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R;f(x) &#x3E;0j be a domain with C 00 boundary and
let P = P(x,D) be a second order differential operator of real

co -

principal type with coefficients in C (Q). The subject of this lecture

is to discuss the singularities of distributions u satisfying

If P denotes the set of zeros of the principal symbol

then this problem has been treated by several authors (see 

We shall consider a case where (1) is violated. If the boundary ðO

is non-characteristic, then

We shall also assume that Q is pseudo-convex with respect to P,

i.e.

The opposite case, when Q is pseudo-concave, has been treated in LI-i

When (2) and (3) are satisfied, it is possible to define so

called boundary bicharacteristics for P as follows. Consider the

restriction p of p to the symplectic manifold Lj ~p, f~ ( z) _ 01
The projection, onto of the null-bicharacteristics for p are
called boundary bicharacteristics for P. It is easy to check that the

null-bicharacteristics for the restriction of f to 

give the same curves as the null-bicharacteristics for p. In fact, the

tangent of such a curve lies in the plane spanned by Hp and Hf and
is orthogonal to the gradient of [p,f} .
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In order to localize the concept of "regularity up to the

boundary", we assume that Q is given by x n &#x3E; 0 and denote points on

the boundary 6Q by x’ _ ( x’ , 0) . If we say that

u E H at (x’ ,~’ ) if there is a homogeneous symbol W(x’ ,~’ ) such

that *(xl F 1 1 in a neighborhood of (xl and 
_ 

n

belongs to H s (11) close to x’. Here it is implicitly assumed that

u(.,xn) is well-defined. In the same manner we say that
 _ n 

_ co -

if, for some * as above, C (Q) close

to x’. This definition of microlocal regularity up to the boundary

has also been suggested by Chazarain [3J.

Theorem : Suppose that Q is pseudo-convex with respect to P and let
c 

- co-

if be a boundary bicharacteristic for P. If u E ^’ ( ) , Pu E C (0)

and Y n 0. then either ’l’ c WF(u~) ory n WF(u;Q) = ø.

Sketch of proof : : In order to avoid technical complications, we only

consider the case when P is hyperbolic. We also assume that Q is given by

x n &#x3E; 0. Let (x’ ,~ ) be a point where tp,fl = 0 and denote by
y = Y~(x’ ,~’ ) the boundary bicharacteristic through the projection

(xf I ) of (x’ ,t ) onto T~~ (8Q) . The main step in the proof is to construct

a suitable symbol a(x,~) of order zero such that

and a(x~p) = 1 on a conic neighborhood of (x’~?). Here the condition

(5) is required to be satisfied for some choice of r and q.

If (x* ~’) is close to (Xt9;-1) then there is either no root

or else two roots F± of the equation p(x’p’ ) = 0. These roots
, 

n n

coincide when tp,fl = 0. Since q is independent of r 
n 

it follows from

(5) that one must have

Now (4) means that a is constant along the bicharacteristics for P so (5’)

implies that a has to be constant along the successively reflected
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bicharacteristics. In particular it follows that a must be constant

along the lifting Y to 6.) n 1 of the boundary bicharacteristic

r = Y ( x’ , ~ ’ ) . If we denote the flow-out along H 
p 

f rom Y ,

the results of L7j imply that a can be chosen to satisfy (4) and (5)

and to have support in an arbitrary small conic neighborhood of

F(x’,F’). Since x n = 0 is non-characteristic, we can in particular

assume that a has the transmission property (see ,1

Let r be a homogeneous symbol of order -2 which has the trans-

mission property and satisfies (5) and denote by R the corresponding

operator. Let furthermore Q and A be operators with symbols q and

a + where

Here p1 denotes the symbol of order one of P.

Assume now that u E H s (0) along I and put

where uo denotes the extension of u which vanishes outside D. Since
y n it follows from (4) - (6) that

Moreover (5) gives that

00

Because A and R have the transmission property, Pu E C (0) and

Y ~ we get from (7) and (8) that

If now some point on is outside WF(u;R) and a ( x, ~ ) has

support sufficiently close to 1 (x’ ,~’ ) , it follows that we can
oJ

assume that v has initialdata in C . Note that the pseudo-convexity
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means that the bicharacteristics in r(’ ,’) leave C2. Well-known

regularity theorems for the mixed problem now implies that 

Since a(x,:) = q(xl 7 1 ) = 1 in a neighborhood of the zeros

of p(x,~ ) , when (x’ ,F’ ) is close and x n is small, we can

assume that r (x,~ ) satisfies

there. Remember that (5) is only required to be satisfied when

x = 0. From (9) it follows that
n

close to Y . Thus

close to ~’ , and the proof is finished.

Remark : Just before this lecture we received a manuscript from

G. Eskin where a parametrix is constructed for certain mixed

hyperbolic problems with gliding rays. For second order Dirichlet

problems such a parametrix has also been constructed by one of the

authors (Melrose). This construction as well as a fuller account of

the argument described above will be published elsewhere.
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