SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

K. G. ANDERSSON

R. MELROSE

Propagation of singularities along gliding rays

Séminaire Équations aux dérivées partielles (Polytechnique) (1976-1977), exp. nº 1, p. 1-5 http://www.numdam.org/item?id=SEDP 1976-1977 A1 0>

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1976-1977, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

PLATEAU DE PALAISEAU - 91128 PALAISEAU CEDEX
Téléphone : 941.82.00 - Poste No
Télex : ECOLEX 691 596 F

S E M I N A I R E G O U L A O U I C - S C H W A R T Z 1 9 7 6 - 1 9 7 7

PROPAGATION OF SINGULARITIES
ALONG GLIDING RAYS

par K. G. ANDERSSON et R. MELROSE

Exposé N^o I 19 Octobre 1976

Let $\Omega=\{x\in R^n; f(x)>0\}$ be a domain with C^∞ boundary and let P=P(x,D) be a second order differential operator of real principal type with coefficients in $C^\infty(\overline{\Omega})$. The subject of this lecture is to discuss the singularities of distributions u satisfying

$$\mathbf{p}_{\mathbf{u}} \in \mathbf{c}^{\infty}(\overline{\Omega}), \ \mathbf{u}_{|\partial\Omega} \in \mathbf{c}^{\infty}(\partial\Omega).$$

If Ω denotes the set of zeros of the principal symbol p(x, f), $f = \partial \Omega \times R^n$ and

(1)
$$\{p,f\} \neq 0 \text{ in } \cap \mathcal{F} \text{ (microlocally)},$$

then this problem has been treated by several authors (see [2], [8]). We shall consider a case where (1) is violated. If the boundary $\partial\Omega$ is non-characteristic, then

(2)
$$\{p,f\}(z) = 0 \Rightarrow \{f,\{f,p\}\}(z) \neq 0, z \in P \cap F$$
.

We shall also assume that Ω is <u>pseudo-convex</u> with respect to P, i.e.

(3)
$$\{p, f\}(z) = 0 \Rightarrow \{p, \{p, f\}\} < 0, z \in \emptyset \cap \mathcal{F}$$
.

The opposite case, when Ω is pseudo-concave, has been treated in [4], [6] and [9].

When (2) and (3) are satisfied, it is possible to define so called boundary bicharacteristics for P as follows. Consider the restriction \tilde{p} of p to the symplectic manifold $\Delta_{\tilde{f}} = \{z \in \tilde{f}; \{p,f\}(z) = 0\}$. The projection, onto $T^*(\partial\Omega)$ of the null-bicharacteristics for \tilde{p} are called boundary bicharacteristics for P. It is easy to check that the null-bicharacteristics for the restriction of f to $\Delta_{\tilde{p}} = \{z \in \tilde{f}; \{p,f\}(z) = 0\}$ give the same curves as the null-bicharacteristics for \tilde{p} . In fact, the tangent of such a curve lies in the plane spanned by $H_{\tilde{p}}$ and $H_{\tilde{f}}$ and is orthogonal to the gradient of $\{p,f\}$.

In order to localize the concept of "regularity up to the boundary", we assume that Ω is given by $\mathbf{x}_n > 0$ and denote points on the boundary $\partial \Omega$ by $\mathbf{x}' = (\mathbf{x}', 0)$. If $(\overline{\mathbf{x}'}, \overline{\mathbf{x}'}) \in \dot{\mathbf{T}}^*(\partial \Omega)$, we say that $\mathbf{u} \in \mathbf{H}_{\mathbf{x}}(\overline{\Omega})$ at $(\overline{\mathbf{x}'}, \overline{\mathbf{x}'})$ if there is a homogeneous symbol $\psi(\mathbf{x}', \overline{\mathbf{x}}')$ such that $\psi(\mathbf{x}', \mathbf{x}') = 1$ in a neighborhood of $(\overline{\mathbf{x}'}, \overline{\mathbf{x}'})$ and $\psi(\mathbf{x}', \mathbf{D}')\mathbf{u}(\mathbf{x}', \mathbf{x}_n)$ belongs to $\mathbf{H}_{\mathbf{x}}(\overline{\Omega})$ close to $\overline{\mathbf{x}}'$. Here it is implicitly assumed that $\mathbf{x}_n \mapsto \mathbf{u}(., \mathbf{x}_n)$ is well-defined. In the same manner we say that $(\overline{\mathbf{x}'}, \overline{\mathbf{x}'}) \not\in \mathbf{WF}(\mathbf{u}; \overline{\Omega})$ if, for some ψ as above, $\psi(\mathbf{x}', \mathbf{D}')\mathbf{u} \in \mathbf{C}^{\infty}(\overline{\Omega})$ close to $\overline{\mathbf{x}'}$. This definition of microlocal regularity up to the boundary has also been suggested by Chazarain [3].

