SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

J. M. Trépreau

Problème de Cauchy hyperbolique non strict dans des classes d'ultradistributions

Séminaire Équations aux dérivées partielles (Polytechnique) (1977-1978), exp. nº 3, p. 1-14

http://www.numdam.org/item?id=SEDP 1977-1978 A4 0>

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1977-1978, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

PLATEAU DE PALAISEAU - 91128 PALAISEAU CEDEX

Téléphone : 941.82.00 - Poste N°
Télex : ECOLEX 691 596 F

SEMINAIRE GOULAOUIC-SCHWARTZ 1977-1978

PROBLEME DE CAUCHY HYPERBOLIQUE NON STRICT
DANS DES CLASSES D'ULTRADISTRIBUTIONS

par J. M. TRÉPREAU

Exposé N^o III 15 Novembre 1977

§ 1. INTRODUCTION

On désignera par $x = (x_1, ..., x_n) = (x_1, x')$ le point courant de \mathbb{R}^n , par H l'hyperplan d'équation $x_1 = 0$, par B(0,a) (resp. B'(0,a)) la boule ouverte de \mathbb{R}^n (resp. H) de centre 0, rayon a>0. On notera N la direction (1,0,...,0) et, pour $\delta > 0$, $K(a,\delta)$ l'enveloppe convexe de B'(0,a) $\cup \{\delta aN\}$.

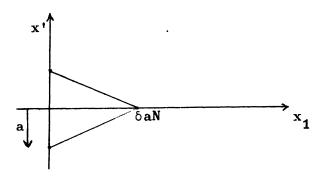
Soit $P(x,\partial_x)$ un opérateur différentiel d'ordre m, à coefficients analytiques, hyperbolique non strict dans la direction N en tout point d'un voisinage V de $\overline{B(0,r)}$ (r>0). On note :

$$P(x,9^{x}) = \sum_{m}^{j=0} P_{j}(x,9^{x})$$

la décomposition de $P(x, \partial_x)$ en polynômes homogènes de degré j en ∂_x , $P_j(x, \partial_x)$. On suppose donc :

(1.1)
$$P_m(x,\xi) = 0, \quad \xi' \in \mathbb{R}^{n-1}, \quad x \in V \Rightarrow \xi_1 \in \mathbb{R}$$

On supposera de plus que le coefficient de ξ_1^m dans $P(x,\xi)$ est identique à 1.



On considère le problème de Cauchy suivant : soit $\delta > 0$ assez petit et a < r :

(I)
$$\begin{cases} \Psi \text{ f, définie de "classe } \gamma \text{" au voisinage de } \overline{B'(0,a)} \cup K(a,\delta) \\ \Psi \text{ v}^0, \dots, \text{v}^{m-1} \text{ définies de "classe } \gamma \text{" au voisinage de } \overline{B'(0,a)} \\ \text{dans H existe-t-il une et une seule} \\ \text{u, définie de 'classe } \gamma \text{" au voisinage de } \overline{B'(0,a)} \cup K(a,\delta) \end{cases}$$

telle que :

(II)
$$\begin{cases} P(x, \delta_x) u = f \text{ au voisinage de } \overline{B'(0, a)} \cup K(a, \delta) \\ (u, \dots, \delta_{x_1}^{m-1} u)|_{H} = (v^0, \dots, v^{m-1}) \text{ au voisinage de } \overline{B'(0, a)} \text{ dans } H. \end{cases}$$

Si la réponse à ce problème est positive, on dit que le problème (I)-(II) est bien posé dans la classe Y.

On sait que le problème (I)-(II) est en général mal posé dans la classe \mathcal{C}^{∞} ; par contre, si l'on définit pour 1 < σ < + ∞ l'espace des σ -ultrafonctions :

(1.2)
$$G^{\sigma}(\Omega) = \{ f \in C^{\infty}(\Omega), \forall K \subset \Omega, \forall h > 0, \\ \exists C_{K,h}, |\partial_{x}^{\alpha} f(x)| \leq C_{K,h} |h|^{|\alpha|} (|\alpha|!)^{\sigma}, x \in K, \forall \alpha \}$$

Hörmander (4) a prouvé que le problème (I) - (II) était bien posé dans la classe C^{σ} , pour $1 < \sigma \le \frac{m}{m-1}$, en supposant $P(x, \delta_x) = P(\delta_x)$ à coefficients constants. Ce résultat a été étendu au cas des coefficients variables assez réguliers par Leray-Ohya (7), Beals (1),..., mais sous des hypothèses très restrictives sur la géométrie des caractéristiques de l'opérateur $P(x, \delta_x)$. Le seul résultat général est dû à Ivrii (5), qui prouve que le problème (I)-(II) est bien posé dans la classe C^{σ} dès que $1 < \sigma \le \frac{2M-2}{2M-3}$, où $M \ge 2$ majore la multiplicité maximale des caractéristiques de $P(z, \delta_z)$ dans la direction N, i.e.:

(1.3)
$$P(x,\xi) = \frac{\partial P}{\partial \xi_1}(x,\xi) = \dots = \frac{\partial^M P}{\partial \xi_1^M}(x,\xi) = 0, x \in V, \xi \in \mathbb{R}^n \Rightarrow \xi = 0.$$

D'autre part, J. M. Bony et P. Schapira (2) ont prouvé que le problème (I) - (II) était bien posé dans la classe C des fonctions analytiques et dans la classe C des hyperfonctions analytiques dans la direction $\pm N$, au sens du :

Théorème 0 : (Bony-Schapira (2)). Si f est une hyperfonction analytique dans la direction ${}^+\!\!\!/\, N$, et (v^0,\ldots,v^{m-1}) un m-uple d'hyperfonctions, le problème (I)-(II) admet une solution unique u, hyperfonction analytique dans la direction ${}^+\!\!\!\!/\, N$.

