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§ 1. INTRODUCTION

Let us consider a tempered distribution f defined on the

n-dimensional real vector space Rn of the variables x = x1’ ... , xn (The

index x in serves uniquely to indicate the name of the variablesx
in the space Rn considered) -

The essential support .1 ES (f) of f at any given point X of Rn -
which coincides, as we recall below, with its singular spectrum [2]-
is the closed cone with apex at the origin in the dual space Rn of
n 

u

R composed of the "singular directions" along which the localizedx
Fourier transform of f at X does not decrease exponentially in a well

specified sense. Namely, the localized Fourier transform of f is defined

for every y&#x3E;0by :

n

where u,x&#x3E; is the scalar product, usually defined as u.x = y uixi . Then

a point U / 0 in Rn (as also all points XU, X&#x3E;0) is by definition(u)
outside ES X ( f ) if there exists an open cone 9 with apex at the origin in

Rn containing U, and constants a&#x3E; &#x3E; 0 (as also a polynomial P(u) 0

and q 0) such that the bounds

be satisfied in the region u E 11’, for all y satisfying 0y  Yo. .

In the bounds (2), the important factor is the exponential

fall-off factor e-aylul, bounds of the form IFy(u;X)1  

being always satisfied. The bounds (2), when they are satisfied, express

the fact that the localized Fourier transform of f at X decreases

exponentially for all y&#x3E;0 sufficiently small, with a rate of decrease

at least proportional to y. The notion of essential support thus defined

characterizes, as explained in detail in [11, the micro-local analytic

structure of f, namely the various possible decompositions of f into

sums of boundary values of analytic functions (in the sense of distributions).

The directions from which these boundary values are obtained may depend
on X. This characterization coincides with that associated in [2] with the
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singular spectrum, apart from the fact that all boundary values are

distributions whereas they can be hyperfunctions in [2], even

when f itself is a distribution. It is, however, proved in [3l that the

two notions do coincide for distributions.

Let us now consider a product ff of two distributions. A

standard theorem [2,1] says that this product can be well defined in a

neighborhood of a point X, and it gives information on ESX(f1f2)’ if the

singular spectra of f1 and f2 at X do not contain opposite directions.
Namely one has :

Definition 1 : A point X is called a u= 0 point with respect to the

product if there exist U 6ES (f) and 2 0, such

that U1 + U2 = 0. 
1

that U1 + U2 _ 0.

Theorem 1 : If X is not a u = 0 point, can be well defined as a

distribution in the neighborhood of X and

t.

Theorem 1 is an extension of a previous well-known result on

the product of two distributions that are boundary values of
l 

analytic functions f1, f2 from common directions : flf2 is then the
boundary value of from these directions. It can be proved either by

using this latter result together with local decomposition theorems of

distributions into sums of boundary values of analytic functions, or

directly in terms of localized Fourier transforms 

Let us now consider a u= 0 point X. Theorem 1 then gives no

information :

(i) it does not provide a definition of the product flf2 and
(ii) even in cases when this product is well defined from the outset

by standard procedures (product of functions, etc... ), it gives no

information on ESx(f1f2).
There have been a number of works devoted to problem (i), namely

to define fIf2 in various situations where it is not a priori well

defined. We do not treat it here, but are interested instead in problem

(ii). In the applications to relativistic quantum theory that we have

in mind (see Appendix 1) one is in fact interested essentially in products
of scattering operators, which are bounded operators, and related quantities,
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and the product is then always a well defined bounded operator. The link

with products of distributions is as follows. Being given two bounded

operators A’, A" from L2 t Rn ) to and from to L2(:R(y»p (x) (t) (t) (y)
respectively, the kernel ax, y) of the product A = A"A’ can be written

(formally) as :

where a’, i a" are the kernels of A’, A". We recall on the other hand that

kernels of bounded operators are always well define.d (tempered)
distributions in view of the Schwartz nuclear theorem.

