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In the spectral theory of the laplaci~n in exterior domains

"distort.ed plane waves" are fundamental. For the exterior domain IR n,, ,K .

where h. is a compact set with smooth boundary ~K, one defines the

distorted plane wave Q(x,w,k) for the Dirichlet problem as follows :

(Dirichlet condition),

(Sommerfeld condition).

For a proof of the existence and uniqueness of ~ satisfying i)- iii) one

may consult 

This seminar deals with an approximate construction of 

in the case that K is strictly convex - in the sense that the normal

curvatures of aK are everywhere strictly positive. The construction is

asymptotic to order k _ N for any given N as k tends to 00, and it permits the

explicit asymptotic expansion of two quantities of interest in scattering

theory, the scattering phase s(k) and the forward diffraction peak

a(0,0,k). These can be expressed in terms of as f ollows :

where v is the unit normal to aK pointing into :RnBK. By substituting the

approximations f or ~ into these formulas one can conclude that ds/dk and

a(0,9,k) have complete asymptotic expansions of the form

and compute the first few terms :
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Here V(K) is the volume of K, A(6K) is volume of aK, A(B) is the volume

of the projection of K onto x.o= 0, r is the boundary of this projection,

dS is the volume form on r, and K(e) is the normal curvature in direction

0 on the pre-image of r in K. The constant cn is the finite part of a de-

finite integral of Airy functions and depends only on n.

±

The constructions given here follows those of Ludwig [3i very

closely but make use of improvements made possible by Melrose’s proof of

the symplectic equivalence of glancing hypersurfaces [7]. For a discussion

of (1) one may see F5j. The expansion (2) was derived when K is a sphere

by Rubinow and Wu and conjectured for convex bodies by Keller and

Rubinow [2]. The leading term was derived rigorously by Majda and Taylor

L6’. The complete asymptotic expansion is due to R. Melrose ;9j. The

method of [9 is different from that used here and appears to be more

powerful as it yields the same results for the Neumann problem. Still

more refined results on permit a uniform expansion near

-have been obtained by Melrose and M. E. Taylor. The construction

given here seems sufficiently intuitive -at least to the author -

that it may serve as a prologue to the results of Melrose and Melrose-

Taylor.

Localization

Using the standard construction of geometric optics one can

decompose e ’ into a sum of terms ue, , where
e

such that

ii) the projections of the supports of u 
e 

onto x.w = 0 can be

made subordinate to any given cover of 0.
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The strategy here will be, given u e to construct a u s satisfying

u satisfies the Sommerfeld condition.
s

Actually one has only to construct u 
s 

on a neighborhood of 6K in RnBK

satisfying i) and ii) with wave fronts -or more precisely "frequency
set" (see over points near aK but strictly inside EnB K directed
toward 6K. Then u s can be extended to satisfy the Sommerfeld condition

by the outgoing Green’s function for the laplacian on Rn (see [4.,,

pp.521-3).

If the projection of the support of u e on x.cu does not intersect

r, the construction of u s is a standard application of geometric

optics. Hence from here on we consider only u e whose support projects
onto a neighborhood -which we may take as small as we wish - of a point on

r - .

The Ludwig-Melrose construction

The idea here is to find a representation of u e in the form

where the integrand is an asymptotic solution to (p + k2)w= 0 uniformly
in S, and one has additionally

The function Ai is the standard Airy function

and a and b have the form
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Once we have (3) - (5) the function us will be given by

where Note that , since A satisfies Airy’s differen-

tial equation, the integrand is automatically an asymptotic solution to

(A+k )w=0 in RnBK -since A(s) is exponentially increasing as s ~ + co ,

we use the fact p &#x3E; ~ in RnBK here. The choice of A is made so that the

frequency set of u 
s 

is directed toward 6K from RnBK .

As we mentioned earlier the constructions here are strictly

local. We assume that we are given x E K with = 0 and, writing
o o

5 = , ’ ) , a ’ I such that V9(x ,0,S,)o= -(1). All the assertions (of
1 0 0 0

existence etc...) in the constructions that follow are to be qualified by

"for (x,) in a neighborhood of (x 0,1)" -even though this will always
o 0

be omitted. Just how small the support of u e must be is only determined

at the end of the construction.

The representation (3) with conditions (4), (5) is the delicate

part of the construction. One first determines 0 and p and then a and b .