Nous étudierons ici le problème (I) - (II) dans des classes de σ -ultradistributions ; plus précisément, le sous-espace $G_{\text{comp}}^{\sigma}(\Omega)$ des σ -

ultrafonctions à support compact dans Ω étant muni d'une structure naturelle d'e.v.t. ℓ .c., on définit l'espace des σ -ultradistributions sur Ω par :

(1.4)
$$\chi^{\sigma}(\Omega) = (\mathcal{C}_{comp}^{\sigma}(\Omega))' \qquad 1 < \sigma < +\infty$$

Nous notons (H_k) , $k \ge 1$ l'hypothèse suivante :

$$(H_{k}) \ \exists c, \ |\eta|^{ks} \ |P_{m-s}(x,\xi+i\eta N)| \leq c \ |P_{m}(x,\xi+i\eta N)| \ \forall \ x \in V \ , \ \xi \in {I\!\!R}^{n} \ , \ \eta \in {I\!\!R}$$

Nous démontrons alors le :

 $\frac{\text{Th\'eor\`eme 1}}{\text{"hyperfonction" par "σ-ultradistribution" d\`es que 1 < σ $\leq $\inf(3/2, \frac{k}{k-1})$.}$

Remarque 1 : Si l'opérateur $P(x, \partial_x)$ vérifie (1.3), il est facile de montrer qu'il vérifie aussi (H_M) ; le problème (I) - (II) est donc bien posé dans la classe \mathcal{U}_N^{σ} dès que 1 < $\sigma \leq \inf(\frac{3}{2}, \frac{M}{M-1})$. Ce résultat est optimum pour $M \geq 3$. En fait, il est probable que sous l'hypothèse (H_k) , le résultat optimum est que le problème (I)-(II) est bien posé dans la classe \mathcal{U}_N^{σ} , pour $\sigma \leq \inf(2, \frac{k}{k-1})$.

Remarque 2: Les conditions (H_k) (conditions de Lévi) sont des conditions suffisantes, mais évidemment pas nécessaires; ainsi si $P(\partial_{x_1}, \partial_{x_1})$ est un opérateur hyperbolique, l'opérateur hyperbolique non strict $P(\partial_{x_1}, x_1 \partial_{x_1}) + \partial_{x_2}^{m-1}$ vérifie (H_m) mais pas (H_{m-1}) ; on peut pourtant prouver, en adaptant la démonstration du théorème 1 que le problème (I)-(II) est bien posé dans \mathcal{U}_N^{σ} pour $\sigma \leq \frac{(m-1)}{(m-1)-1}$ (dans le cas de la classe \mathcal{C}^{∞} , cf. Menikoff (8) pour des résultats voisins).

Remarque 3: En utilisant un argument de dualité que m'a communiqué P. Schapira après l'exposé (cf. Schapira (9) pour des considérations voisines) on peut sans doute déduire du théorème 1 un résultat analogue dans les classes C_i° . Compte-tenu du résultat de Ivrii (5) pour M=2, on obtiendrait alors une généralisation du résultat de Hörmander au cas des coefficients analytiques.

Les résultats exposés ici sont le fruit d'un travail fait sous la direction de / en collaboration avec J. M. Bony; je le remercie de son soutien constant.

 $\frac{\text{Notations}}{\|\mathbf{u}\|_{K}} = \sup_{\mathbf{x} \in K} |\mathbf{u}(\mathbf{x}).$

 $\Gamma' \subset \Gamma \text{ (mod } \mathbf{R}_+) \text{ signifie que } \Gamma' \cap S^{N-1} \subset \subset \Gamma \cap S^{N-1}, \ \Gamma, \ \Gamma' \subset \Gamma' \cap S^{N-1} \cap S^{N-1} \cap S^{N-1}$ étant des cônes de \mathbb{R}^N et S^{N-1} la sphère unité de \mathbb{R}^N pour la distance euclidienne. ${f C}^N$ sera librement identifié à ${f R}^{2N}$; si z, ${f \zeta} \in {f C}^N$, on notera :

$$\langle z, \overline{\zeta} \rangle = \sum_{j=1}^{N} z_{i} \overline{\zeta}_{i}, |z| = \langle z, \overline{z} \rangle^{1/2}, \langle 0, \overline{\zeta} \rangle = \sum_{j=1}^{N} \overline{\zeta}_{i} \delta_{z_{i}}$$

Enfin, la (n-1)-boule de centre \boldsymbol{z}_{o} , rayon $\boldsymbol{\zeta}_{o}$, rayon R est l'ensemble des $z \in \mathfrak{C}^N$ tels que $\langle z, \overline{\zeta}_0 \rangle = 0$ et $|z - z_0| < R$.

INEGALITES HYPERBOLIQUES

En utilisant une version locale du théorème des tubes de Bochner due à Kashiwara, il est facile de prouver l'existence de $C_h > 0$, $r_o > 0$, telle que P(x,ξ) s'étende holomorphiquement à l'ensemble $\{z, x \in V, |y| < r\} \times \mathbf{C}^n$ avec (cf. Bony-Schapira (2)) :

(2.1)
$$P_{\mathbf{m}}(\mathbf{z},\zeta) = 0, \ \mathbf{x} \in \overline{B(0,\mathbf{r})}, \ \mathbf{y} \leq \mathbf{r}_{\mathbf{0}}$$

$$\Rightarrow \begin{cases} |\xi_{1}| \leq C_{\mathbf{h}}(|\mathbf{Im} \, \mathbf{z}| |\eta'| + |\xi'|) \\ |\zeta_{1}| \leq C_{\mathbf{h}}|\zeta'| \\ |\eta_{1}| \leq C_{\mathbf{h}}|\zeta'| + |\eta'| \end{cases}$$