In cases when it applies, Theorem 1 allows one to determine

the singular spectrum of the product a’ (x,t)a"(t,y) and the standard

theorems [2,1] on integrals of distributions then allow one (under some

conditions on the supports of a’ , a" that are satisfied in the physical

application) to get information on the singular spectrum of a. Namely, if

we denote by u , v, w the dual variables of x, y, t respectively and

adopt, for convenience, the definition (u,v),(x,y)&#x3E; = u.x - v.y,and
similar ones for (u,w), (x,t)&#x3E; and (w,v~(t,y)&#x3E;, one has :

This theorem can alternatively be proved in a more direct way

(i-e. without using successively theorems on products and integrals) in

terms of localized Fourier transforms : see [4]. The absence of information

on ES~ y(a) at (u,v) = 0 points turns out, however, to be a crucial

problem in the application : all points are (u,v) = 0 points for some of

the simplest cases encountered, for instance for the product ~ where

and denote respectively the connected parts of the scattering

operator S 3,3 and of (5" ) between three initial and three final

particles. This problem is at the origin, in recent years, of mathematical

works [5,4], which have in turn been applied to the physical situation in

and [4] respectively, in a way which is briefly outlined in Appendix 1.

The results of [5] are briefly mentioned in Appendix 2, the main part of the

present text being devoted to present the mathematical results of [4] and
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related ones. We shall as a matter of fact be interested here, from a

mathematical viewpoint, in the two following problems :

(i) essential support of a product of functions, and more particularly
of locally square integrable functions and

(ii) essential support of the kernel of a product of bounded operators.

Let us first make some preliminary remarks. We consider here for

instance case (i), but similar remarks apply to case (ii). First, if X is

a u = 0 point, then the set ES(f1) + ES(f2) = U(x,ESx(f1) + ESx(f2» is not

always a closed subset of " Sincexthe essential support
ES(f) = U (x,ES x ( f ) ) of a distribution is always closed (see [1,2]), the
best result that might a priori be expected is to show that Es X(fI f2) is

contained in ES(f2)lx’ which is the fiber at X of the closure of
However, such a result cannot be expected in general-

There do exist examples for which ESX(flf2) is strictly larger than

ES(f1) + ES(f2)lx’ and examples for which ES X(f1 f2) is certainly

believed to be all even though ES( f2) r X is much smaller :

see Appendix 3. Some conditions on f1, f2 are therefore needed if one wishes
to get information on ESX(flf2).

In the various works carried out on the problem, the results

obtained, under various conditions, do not yield ES(f1) + ES(f2)rX as a 
’

bound on ESX(flf2). Besides the necessity already mentioned of considering

the closure of ES(f1) + ES(f2), it appears necessary either in [5] or in the

results described here to consider moreover certain limiting procedures

that may enlarge the essential support. The present results apply under

a general regularity property R on individual terms that is presented

in Section 2. They are described in Section 3.

, As will appear below, property R is not a property that can

be expected to be automatically satisfied in "simple cases". Examples

of simple functions that do not satisfy it are given in Section 2.

It is a general property that is satisfied by a class of distributions that

include "simple" cases, and others. As will appear in Section 3 , the

results presented here, which rely on this property, are the best possible

ones "in general", in a certain sense. On the other hand, other types of

results can be obtained under other conditions on individual terms : this

is the case for the results of [5], which may give for instance information,
in certain cases, on products of functions that do not satisfy property R.

These latter results are in fact of a different nature and apply to different

situations. The limiting procedures obtained in both cases are correspon-

dingly different : see Appendix 2.
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§ 2. REGULARITY PROPERTY R 

The regularity property R is essentially a condition on the

way rates of exponential fall-off of localized Fourier transforms tend

to zero in certain situations, when one approaches the essential support.

Its content in terms of analyticity properties can be easily understood

in simple cases as will be explained at the end of this section.