In order that the integrand in (3) be an asymptotic solution to

(~+k )w=0, 6 and p must satisfy the "eichonal" equations :

on p 2 0. These equations are solved by choosing a smooth,,family of

strictly convex surfaces S with 8K when S1 = 0, and defining

p~x,~) - 0 on S . Note that, since we want VxP ¡. 0, this implies

1 on S ~ and is tangent to S . * Thus we must choose

e on S~ to be a solution of the surface eichonal on S-. With these
choices 7a) and 7b) determine 0 and p uniquely for x outside S , I i.e. in

the region where we will have p 3 0. The condition (4) implies and,

modulo a change of variables in ~l is equivalent to the following geometric
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condition on Sg and : if the straight line through xo E Sg with
o

direction 8K at x’, then the reflection of this line
x oo

in BK is, f or some x1 S , the line through xi with direction 
o

In [_3~! the surfaces S were only chosen so that (4) held up to an error

which was 0(§’) for all N. However, it is a direct consequence of [7J1

(the derivation is given in [8J that S and can be chosen so that

(4) holds exactly. Then one completes the construction by extending 0

and p as C functions in the complement of p 2 0, maintaining t4).~

If we replace Ai and Ai’ ’by their integral representations, (3)

becomes

Note that, writing then this integral can

be expanded by the method of stationary phase. If the result of this ex-

pansion agrees with ue, then we must have
e

xvhere §(x) and fi(x) are defined by

However, since ~ is automatically a solution of the standard eichonal

(I V ~ 12 = 1 ) it suffices to have (8) hold for x on a surface transverse

to w. The eichonal equations (7) and condition (4) remain valid if we

replace 0 by 6+ and we must exploit this freedom to obtain

det a2 a~ I / 0 and (8) .

Introducing local coordinates (z,y) where z = 0 on 6K,

8f/gz = gf/8U on aK and y, = x.w on 3K, we can assume S0161 is given by

z ^ a~y, ~ ) . Writing y = (Yl’Y’)’ it is a consequence of the constructions

in 171 that S and 0 t S can be chosen so that (thisL J 

2
is used in [8j) and 0. We let P denote written as a

function of (z,y).
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To achieve 8) we begin by solving 
. 

Z y Z Y
for y=y(). This is over determined, but since

Iv 81 = Iv (x.w)1 = 1 when it suffices to solve (8 ,8 ,) = ~~ ~ ~ .~ )
x x z y z y

on z = a(y,§) . To check the hypothesis of the implicit function theorem,

we 0 (so that a = ez = 0) and compute 
~

Since is nonzero by the strict convexity of 8K, and we may

assume a28/a y ’a y1 vanishes at the base oint, we conclude that
(8 ? 6 ) =? ? P ) can be solved f or yeS) on 

z y z y

Now we defined t by the requirement

To check that

is symmetric, we note that

Since (9) determines * up to an additive constant, we complete the

construction of ~ by choosing this constant so that the

base point. Further work along exactly, the same lines shows that

(This uses det and that

z = a.(y(s),ç:», y= y(§) defines a surface transverse to w. Then it follows

that (8) holds when 0 is replaced by 9 + * - .
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We will not discuss the construction of the amplitudes

a(x,~,k) and b(x,~,k) here. In 15) a and b are constructed so that ,

given the preceding construction of 0 and p, (3) holds and in place of 6 )

one has b= 0(t N) for any N on 6K. The modifications needed to improve thisI y p

to (5), i.e. b= 0 on 6K are substantially simpler than those that were

used in obtaining (4) - no use of is involved. Actually, imposing

(5) for all x E bK (or even the weaker condition b = 0(§’ )) would make1

it impossible to keep the intersection of the support of a and b with

6K strictly inside the set where 0 and p are defined. This is a turn would

prevent us from making the integrand in (3) an asymptotic solution to

= 0 on a neighborhood of 6K in REK. However, we only impose (5)
for (x,~) in a small neighborhood of the base point. Provided the projec-
tion of the support of u e is made sufficiently small, one still has

us(x, k) + ue(x,k) = O(k-N) for x E aK in this case.

The representation of 

Away from the intersection of 6K with the pre-image of r the

expansion of 6~/bv is easy to compute from geometric optics ; the leading

term is

(the "Kirchhoff approximation"). The next term is 0(1) and it does not

contribute to the second term in (1) and (2).

In a neighborhood of a point aK where w.v(x0) = 0, i.e. a
o o

point that projects to r, one can combine (3)-(6) to get

where F x = Ai’(x)-2013?201372013 Ai x) . Expanding by stationary hase in the

variable S’, this can be further simplified to a representation in the

form

where G has the form
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Substituting (10) and the analogous expression (derived from (3)),

into the integral formulas for ds/dk and one derives (1) and (2).

The crucial advantage here of (10) over the formulas that could be
. .... ik’

obtained from [31 is that one can eliminate the oscillatory factors

by an integration in an x-variable without disturbing the Airy functions.

At the final stage in the derivation of (1) and (2) one must expand inte-

grals of the form

where G is a polynomial in A’/A, i’/X, Ai and their derivatives* it is

here that the krlog k terms seem to appear in the asymptotic expansions.
It is known that there are no logarithms (and only integral powers of k)

in the expansion of but unknown whether logarithms 
’

actually appear in the expansion of a(0,0,k). 
~ 
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