Le résultat essentiel de cette section est alors le suivant

Théorème 2 : On fait l'hypothèse (H_k) , $k \ge 1$; pour tout $C_h' > C_h$, il existe C et r' telles que :

(2.2)
$$\Psi(z,\zeta)$$
, $x \in \overline{B(0,r)}$, $|y| \le r'_0$, $|Im \zeta_1| > C'_h(|Im z||Re \zeta'| + |Im \zeta'|)$, $|\zeta| = 1$.
(2.3) $|Im \zeta_1|^{k_S + |\alpha|} |P_{m-S}^{(\alpha)}(z,\zeta)| \le C|P_m(z,\zeta)|$, $s = 0,...,m$, $|\alpha| = 0,1,...$

(2.3)
$$\left| \operatorname{Im} \zeta_{1} \right|^{k_{S} + |\alpha|} \left| P_{m-s}^{(\alpha)}(z,\zeta) \right| \leq C \left| P_{m}(z,\zeta) \right|, \quad s = 0, \ldots, m, \quad |\alpha| = 0, 1, \ldots$$

Pour démontrer le théorème 2, nous utiliserons le théorème suivant sur la croissance au bord des fonctions holomorphes dans des tubes :

Théorème (Komatsu (6) Th. 11.6) : Soit Ω un ouvert de \mathbb{R}^n , V un voisinage de Stein de Ω dans \mathfrak{C}^n , $\Omega = \mathbb{R}^n \cap V$ et Γ un cône ouvert convexe de \mathbb{R}^n ; si μ est une fonction positive croissante sur $0,+\infty[$, ζ un vecteur unitaire de Γ et $F \in \mathcal{O}((\mathbb{R}^n + i\Gamma) \cap V)$ telle que :

$$\forall K \subset \subset \Omega$$
, $\exists L, C$ $\sup_{x \in K} |F(x+it\zeta)| \leq C \mu \left(\frac{L}{t}\right) \quad \forall t > 0$ assez petit

alors, pour tout sous-cône $\Gamma' \subset \subset \Gamma \pmod{\mathbb{R}_+}$,

$$\forall K \subset \subset \Omega$$
, $\exists L, C \sup_{x \in K} |F(x+iy)| \leq C \mu(\frac{L}{|y|}) \forall y \in \Gamma'$, $|y|$ assez petit.

Démonstration du théorème 2 : Remarquons d'abord que si F est une fonction holomorphe dans les tubes (2.2), majorée par $C(C_h') |\operatorname{Im} \zeta_1|^{-k}$, alors $\frac{\partial F}{\partial \zeta_j}$, $j=1,\ldots,n$ est majorée par $C'(C_h') |\operatorname{Im} \zeta_1|^{-k-1}$ (il suffit d'écrire la formule de Cauchy, cf. Hörmander (4) lemme 5.1.3). Or on a :

$$\left(\frac{\partial}{\partial \zeta_{j}} P_{m-s}^{(\alpha)}(z,\zeta)\right) P_{m}(z,\zeta)^{-1} = \frac{\partial}{\partial \zeta_{j}} \left(\frac{P_{m-s}^{(\alpha)}(z,\zeta)}{P_{m}(z,\zeta)}\right) + \frac{P_{m-s}^{(\alpha)}(z,\zeta)}{P_{m}(z,\zeta)^{2}} \frac{\partial}{\partial \zeta_{j}} P_{m}(z,\zeta)$$

Il suffit donc de prouver l'estimation (2.3) pour $|\alpha| = 0$, s = 1, ..., m et pour $|\alpha| = 1$, s = 0. Comme la démonstration de (2.3) pour $|\alpha| = 0$ à partir de l'hypothèse (H_k) est identique à la démonstration de (2.3) pour s = 0 et $|\alpha| = 1$, nous nous limiterons à cette dernière.

Lemme 1 :
$$\exists c, \forall x \in \overline{B(0,r)}, \xi \in \mathbb{R}^n, \eta \in \mathbb{R}, j = 1,...,n,$$

$$|\eta| |\frac{\partial P_m}{\partial \xi_j}(x,\xi + i\eta N)| \leq C |P_m(x,\xi + i\eta N)|$$

$$|\eta| \left| \frac{\partial P_{m}}{\partial \xi_{1}} \left(\mathbf{x}, \xi + i \eta \mathbf{N} \right) \right| \leq \sum_{j=1}^{m} |\eta| \sum_{\mathbf{k}=1, \dots, m} |\xi_{1} + i \eta - \lambda_{\mathbf{k}}(\mathbf{x}, \xi')| \leq m |P_{m}(\mathbf{x}, \xi + i \eta \mathbf{N})|$$

D'autre part, si $j \in \{2,...,n\}$, le polynôme $\xi_1' \mapsto P_m(x,\xi_1+\xi_1',\xi_2,...\xi_j+\xi_j',...,\xi_n]$ admet, pour $\xi_1,...,\xi_n$ fixés, m racines $\mu_{(j,\xi),k}(\xi_j')$, k=1,...,m, holomorphes

au voisinage de 0 (cf. Chaillou (3)); de plus, d'après (2.1), on a :

$$|\mu'_{(j,\xi),k}(0)| = \lim_{y\to 0} \frac{|\mu_{(j,\xi),k}(iy) - \mu_{(j,\xi),k}(0)|}{iy} = \lim_{y\to 0} \frac{|\operatorname{Im} \mu_{(j,\xi),k}(iy)|}{|y|} \le C_h$$