Let us first make some preliminary remarks. Being given a
A

(tempered) distribution f and any direction u that does not belong to

ES X (f), there exist by definition (see Section 1) an open cone 11 around

u and constants a&#x3E; 0, Y &#x3E; 0 such that the localized Fourier transform

f f a 

o 

T 

’ r r w + ,of f at X decreases exponentially like e in the direction of u

for all y &#x3E; 0 smaller than y . Let a(u) be the upper limit of all possibleo

values of a for the given direction u, all possible neighboring cones

" and all possible Information on ESy(f) alone yields no information

on a(u) : one only knows that a(u) is strictly positive, and it will in

general tend to zero when u approaches a direction that belongs to ES(f).
Information on a(u) may be derived, however, from the knowledge

of the essential support of f at points x in the neighborhood of X. In

fact, it follows from general results of essential support theory (see

Theorems 9, 8 and 4 of [11) that :

Let us then consider a cone (3 with apex at the origin in Rn(u)
composed of a continuous set of directions that all lie outside ESy(f)
and lie also outside ES (f) for all points x such 

x 
p 

0

0152 o &#x3E; 0. The closure of 0, may, however, contain directions that do belong

to ESX(f ) . It follows from the above analysis that, given any 01520152O’ a&#x3E; 0,
.. . -a i u .

the localized Fourier transform of f at X falls off like e"Y , I with the

same uniform constant a, for all directions u and all sufficiently

small Y . The maximal value y0(Ull) of y may, on the other hand, depend on u and

in fact it must necessarily tend to zero when u approaches a direction

that belongs to ES(f) .
The crucial content of property R is the requirement that

does not tend to zero faster than linearly with respect to the angle

u; of A with the boundary of a.
Applied to the case of a square integrable function, property

R is more precisely the following requirement.
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Regul ar ity property R f or square int egrabl e functions.

A square integrable function f satisfies by definition the regularity

property R at a point X if, being given any neighborhood ~of X and any
cone a with apex at the origin in Rn ,composed of a continuous set of(u),compose
directions ’u" such that "’U’ 0 ES ( f ) , ¥Ox E r, there exist a&#x3E;0, a constant

x

x &#x3E; 0 and a function d of the variables u, y, which is square integrable

with respect to u and whose norm independent of y,
such that :

for all points u in ~ and all y satisfying :

Condition (7) can be equivalently replaced by :

for some constant x’ &#x3E; 0, where d(u,~) is the distance of u to 5(~.

The existence of a &#x3E; 0 is a direct consequence of the previous

analysis, since a neighborhood of X always contains a subneighborhood

of the form (x - X)2  a , 0 oc o &#x3E; 0, and the essential content of property R
o o

is, as already mentioned, condition (7), or (8). The bound (6) contains

moreover a uniform function d. This is a slight extension of the two

following results, which are valid C4~ for any square integrable function

f : 
_ 

.

(i) Bounds of the form 
y 
(u;X) I  d(u;y,X), where d is a square integra-

ble function of u, whose norm is independent of y and X, always hold for

all y &#x3E; 0.

(ii) Bounds of the form (6) always hold if the closure of a does not

intersect Esxf&#x3E; (apart from the origin&#x3E;-
For a locally square integrable function, property R at X is

defined similarly by considering the localized Fourier transform of ~f,
where X has a compact support, is bounded and is equal to one in the

neighborhood of X (the statement does not depend on the choice of x).
In the case of the kernel a(x,y) of a bounded operator, property

R is a requirement similar to above,which includes a function d of u,v,y
which is square integrable with respect to u, or alternatively v, and whose
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corresponding norm is independent of the other variables. The crucial

content of the property is, however, again the condition analogous to

(7), or (8). The precise statement is given in ~4~ and is therefore

omitted here. Note that property R, as stated in [4J, includes also certain

uniformity conditions with respect to the point (X,Y) considered : bounds

analogous to (6) are required to hold uniformly on F (u,v;x,y) when

(x,y) varies in a sufficiently small neighborhood of (X,Y).

Remarks :

1) Property R is automatically satisfied if, being given any neighborhood

Jr of X, ES X (f ) is contained (apart from the origin) in the interior of the

set 1. ES (f) . This directly follows from the definition of the essential
x c-.Xsupport and) for instance in the case of a square integrable function f, , of

result (ii) mentioned above.

