplicity

[13].

3. HYPERBOLIC EQUATIONS

We consider the Cauchy problem

on the domain

Let F and be linear spaces of (generalized) functions on

and R respectively. The operator P(x, a) is said to be (F, n-I)
hyperbolic if for any *x1E: (-T, T) and any f c F and gl,...,g m 
there is a unique solution u c F of (15).
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Usually hyperbolicity condition consists of three parts:

(i) P(x, 3) is non-characteristic with respect to the initial

surface xl - kl,, i.e.

(ii) The characteristic roots are real, i.e.

(iii) Conditions for lower order terms depending on (F, Fn-1) -
Operators satisfying the first two conditions are called formally

hyperbolic. The necessity in general of those conditions is proved by the

behavior of solutions (13) in case the coefficients are real analytic ([13J,

[14]). Conversely Bony and Schapira [2] have proved that formally hyperbolic

operators with real analytic coefficients are A-hyperbolic and B-hyperbolic.

For each x and i’ e E-1 B {01 the characteristic polynomial

p(x, ~) of a formally hyperbolic operator P(x, 3) is decomposed as

where

P(x, 3) is said to be simply hyperbolic if vl - 
... = 

vk = 1 for all x

and E and of constant multiplicity if are constant

on each connected component of Q T x (~n-1 B {a}). The latter holds if and

only if every characteristic element is non-singular.

We claim that the third condition for hyperbolicity with respect to
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Gevrey classes of ultradifferentiable functions and ultradistributions is

given in terms of irregularity if the operator is of constant multiplicity.

First we note that if P(x, 3) is a formally hyperbolic operator of

constant multiplicity, we can define the irregularity also in the case where

the coefficients of P(x, 3) are not real analytic.

Matsuura [18J has shown that the characteristic polynomial p(x, ~)

of a formally hyperbolic operator of constant multiplicity and with coefficients
*

in E (Qr) can be decomposed as

by the characteristic polynomials q.(x, ~) of simply hyperbolic operators
J

*

Q.(x, 3) with coefficients in E (QT) such that the product Ql(x, a) ...

J T I

x Qr(x, 3) is also simply hyperbolic.

Then we use the following.

I Lemma 2 : Let q(x, ) be the characteristic polynomial of a simply

I hyperbolic operator with coefficients in E (QT). If a homogeneous polynomial

b(x, e E (Q T )[£] vanishes identically on the zeros of q(x, ) in QT x Rn,
*

then there is a homogeneous polynomial (x,) e E (Q T )[£] such that

In fact, let p be the order of q (x, ~) and let

be the division as a polynomial in E1* Then the polynomial r(x, ~) of order

less than p has p distinct roots for every x and E’ so that we have

r(x, E) = 0.

If Q(x, 3) is one of Q,(x, a) of the Matsuura decomposition (19),
J
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then we can prove by Lemma 2 that P(x, 3) has a De Paris decomposition (4)
*

by operators Li (x, 3) with coef f icients in E Thus we can define the

irregularity of P(x, 3) relative to Q(x, 3) by (5). When P(x, 3) has

real analytic coefficients, it is equal to the supremum of the irregularities

of characteristic elements which are zeros of q(x, ~).

We define the irregularity a of the operator P(x, 3) to be the

maximum of the irregularities of P(x, 3) relative to all factors Q,(x, 3) of
J

the Matsuura decomposition.

Theorem : Let P(x, 3) be a formally hyperbolic operator of constant

multiplicity and of irregularity a such that the characteristic roots

T I (x; ~’ ) are uniformly bounded on 0 T x { ~’ e kn; I = 1} .

(i) If Q - 1 and the coefficients of P(x, 3) are in E(o T then

P(x, 3) is E-hyperbolic and D’-hyperbolic;

(ii) If a  s/(s - 1) and the coefficients are in then

P(x, ~ a ) is E (s)-hyperbolic and 
(iii) If a  s/(s - 1) and the coefficients are in then

P(x, a is E{s}-hyperbolic and 

Part (i) has been proved by Chazarain [3] but our proof is much

simpler.

Let Q.(x, 3) be the simply hyperbolic operators of the Matsuura
J

decomposition (19). Define simply hyperbolic operators Ri(x, 3), i = 1,...,d,
1

by

For example, if

After a few computation we derive the following global decomposition
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of P (x, 3) from the De Paris decomposition (4) for each factor Q.(x, 3).
J

Proposition 2 : There are differential operators L.(x, a), i = l,...,d,
1

, , 

*

with coef f icients in E (T) such that

and

Then the theorem is proved by the classical result of regularly

hyperbolic equations due to I. G. Petrowoky, J. Leray, L. GArding and Mizohata

[19]. Let R(x, 3) be a regularly hyperbolic operator of order p on

~ -T , T11 x Then it asserts that for any data

there is a unique solution

of the Cauchy problem
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where Hp (R n-1 ) is the Sobolev space of order p. Moreover, there is a

constant C such that

where

To solve the Cauchy problem (15) with X1 - 0 we solve

and solve

Then a solution u is obtained as the sum

Since we have a priori bounds of dependence domains by assumption,

we may deform the coefficients of P(x, 3) so that Ri in (22) are regularly

hyperbolic and the coefficients of Li satisfy (1) with a constant C (resp.

constants h and C) independent of x. We may also assume that g. = 0 by
J

subtracting a suitable function from u0* Then (28) and (29) are solved by

d regularly hyperbolic equations
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If

and then (30) has a unique solution

for which we have

In case (i) we have

Hence

Thus we have
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proving the convergence The uniqueness is proved similarly.

Since p and q are arbitrary, the solution is infinitely

differentiable if the data are so.

Considering the adjoint problem, we have the P’-hyperbolicity.

It is easily proved that the adjoint of a formally hyperbolic operator of

constant multiplicity has the same irregularity as the original operator.

The proofs in cases (ii) and (iii) are essentially the same as above.

To prove the ultradifferentiability of solutions in the space variables

(x2’...’x) we need only to estimate the commutators of the operators Ri
n 1

with differentiations in the space variables as was done by Leray and Ohya

[17J in case (iii) for operators of the form

Then the ultradifferentiability in all variables follows from an analogue of

*

the Cauchy-Kowalevsky theorem [15]. The V ’-hyperbolicity is again proved

by the duality. Details are given in [16].

When P(x, a) has real analytic coefficients another proof has been

given by De Paris and Wagschal [6].

We employed the assumption that P(x, 3) is of constant multiplicity

and of irregularity a only in the form that it admits a global decomposition

(22) with (23). Therefore the conclusion of the theorem holds also for a type

of formally hyperbolic operators of varying multiplicity.

Lastly we note that the condition a = 1 (resp. a  s/(s - 1),

resp. a  s/(s - 1)) are necessary at each non-singular characteristic

element in order that a formally hyperbolic operator with real analytic

coefficients be E-hyperbolic (resp. E -hyperbolic, a resp. E -hyperbolic).
This is proved by the behavior of solutions (13) and a characterization

* *

( [ 10 ] , [11]) of local operators E - E .
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