On en déduit :

$$|\eta| |\frac{\partial P_{m}}{\partial \xi_{j}}(x,\xi + i\eta N)| \le m C_{h} |P_{m}(x,\xi + i\eta N)|, j = 2,...,n.$$

 $\underline{\text{Lemme 2}} \quad : \quad \text{Pour tout } C_h^{\,\prime} > C_h^{\,\prime}, \quad \text{il existe C et $r_0^{\,\prime}$ telles que} \quad : \quad$

(2.5)
$$\Psi(z,\zeta), x \in \overline{B(0,r)}, |y| \le r'_0, |Im \zeta_1| > C'_h(Im z | |Re \zeta'| + |Im \zeta'|), |\zeta| = 1$$

$$(2.5) \qquad \Psi(z,\zeta), \quad x \in \overline{B(0,r)}, \quad |y| \le r'_0, \quad |\operatorname{Im} \zeta_1| > \mathcal{E}'_h(\operatorname{Im} z | |\operatorname{Re} \zeta'| + |\operatorname{Im} \zeta'|), \quad |\zeta| = 1$$

$$(2.6) \qquad |\operatorname{Im} \zeta_1| \frac{\partial P_m}{\partial \zeta_j}(z,\zeta)| \le C|P_m(z,\zeta)| \quad j = 1, \dots, n.$$

Démonstration du lemme 2 : On applique le théorème sur la croissance au bord à la fonction $\frac{\partial P}{\partial \zeta_j} P_m^{-1}$, holomorphe dans les tubes définis par (2.1). On obtient l'inégalité (2.6) dans le domaine (2.5) sous l'hypothèse supplémentaire

$$|\operatorname{Re}\zeta_1| \le M|\operatorname{Re}\zeta'|$$
, $|\operatorname{Im}\zeta_1| \le \alpha|\operatorname{Re}\zeta'|$, $\alpha > 0$

où M est arbitrairement grand. Mais si $|\text{Re}\,\zeta_1| > C_h^{!} |\text{Re}\,\zeta^{!}|, P_m^{}(z,\zeta)^{-1}$ est borné dans le domaine (2.5) (N est non caractéristique; voir aussi (2.1)) car alors $|\zeta_1| > C'_h |\zeta'|$. Enfin, si $|\text{Re}\,\zeta_1| \le C'_h |\text{Re}\,\zeta'|$ et $|\text{Im}\,\zeta_1| > \alpha |\text{Re}\,\zeta'|$, $|\text{Im}\,\zeta_1| \ge \alpha' |\zeta| (\alpha' > 0)$ et $P_m(z,\zeta)^{-1}$ est encore borné. D'où le lemme .

THEOREME DE CAUCHY-COVALEWSKY PRECISE

Dans cette section, Ω désigne un ouvert de \mathbf{c}^n et $P(z, \delta_z)$ un opérateur différentiel d'ordre m, à coefficients holomorphes et bornés sur Ω ,

(3.1)
$$P(z,\zeta) = \sum_{j=0}^{m} P_{j}(z,\zeta)$$

la décomposition de P en polynômes P_i, homogènes de degré j en ζ. Si $\zeta \in S^{2n-1}$, nous noterons :

(3.2)
$$\frac{1}{P_{m}}(\zeta) = \sup_{z \in \Omega} |P_{m}(z,\zeta)|^{-1} \leq +\infty$$

(3.3)
$$\frac{P_{s}^{(r)}}{P_{m}}(\zeta) = \sup_{z \in \Omega} \frac{1}{|\alpha| = r} \frac{1}{\alpha!} |P_{s}^{(\alpha)}(z,\zeta)| |P_{m}(z,\zeta)|^{-1} \le +\infty, s = 0,...,m;$$

$$r = 0,...,s.$$

Théorème 3 : Il existe une constante C_o , ne dépendant que de m et n, telle que, pour toute (n-1)-boule ω de centre z_o , normale ζ_o , rayon $R \le 1$ et tout ouvert I de C, étoilé par rapport à 0, tels que $\omega_I \subset \Omega$ (où $\omega_I = \{z \in C^n, z = z' + \lambda \zeta_o, z' \in \omega, \lambda \in I\}$), pour tout m-uple $(u_k)_{k=0,\ldots,m-1}$ de fonctions holomorphes et bornées dans ω et toute fonction f holomorphe et bornée dans Ω , il existe une fonction u, holomorphe dans :

(3.4)
$$\Im(\Omega, P, z_0, \zeta_0, R) = \{z \in \omega_I, C_0 \left(\frac{P_m^{(r)}}{P_m}(\zeta_0)\right)^{1/r} |z^{(1)}| < R - |z^{(')}|, r = 1, ..., m\}$$

solution du problème de Cauchy

(3.5)
$$P(z,\partial_z)u = f \quad dans \quad \mathcal{I}(\Omega,P,z_0,\zeta_0,R)$$

(3.6)
$$\langle 3, \overline{\zeta}_0 \rangle^{j} u_{|\omega} = u_{j} \text{ dans } \omega, j = 0, ..., m-1$$

de plus, u vérifie l'estimation :

(3.7)
$$|u(z)| \le C_0 \left(\frac{P_m^{(r)}}{P_m}(\zeta_0)\right)^{1/r} \frac{|z^{(1)}|}{R - |z^{(1)}|})^{-1}.$$

$$\cdot \left(\exp C_0 |z^{(1)}| \sum_{\substack{s = 1, \dots, m \\ r \le m - s}} \left(\frac{P_{m-s}^{(r)}}{P_m}(\zeta_0) \left(\frac{|z^{(1)}|}{(R - |z^{(1)}|)}\right)^{r}\right)^{1/s}\right).$$

$$\begin{split} \cdot \left(\sum_{\mu = 0}^{m} \frac{|\mathbf{z}^{(1)}| |\mathbf{u}_{\mu}|_{\omega}}{\mu!} + \frac{1}{P_{m}} (\zeta_{0}) |\mathbf{z}^{(1)}|^{m} |\mathbf{f}|_{\Omega} \right) \\ \text{où } \mathbf{z}^{(1)} &= \langle \mathbf{z} - \mathbf{z}_{0}, \overline{\zeta} \rangle \zeta \text{ et } \mathbf{z}^{(1)} &= \mathbf{z} - \mathbf{z}_{0} - \mathbf{z}^{(1)} \zeta. \end{split}$$

On en déduit un théorème de prolongement avec croissance d'une solution au travers d'une surface non caractéristique (cf. Zerner (10)).