2) Property R may depend on local coordinate systems, as will appear below

in the discussion of analyticity properties. For instance, we shall see

that the function f (x- , x ) - of Example 3 does not satisfy1 2 1 2 p y

property R at the origin. If, however, one uses the new variables

xl = x1 - x3 , 1 x2 ::: x2’ the function (’ + satisfies it.
1 1 2 2 2 1

Re ul ar it property R and analyticity

The content of property R in terms of analyticity properties is

most easily understood in the following simple case.

Let us consider a distribution f whose essential support ESx(f)
at all points x in a neighborhood of a point X is a closed convex salient

cone C, independent of x. Then f is, in the neighborhood of X, the

boundary value of an analytic function f from the directions of the open

dual cone r of C. More precisely, being given any open cone ~’’ with

apex at the origin whose closure is contained (apart from the origin) in r,

there exists e &#x3E; 0 such that f is analytic in ill x (Imz E r., r Irnz I  61 where

z is the complexified variable of x and w is a real neighborhood of X.

However, e may tend to zero when the cone r’ expands to ~’, in which case f

is analytic in a domain of the form w x (Imz G B~ , where B is of the form

shown in Fig. 1 a) . In view of the last part of Theorem 4 of [1l, the

basic content of property R, namely the fact that does not decrease

faster than linearly with respect to the angle of u with C~ is then

equivalent, when it is satisfied, td the fact that 6 does not tend to zero

i.e. that f is analytic is a domain of the form wx [ImzE FIlmzl  s, F-&#x3E; 01
when B is of the form shown in Figure 1b .
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Figure 1

As stated above, for instance in the case of a square integrable

function f, property R is essentially equivalent to this analyticity

property, together with some type of bound on f in its analyticity domain.

For instance, if f is uniformly bounded in wx then property R

is satisfied. 
’

Property R is of interest, in particular in applications to phy-

sics, in much more general cases than that considered above. Its general

expression in terms of analyticity properties is however more difficult,

in particular because a distribution f is not in general the boundary

value of an analytic function, but can be expressed in many ways as a

sum of boundary values of analytic functions. We shall not discuss this

here, and.we conclude this section with some examples.

Examples

The examples given below of functions that satisfy (examples 1,4),
or do not satisfy (examples 2,3) property R, have voluntarily been chosen

simple. In these examples, À denotes a positive non-integer rational

number and f is of the form (a(x) + io) where a is a real analytic
function, which is real valued in the examples 1, 3, 4. This form is that

considered in ~5] . Similar considerations would apply if (a(x) + io) is
replaced by 6(a(x)). For simplicity, we only consider below points X that

are not critical points of a.
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Example 1 : (x1 - X + io)À., X = (0, 0) . ES (f ) is the direction
1 2 1 2 x

(1,0). At neighboring points (x ’x2 ), ES x (f) is the direction ( 1, -2x ) .
For any neighborhood X, ES (f) contains the direction (1,0) in its

.. * ...
interior and hence property R is automatically satisfied (see Remark 1

above).

The following fact is on the other hand interesting in the case

of that function. Let a &#x3E; 0 be given and let C = 

x; 

(x-X)2oc ES (f) .
o 

-aoylul 
0 x;(x_X)2a 

0 f j Then a factor of fall-off of the form is obtained in a region
of the form o"fuf  where x &#x3E; 0 is independent of a . I.e.

ao 0

the constant a in this factor can be chosen equal to oco and needs not be

strictly less than This is due to the fact that the analyticity
2 

v 

2
domain Im(z - of the function z - z2 contains ? for any a &#x3E; 0, a

1 2 1 2 o

region of the form shown in Figure 1b, with r being the dual cone of Ca , ,

for any °   l’ 2 such that (x - X) 2 _ oco, and that the "width" of 
o

the region Ba can be chosen independent of ao .
a o
o

Exam le 2 : X = (0, 0) . This function is
1 2 1 2

analytic at all real points, apart from the origin. Its essential support

away from the origin is thus empty, its essential support at the origin

being the direction (1,0).

However, the analyticity domain Im(z + iz2) &#x3E; 0 of the function
2 x 

y 1 2

(z 1 + io) does not include the intersection of any complex neighborhood
of the origin with the region Im z1 &#x3E; 0. Correspondingly, f does not

satisfy property R (see previous discussion and Fig.1).

Example 3 : f(x1,x2) = (x1-X+ io)iB , X = (0, 0), ES (f ) is the
1 2 1 2 x

direction ( 1, 0) . When x= (x1,x2) lies in a neighborhood of the origin

Es ( f ) which is the direction ( 1, - 3x) lies always on the same sidex 2

of the direction (1,0) : see Figure 2 a) where the shaded area represents

U S(f) . To check whether property R is satisfied or not , it is then
x E)r 

(and sufficient in this case) to consider a set of directionsnecessary (and sufficient in this case) to consider a set of directions

that lie in the region u2 &#x3E; 0 and approach the direction ( 1, 0) : see Fig. 2a)
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Figure 2

In view of Theorem 4 of ,1 j , property R would be satisfied at
X if the function (z1 z 2+ io) was analytic in a domain of the form1 2 y

(jux (Im z E B with B of the form shown in Figure 2c (the important fact is

here the existence of a segment of f inite length in the

closure of B, at y~=0, y2  0) . This is not the case here, the region

Im (z- z3 ) &#x3E; 0 bein of the f orm shown in Figure 2b at x - x - 0. Corres-
1 2 g g 1 2

pondingly, the function f does not satisfy property R.

Example 4 :

where x i = 1,2,3, is a multidimensional variable. ESx(f) is the direction
. A --,. 

1 

where I =.- 
- 

= 
 2 

+ ) -1/ 2 .... on the olher hand, one k f(0,-A) where v 1 -V, 2 ’Vi = + i) X.. On the other hand, one checks, for

instance, that all other directions of the space S=0 are outside
U ES (f) where x varies in a neighborhood vr of X, although ES (f) varies
E() x x

with x (and is different from Hence property R has to be checked

in particular for sets of directions of that space that approach the direc-

tion (A,O,-A) : : see Figure 3.
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Figure 3

The detailed study of the analyticity properties of f allows

one to conclude that property R is satisfied. The function f, when replaced

by the corresponding 6-function, is very close to the momentum-energy

conservation 6-functions encountered in the physical application.

§ 3. u = 0 THEOREMS

Theorem 3 : : Let f1,f2 be two locally square integrable functions that
satisfy property R at a u = 0 point X. Then :

Proof : We prove Theorem 3 below for square integrable functions. For

locally square integrable functions, it is sufficient to replace f1, f2
by Xlfl, X2f2 with appropriate functions)(,, X2 (see Section 2).

Let f = ff. It will be convenient to use the function F defined

for every vo &#x3E; 0 by :
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which is related to 
A 

through the relation Â u;X) = F(u; X) .which is related to through the relation Y (u;X) = F(u;ylul,X).
Functions F,, F2 associated with f,, f2 are defined similarly, and the

following formula is easily derived :

Let U be a given point, such that for instance fur = 1, that

does not belong to the cone C defined in the r. h. s. of ~ 9) . To show that

U t ESX~f), it is clearly sufficient to show that there exists an open

cone ’trwith apex at the origin, containing U, a&#x3E; 0, 0 and a constant

C such that :

in the region 0  v This is achieved as follows. 