Théorème 4: Il existe une constante C_o , ne dépendant que de m et n, telle que, pour toute n-boule Ω_R de rayon $R \le 1$, et tout ouvert I de C, étoilé par rapport à 0, tels que $\Omega_{R,\,I} \subset \Omega$ (où $\Omega_{R,\,I} = \{z + \lambda \zeta, \ z \in \Omega_R, \lambda \in I, \ \zeta \in S^{2n-1}\}$), pour toute fonction u (resp. f) holomorphe et bornée dans Ω_R (resp. Ω), pour tout $z_o \in \partial \Omega_R$, u se prolonge holomorphiquement au voisinage de $[z_o, z_o + \tau_o \zeta_o[, \zeta_o$ étant la normale unitaire sortante en z_o à $\partial \Omega_R$, dès que

(3.8)
$$z_0 + \tau_0 \zeta_0 \in \Omega_{R, I}$$
 et $C_0 \left(\frac{P_m^{(r)}}{P_m}(\zeta_0)\right)^{1/r} \tau_0^{1/2} \le R^{1/2}, r = 0, ..., m$

de plus, u vérifie l'estimation :

$$(3.9) \quad z \in \left[z_{o}, z_{o} + \tau_{o}\zeta_{o}\right] \quad |u(z)| \leq$$

$$C_{o}\left[\exp C_{o} \tau_{o} \sum_{s=1,\ldots,m} \left(\frac{P_{m-s}^{(r)}}{P_{m}}(\zeta_{o})(\frac{\tau_{o}}{R})^{\frac{r}{2}}\right)^{\frac{1}{s}}\right] (\|u\|_{\Omega_{R}} + \frac{1}{P_{m}}(\zeta_{o})\tau_{o}^{m}\|f\|_{\Omega})$$

$$r \leq m - s$$

Démonstration du théorème 4 : On peut supposer $\frac{1}{P_m}(\zeta_0) < +\infty$, sinon le théorème est vide. Soit alors τ_0 vérifiant (3.8) avec C_0 plus grand que deux fois la constante du théorème 3.

Soit H_{\tau\tau} 1'hyperplan d'équation $\langle z-z_o, \overline{\zeta}_o \rangle = -\tau_o$ et ω_{τ_o} la $(n-1)-\omega_{\eta}$ la (n-1)-}

(3.10)
$$\|<_{\delta},\zeta_{o}>^{k}u\|_{\omega_{\tau_{o}}} \leq k!(2e)^{k}\|u\|_{\Omega_{R}}\tau_{o}^{-k}$$

Il suffit alors d'appliquer le théorème 3, pour obtenir le théorème 4, avec C_{0} assez grand.

§ 4. DEMONSTRATION DU THEOREME 1

Si Γ est un cône de \mathbb{R}^n , nous noterons $\Gamma_{\epsilon_1,\epsilon_2}$ l'ensemble des $y \in \Gamma$, $\epsilon_1 \leq |y| \leq \epsilon_2$; nous utiliserons la caractérisation suivante des σ -ultradistributions : si $\tilde{f} \in \mathcal{O}(\Omega + i \Gamma_{0,\alpha})(\alpha > 0)$ vérifie l'estimation :

$$(4.1) \quad \text{Ψ K$$$\subset Ω, Γ'\subset Γ mod. \mathbb{R}_+, $\exists L, \alpha_1 > 0$, $\sup_{\substack{\mathbf{x} \in K \\ \mathbf{y} \in \Gamma_{\varepsilon}, \alpha_1}} |\widetilde{\mathbf{f}}(\mathbf{x} + \mathbf{i}\mathbf{y})| \le \exp_{\frac{L}{\sigma - 1}} \frac{L}{\varepsilon^{\sigma - 1}}$$

alors sa valeur au bord b($\tilde{\mathbf{f}}$) est une σ -ultradistribution sur Ω (Komatsu (6)); réciproquement, on peut montrer que si $\mathbf{f} = \sum_{j=0}^{N} b(\tilde{\mathbf{f}}_{j})$, où $\tilde{\mathbf{f}}_{j} \in \mathcal{O}(\Omega + i \Gamma_{o,\alpha}^{j})$ est une σ -ultradistribution, il existe une décomposition $\mathbf{f} = \sum_{j=0}^{N} b(\tilde{\mathbf{g}}_{j})$, où $\tilde{\mathbf{g}}_{j} \in \mathcal{O}(\Omega + i \Gamma_{o,\alpha_{1}}^{j})$ vérifie l'estimation (4.1).

Compte-tenu de l'analyticité de f dans les directions ± N, et par linéarité, le théorème 1 résulte facilement du lemme suivant :

Lemme 1 : Soit $a_1 < a < r$ et $\delta' < \delta < C_h^{-1}(1+3r)^{-1}$; soit Γ (resp. Γ') un cône ouvert convexe de \mathbb{R}^n (resp. $\{0\} \times \mathbb{R}^{n-1}$, de révolution d'axe $\gamma \in S^{n-2}$, de demi-angle $\frac{\pi}{4}$), avec $\Gamma' = \Gamma \cap \{x_1 = 0\}$, V (resp V') un voisinage de $\overline{B'(0,a)} \cup K(a,\delta)$ (resp. de $\overline{B'(0,a)}$ dans H); soit

(4.2)
$$\tilde{f} \in \mathcal{O}(V + i \Gamma_{0,\alpha}), \| \tilde{f} \|_{V + i \Gamma_{\varepsilon,\alpha}} \leq \exp L/\varepsilon^{\frac{1}{\sigma-1}} \quad \forall 0 < \varepsilon \leq \alpha$$

$$(4.3) \qquad \tilde{\mathbf{v}}_{\mathbf{j}} \in \mathcal{O}(\mathbf{V}' + \mathbf{i} \Gamma_{\mathbf{0}, \alpha}'), \|\tilde{\mathbf{v}}_{\mathbf{j}}\|_{\mathbf{V}' + \mathbf{i} \Gamma_{\varepsilon, \alpha}} \leq \exp \mathbf{L}/\varepsilon^{\frac{1}{\sigma - 1}} \quad \forall \ 0 < \varepsilon \leq \alpha$$

Il existe une fonction $\tilde{u} \in \mathcal{O}(V(\delta') + i\Gamma_{0,\alpha}^{1}(\delta'))$, où $V(\delta')$ est un voisinage de $\overline{B'(0,a_1)} \cup K(a_1,\delta')$, $\Gamma(\delta')$ un sous-cône ouvert convexe non vide de Γ , $\alpha^1 > 0$, solution du problème :

(*)
$$P(z,\partial_z)\widetilde{u} = \widetilde{f} \qquad (\widetilde{u},\partial_{z_1}\widetilde{u},\ldots,\partial_{z_1}^{m-1}\widetilde{u})_{|H} = (\widetilde{v}_0,\ldots,\widetilde{v}_{m-1})$$

et vérifiant l'estimation

(4.4)
$$\|\tilde{\mathbf{u}}\|_{\mathbf{V}(\delta')+\mathbf{i}\,\Gamma_{\varepsilon,\alpha}\mathbf{1}^{(\delta')}} \leq \exp \mathbf{L}(\delta')/\frac{1}{\varepsilon^{\sigma-1}} \qquad \forall \ 0 < \varepsilon \leq \alpha^{1}$$

dès que $\sigma \leq \inf(\frac{3}{2}, \frac{k}{k-1})$.

Dans la suite, nous faisons toutes les hypothèses du lemme 1, sauf celle sur σ . Soit $\rho \leq 2$ assez grand (ρ = 2 par exemple !), η et k des réels positifs fixés à choisir ; pour a > 0 et 0 < ϵ < α , on définit :

$$(4.5) B'_{\mathbf{a}}(\varepsilon) = \left\{ \mathbf{z} \in \mathbf{C}^{\mathbf{n}}, \frac{\mathbf{x}_{1}^{2}}{\mathbf{k}^{2} \varepsilon^{2}} + \frac{\mathbf{y}_{1}^{2}}{\mathbf{y}_{2}^{2}} + \frac{\mathbf{x}'^{2}}{\mathbf{a}^{2}} + \frac{(\mathbf{y}' - \rho \varepsilon Y)^{2}}{\varepsilon^{2}} < 1 \right\}$$

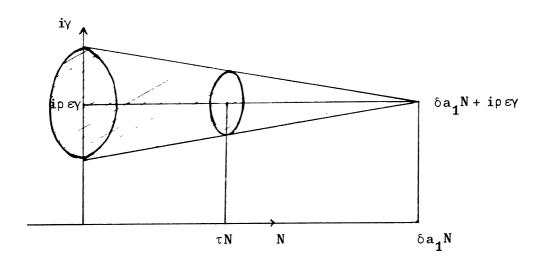
(4.6)
$$G(\varepsilon) = V + i \Gamma_{\varepsilon,\alpha}$$

si l'on choisit ρ assez grand, k et η assez petit, il est facile de prouver que $B_a^{\prime}(2\epsilon)$ est contenu dans $G(\epsilon)$, Ψ $0<\epsilon\leq\alpha'$ $(\alpha'>0)$ et, en utilisant le théorème de Cauchy-Covalewsky précisé; le

Lemme 2 : Le problème (*) admet une solution \tilde{u} , holomorphe dans $0<\epsilon<\alpha''$ a (ϵ) , et vérifiant l'estimation :

(4.7)
$$\|\widetilde{\mathbf{u}}\|_{\dot{\mathbf{B}}_{\mathbf{a}_{1}}^{\prime}(\varepsilon)} \leq \exp \mathbf{L}^{\prime} / \frac{1}{\varepsilon^{\sigma-1}} \quad \forall \ 0 < \varepsilon \leq \alpha^{\prime\prime}.$$

On note $\Omega_{\delta a_1}(\varepsilon,\delta a_1)$ l'enveloppe convexe de $B_a'(\varepsilon) \cup \{\delta a_1 N + i\rho \varepsilon \gamma\}$, et pour $0 \le \tau \le \delta a_1$, $\Omega_{\delta a_1}(\varepsilon,\tau)$ l'enveloppe convexe de $B_a'(\varepsilon) \cup \mathfrak{K}_{\tau}^{\varepsilon}(B_a'(\varepsilon)), \mathfrak{K}_{\tau}^{\varepsilon}$ étant l'homothétie de centre $\delta a_1 N + i\rho \varepsilon \gamma$ qui amène $i\rho \varepsilon \gamma$ sur $\tau N + i\rho \varepsilon \gamma$.