Since U,~- C, there exi sts E &#x3E; 0 such that u’ I + u" - U ~ &#x3E; e 
,

whenever u’ E u" E ESx,,(f2)’  ~, ~  s. The cone 9

will be chosen to be the set of points of the form Xu, X&#x3E;0, 1 u - U I  ~’ ,
0e’«e. To prove the bounds t12), it is then sufficient to use the

bound :

which follows from (11), and to check bounds of the form (12) for the

integrals over the two following regions : 
. I

(i) the set of points u’ whose distance to

larger and

(ii) the set of points u’ whose distance to

larger 

One checks in fact easily that the union of these two sets is

all The needed bounds for each one of these integrals are derivedu )
from the exponential fall-off properties associated with F1 and F 2
respectively, (and from the fact that F2, F always satisfy, as already2 1
mentioned in Section 2, trivial bounds of the form IF i(ul;v0 ,x) f  1 0 1 0
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for all vo &#x3E; 0, where d i is square integrable with respect to u’ and has

a norm independent of vo).
For instance, property R applied to F1 ensures that :

for some a&#x3E; 0, in a region of the f orin 0  v 
O 

 x’ dist.(ui;C1 ), X’ &#x3E; 0,
I I O,E

where ( and hence in particular in the region

0  v since (The cone (3 of Section 2
0 5 3

is here chosen to be the complement of C1 , E ). Q. E. D.
! e

A similar theorem, which extends Theorem 2 to (u,v) = 0 points,

applies to products of bounded operators that satisfy property R : see [4").
A direct proof is now based on the formula :

We conclude this section with some remarks, for instance in the

case of a product of functions.

1) Formulae (11) (13) are valid for arbitray square integrable

functions. One can see, however, that Theorem 3 is the best possible type
of result that can be obtained on the basis of Formula (13) : if

property R is not satisfied by f1 and f2 at X, at least for appropriate

sets of directions, one cannot expect to extract (as is required to prove

results on ESX(f» a uniform exponential fall-off factor e-a.vo on F in a

uniform region 0  v (independently of u’).

The use of the bound (13) seems to be the best possible method

"in general". although this method may not be the best under special
conditions on f1 and f2"

2) Consider- a product f 1f 2 of functions which are, in a

neighborhood of X, boundary values of analytic functions f1, f2 from the
directions of open cones r1, r2. Theorem 3 gives information when the

closures of r1 and j’2 have an intersection that is not reduced to the

origin, although rlfl r2 itself is empty, and when property R is satisfied.

This result can be understood in terms of analyticity properties as follows

the intersection of the closures of the analyticity domains of in
-1 -2

Im z -space is non empty if property R is satisfied and contains in fact
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a region of the form Im z E f1nr2,IImzl  b, b&#x3E;0. This fact, together

with appropriate bounds on f, !2 in the closures of their analyticity
domains can be used for an alternative proof of Theorem 3 in this case.

Such analyticity properties appear again to be necessary "in general"

in such cases, to get information on ES x (f)

Example : Let ES x (f and be the closed cones C 1’ C2 shown in
Figure 4 a), when x varies on a neighborhood of X. The dual cones F2
are shown in Figure 4b . If property R is satisfied, 1 n r2 contains
a segment 0  Y2 b, b&#x3E;0, Y1 = 0. Theorem 3 says that is contained

in the region u- ~ 0, which is the dual cone of the direction y 2 &#x3E; 0, Y 1 = 0

Figure 4

If C1, C2 are the lines u2 = 0, u1 &#x3E; 0 and u2 = 0, u1  0
respectively, the situation is represented in Figure is then

(contained in) the full line u2 = 0.



I.15

Appendix 1

In the applications to physics, one is interested in determining

the analytic structure of bubble diagram functions, a problem which is

crucial in the derivation of discontinuity formulae for multiparticle

scattering functions and related results. For a general presentation of the

S-matrix formalism, more details and references, see [7J. Bubble diagrams

are certain topological graphs whose vertices are replaced by + or -

bubbles that represent connected scattering operators. They define

corresponding "bubble diagram operators", which are always well defined

bounded operators, and whose kernels are the so-called bubble diagram

functions. If B is for instance the bubble diagram LIR,then the

corresponding kernel FB can be written as :

where are three -momenta variables associated with

the external, resp. internal, lines and pg is the mass of particle ae.