Lemme 3 : \hat{u} se prolonge holomorphiquement \hat{a} $\bigcup_{0<\epsilon\leq\alpha''}$ $\Omega_{\delta a_1}(\epsilon,\delta a_1)$ et vérifie l'estimation

$$\|\widetilde{\mathbf{u}}\|_{\Omega_{\delta \mathbf{a_1}}(\varepsilon, \delta' \mathbf{a_1})} \leq \exp(\mathbf{L}(\delta')(\frac{1}{\varepsilon^2} + \frac{1}{\varepsilon^{k-1}}))(\|\widetilde{\mathbf{u}}\|_{\mathbf{B}_{\mathbf{a_1}}(\varepsilon)} + \|\widetilde{\mathbf{f}}\|_{\mathbf{G}(\varepsilon)}), 0 < \varepsilon \leq \alpha'$$

<u>Démonstration du lemme 1</u>: La seule chose à vérifier est (4.4), qui résulte de (4.8), (4.7) et (4.2) dès que $\frac{1}{\varepsilon^2} + \frac{1}{\varepsilon^{k-1}} \le \frac{1}{\varepsilon^{\sigma-1}}$, donc

 $\sigma \leq \inf(3/2, \frac{k}{k-1}).$

Le lemme 3 résulte immédiatement du

Lemme 4 : Si \tilde{u} est définie et holomorphe dans $\Omega_{\delta a_1}(\varepsilon,\tau)$, $\tau+d\tau \leq \delta a_1$ et $d\tau \leq \gamma(\delta')\varepsilon^2$, \tilde{u} se prolonge holomorphiquement à $\Omega_{\delta a_1}(\varepsilon,\tau+d\tau)$, et l'on a :

$$(4.9) \quad \|\tilde{\mathbf{u}}\|_{\Omega_{\delta \mathbf{a_1}}(\varepsilon, \tau + d\tau)} \leq C_0 \exp(\mathbf{L^1}(\delta') \frac{d\tau}{\varepsilon^{\mathbf{k} - 1}}) (\|\tilde{\mathbf{u}}\|_{\Omega_{\delta \mathbf{a_1}}(\varepsilon, \tau)} + \|\tilde{\mathbf{f}}\|_{G(\varepsilon)}, 0 < \varepsilon \leqslant \alpha''$$

 $\begin{array}{lll} \underline{\text{D\'emonstration du lemme 4}} &: & \text{On note } \Gamma(\epsilon,\tau) \text{ la fronti\`ere de } \Omega_{\delta a_1}(\epsilon,\tau) \text{ dans} \\ \Omega_{\delta a_1}(\epsilon,\delta a_1), \text{ et si } z \in \Gamma(\epsilon,\tau), \text{ } \zeta_z = \xi_z^1,\xi_z') + i(\eta_z',\eta_z') \text{ la normale en } z \text{ à} \\ \Gamma(\epsilon,\tau). \text{ Si } \tau + d\tau \leq \delta'a_1, \text{ il est facile de prouver les résultats suivants} &: \end{array}$

soit $z \in \Gamma(\varepsilon, \tau)$; alors

i) z est point-frontière d'une boule de rayon $\rho(\delta')\epsilon$, contenue dans

culier, la direction ζ_z est non caractéristique pour l'opérateur $P(z, \partial z)$.

iii)
$$|\xi_{\mathbf{z}}^{1}| \geq \rho(\delta')\epsilon$$

iv) si
$$d\tau \le \rho(\delta')\epsilon^2$$
, alors $z + d\tau |\xi_z^1|\zeta_z \in [\Omega_{\delta a_1}(\epsilon, \tau + d\tau)]$

Dans i,...,iv, ρ (6') est indépendant de ϵ , $0<\epsilon \leq \alpha$ ". Soit u une solution holomorphe du problème (*) dans $\Omega_{\delta a_4}(\epsilon,\tau)$ et $z \in \Gamma(\epsilon,\tau)$; comptetenu du théorème 4, on a

(4.10) si
$$C_0 \left(\frac{P_m^{(r)}}{P_m} (\zeta_z) \right)^{1/r} d\tau^{1/2} |\xi_z^1|^{1/2} \le \rho(\delta')^{1/2} \epsilon^{1/2}, r = 0, ..., m$$

alors \tilde{u} se prolonge holomorphiquement au voisinage de $[z,z+d\tau |\xi_z^1|\zeta_z]$ et vérifie l'estimation :

$$\begin{array}{l} (4.11) \ \|\widetilde{\mathbf{u}}\|_{\mathbf{Z},\mathbf{z}+d\tau} \|\widetilde{\boldsymbol{\xi}}_{\mathbf{z}}^{1}\|_{\mathbf{\zeta}_{\mathbf{z}}} & \leq C_{o}(\|\widetilde{\mathbf{u}}\|_{\Omega_{\delta \mathbf{a}_{1}}}(\varepsilon,\tau)^{+} \\ + \frac{1}{P_{m}} (\boldsymbol{\zeta}_{\mathbf{z}}) (d\tau \|\widetilde{\boldsymbol{\xi}}_{\mathbf{z}}^{1}\|)^{m} \|\widetilde{\mathbf{f}}\|_{\mathbf{G}(\varepsilon)} \exp C_{o} \ d\tau \|\widetilde{\boldsymbol{\xi}}_{\mathbf{z}}^{1}\|_{\mathbf{S}=1}^{m} \left[\frac{P_{m-s}^{(\mathbf{r})}}{P_{m}} (\boldsymbol{\zeta}_{\mathbf{z}}) \left(\frac{d\tau \|\widetilde{\boldsymbol{\xi}}_{\mathbf{z}}^{1}\|}{\varepsilon \rho(\delta)} \right)^{r/2} \right]^{1/s} \\ + \frac{1}{P_{m}} (\boldsymbol{\zeta}_{\mathbf{z}}) (d\tau \|\widetilde{\boldsymbol{\xi}}_{\mathbf{z}}^{1}\|)^{m} \|\widetilde{\mathbf{f}}\|_{\mathbf{G}(\varepsilon)} \exp C_{o} \ d\tau \|\widetilde{\boldsymbol{\xi}}_{\mathbf{z}}^{1}\|_{\mathbf{S}=1}^{m} (\boldsymbol{\zeta}_{\mathbf{z}}) \left(\frac{d\tau \|\widetilde{\boldsymbol{\xi}}_{\mathbf{z}}^{1}\|}{\varepsilon \rho(\delta)} \right)^{r/2} \right]^{1/s} .$$

D'après le théorème 2, compte tenu de ii, on a

$$\forall z \in \Gamma(\varepsilon,\tau), \left(\frac{P_{m}^{(r)}}{P_{m}}(\zeta_{z})\right)^{1/r} \leq c |\xi_{z}^{1}|^{-1}, \frac{P_{m-s}^{(r)}}{P_{m}}(\zeta_{z}) \leq c |\xi_{z}^{1}|^{-ks-r}$$

On a donc le même résultat que ci-dessus en remplaçant (4.10) et (4.11) respectivement par

(4.10)'
$$\operatorname{si} C_{0}^{C} d\tau^{1/2} \leq \rho (\delta')^{1/2} \varepsilon^{1/2} |\xi_{z}^{1}|^{1/2}$$

$$(4.11)' \|\tilde{\mathbf{u}}\|_{\mathbf{Z}, \mathbf{z} + \mathbf{d}\tau \|\boldsymbol{\xi}_{\mathbf{z}}^{1}\|\boldsymbol{\zeta}_{\mathbf{z}}^{1}} \leq C_{0}(\|\tilde{\mathbf{u}}\|_{\Omega_{\delta \mathbf{a}_{1}}(\epsilon, \tau)} + C_{\mathbf{d}\tau} \|\tilde{\mathbf{f}}\|_{\mathbf{G}(\epsilon)} \cdot \\ \cdot \exp C_{0} \frac{d\tau}{|\boldsymbol{\xi}_{\mathbf{z}}^{1}|^{k-1}} \sum_{\substack{s=1 \\ r \leq m-1}}^{m} c^{1/s} \left(\frac{d\tau}{\epsilon \rho(\delta') |\boldsymbol{\xi}_{\mathbf{z}}^{1}|} \right)^{r/2s}$$

$$\leq C_{o}(\exp C'(\delta') \frac{d\tau}{\left|\xi_{z}^{1}\right|^{k-1}}) \left(\left\|\tilde{u}\right\|_{\Omega_{\delta a_{1}}(\varepsilon,\tau)} + Cd\tau \left\|\tilde{f}\right\|_{G(\varepsilon)}\right)$$

Compte-tenu de iii, si $d\tau \leq \gamma(\delta')\epsilon^2$, (4.10)' est vérifiée pour tout point z de $\Gamma(\epsilon,\tau)$, et donc, compte tenu de iv et (4.11)', \tilde{u} se prolonge holomorphique à $\Omega_{\delta a_1}$ ($\epsilon,\tau+d\tau$) avec l'estimation :

$$(4.11)^{"} \|\tilde{\mathbf{u}}\|_{\Omega_{\delta \mathbf{a}_{1}}(\varepsilon, \tau + d\tau)} \leq C_{o} \exp (\mathbf{L}^{1}(\delta') \frac{d\tau}{\varepsilon^{k-1}}) (\|\tilde{\mathbf{u}}\|_{\Omega_{\delta \mathbf{a}_{1}}(\varepsilon, \tau)} + \|\tilde{\mathbf{f}}\|_{G(\varepsilon)}.$$

cqfd.

BIBLIOGRAPHIE

- [1] R. Beals: Hyperbolic equations and systems with multiple characteristics. Arch. Rational. Mech. Anal. 48 (1972) 123-152.
- [2] J. M. Bony, P. Schapira: Problème de Cauchy, existence et prolongement pour les hyperfonctions solutions d'équations hyperboliques non strictes, C. R. Acad. Sc. Paris 274 (1972), 188-191.
- [3] J. Chaillou: Les polynômes différentiels hyperboliques et leurs perturbation singulières, Gauthier-Villars.
- [4] L. Hörmander: Linear partial differential operators, Springer, 1963.
- [5] J.U. Ivrii: Correctness of the Cauchy problem in Gevrey classes for non strictly hyperbolic operators, Math. USSR Sbornik Vol.25 (1975) n 3.
- [6] Y. Komatsu: Ultradistributions I: Structure theorems and a characterization, J. Fac. Sci. Univ. Tokyo Sec. I. A, 20 (1973) 25-105.
- [7] J. Leray, M. Ohya: Systèmes linéaires hyperboliques non stricts. Colloque sur l'analyse fonctionnelle, Liège 1964, CBRM pp.105-144.

- [8] A. Menikoff: The Cauchy problem for weakly hyperbolic equations Amer. Jour. of Maths (1973).
- [9] P. Schapira: Theorème d'unicité de Holmgren et operateurs hyperboliques dans l'espace des hyperfonctions, Ann. Acad. Brasil, Ciênc (1971), 43 (1).
- [10] M. Zerner : Domaine d'holomorphie des fonctions vérifiant une équation aux dérivées partielles, C. R. Acad. Sc. Paris, 272 (1971) 1646-1648.