(Each line is associated with a given particle).
The S-matrix kernels, and hence FB, satisfy energy-momentum con-

servation (the energy of a particle is (~+ -p.2) 1/2).
The essential supports of the individual "bubbles" are known

from the physical principles of macroscopic causality, and unitary

(= conservation of probabilities). They involve the so-called Landau

surfaces. Corresponding results on the essential support of FB follow at
non u = 0 points [8J. The u = 0 problem is, however, crucial, as already

mentioned in Section 1.

The results of ~9~ . give partial results in certain situations,
under certain assumptions on the nature of the singularities of the

S-matrix kernels. The results of[5,6] provide on the other hand a general

solution of the u = 0 problem for phase-space integrals:in the latter, the

individual scattering kernels associated with each bubble are replaced

by more elementary quantities, namely constants (or regular functions)

times energy-momentum conservation 6-functions. These results have led ;6; "
to propose a "conjecture" on the singular spectrum of bubble diagram functms

The results of [41 1 do give information, on the other hand, on the essential

support of bubble diagram functions, if the regularity property R is assumed
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to hold for the individual scattering operators. Property R is expected

to hold in a number of cases (see [4 where it can be considered to

correspond to a refinement of the macrocausality principle, based on

the same physical ideas. Work is in progress to check whether property

R can be reasonably postulated in general.

The result of [4) and the conjecture of [6J both say that the
rules at non u = points are still valid at u = 0 points, apart from the

introduction of limiting procedures. The limiting procedures of 1’6] and [4J
are different so far, as a consequence of the difference in the limiting

procedures obtained in the respective mathematical works.

APPENDIX 2 
_

The results of [5J apply to products of the form
.... T ... 

..

where and ag are real-valued real analytic
J 

function of x and » 0 . For simplicity, we restrict below our

attention to a product f = f1f2 of two functions, f 1 = (a1 (x) + io) À 1,

f - (a2(x) + io) 2 . The result of [ 5 ] is then :

It is on the other hand conjectured in [51 that a.~m), ~ a can
as a matter of fact be restricted to E .We note that the result given by
Theorem 3, if property R holds, is in this case (if X is not a critical

point of a1 or a2) :



I.17

APPENDIX 3

Consider the products (x x2 + io) x (x + x - io) , or

(x 1 + In both cases, the respective singular

spectra of f1,f2 at the origin are the opposite direction (1,0) and

(-1,0) : see Section 2. The set ES(f 1) + where X is the origin,

coincides with and is the line u ~ = 0. It is however

believed that is all IR 2 (u l’u2 ) . (In the first case, either

Theorem 3 or the results of [ 5 ] - see (18), (19)-give no information.

In the second one, property R is not satisfied : see Section 2,

Example 2).

A case for which ES x(f If2 ) has been proved to be stri6tly larger
than is the following : f(x ) = than 

1 
+ 

2 Ix 
is the following: 1’x2’x, = 

1 2 + 
x 

2- 3 +

where a(t) = a(t) if t&#x3E;0,=0 if t0. The essential support
+ 

3 3

ES x(fI ), resp. ES x (f 2), at any point x of the surface resp.x2= x3 ’
is the line a real, resp. the line a~(0,l,-3x-), a.2 real.

ESX(f1) and at the origin (X = 0) are the line u.=u-=0- OneX 1 A 1 3

checks on the other hand that the only directions of the plane u 2= 0

that lie in are the two opposite directions of the 1 2 X

However, it is proved in [5j that the essential support at the origin of

the function (x 1 3 _ x3 3 )X+11-1 2 I which is equal to up to

constant factors, is all ~ . Correspondingly, must contain the

whole plane u-=0. 
~~’~~

The limiting procedures of Theorem 3, if Theorem 3 was applicable,

would entail that the only possible directions of the plane u 2= 0 in

ES X (f 1 f 2 ). would be those lying in the region u 1 u3  0, a result which is

not correct, as we have just seen. The reason is that Theorem 3 does not

apply, because the functions f1’ f2 do not satisfy property R : see

Example 3 in Section 2. (The result (18) of [5J , with complex values of

z(m), is in agreement with the fact that is all IR 2 (u lIU3
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