Theorem: Suppose that Ω is pseudo-convex with respect to P and let γ be a boundary bicharacteristic for P. If $\mathbf{u} \in \mathfrak{D}^{\mathbf{v}}(\overline{\Omega})$, $P\mathbf{u} \in \mathbf{C}^{\infty}(\overline{\Omega})$ and $\gamma \cap WF(\mathbf{u}_{|\partial\Omega}) = \emptyset$, then either $\gamma \subseteq WF(\mathbf{u}_{;\overline{\Omega}})$ or $\gamma \cap WF(\mathbf{u}_{;\overline{\Omega}}) = \emptyset$.

Sketch of proof: In order to avoid technical complications, we only consider the case when P is hyperbolic. We also assume that Ω is given by $\mathbf{x}_n > 0$. Let $(\bar{\mathbf{x}}', \bar{\mathbf{\xi}})$ be a point in $\mathbb{S} \cap \mathbb{F}$ where $\{p, f\} = 0$ and denote by $\mathbf{x} = \mathbf{y}(\bar{\mathbf{x}}', \bar{\mathbf{\xi}}')$ the boundary bicharacteristic through the projection $(\bar{\mathbf{x}}', \bar{\mathbf{\xi}}')$ of $(\bar{\mathbf{x}}', \bar{\mathbf{\xi}})$ onto $T^*(\partial\Omega)$. The main step in the proof is to construct a suitable symbol $\mathbf{a}(\mathbf{x}, \bar{\mathbf{x}})$ of order zero such that

$$\{p,a\}(x,\xi)=0$$

(5)
$$a(x',\xi) = r(x',\xi)p(x',\xi) + q(x',\xi')$$

and $a(x,\xi) = 1$ on a conic neighborhood of $(x',\overline{\xi})$. Here the condition (5) is required to be satisfied for some choice of r and q.

If (x', ε') is close to $(\bar{x'}, \bar{\varepsilon'})$ then there is either no root or else two roots ε_n^{\pm} of the equation $p(x', \varepsilon', \varepsilon_n) = 0$. These roots coincide when $\{p, f\} = 0$. Since q is independent of ε_n it follows from (5) that one must have

(5')
$$a(x', f', f_n^+) = a(x', f', f_n^-).$$

Now (4) means that a is constant along the bicharacteristics for P so (5') implies — that a has to be constant along the successively reflected

bicharacteristics. In particular it follows that a must be constant along the lifting \widetilde{Y} to $\widetilde{V} \cap \mathcal{F}$ of the boundary bicharacteristic $Y = Y(\overline{X'}, \overline{F'})$. If we denote by $\Gamma(\overline{X'}, \overline{F'})$ the flow-out along H_p from \widetilde{Y} , the results of [7] imply that a can be chosen to satisfy (4) and (5) and to have support in an arbitrary small conic neighborhood of $\Gamma(\overline{X'}, \overline{F'})$. Since $X_n = 0$ is non-characteristic, we can in particular assume that a has the transmission property (see [1]).

Let r be a homogeneous symbol of order -2 which has the transmission property and satisfies (5) and denote by R the corresponding operator. Let furthermore Q and A be operators with symbols q and $a+a_{-1}$, where

(6)
$$\mathbf{a}_{-1} = \mathbf{p}_{1}\mathbf{r} + \mathbf{i} \left[\frac{\partial}{\partial \xi_{n}} \frac{\partial}{\partial \mathbf{x}_{n}} (\mathbf{p}\mathbf{r} - \mathbf{a}) - \sum_{k=1}^{n} \frac{\partial \mathbf{p}}{\partial \xi_{k}} \frac{\partial \mathbf{r}}{\partial \mathbf{x}_{k}} \right]$$

Here \mathbf{p}_1 denotes the symbol of order one of P.

Assume now that $u\in H_{_{\mathbf{S}}}(\overline{\Omega})$ along Y and put

$$v = Au^O + R((Pu)^O - Pu^O)$$

where u^0 denotes the extension of u which vanishes outside Ω . Since $\gamma \cap WF(u_{\partial\Omega}) = \emptyset$, it follows from (4) - (6) that

(7)
$$\mathbf{P}\mathbf{v} = \mathbf{A}((\mathbf{P}\mathbf{u})^{\mathbf{O}}) \mod \mathbf{H}_{\mathbf{S}}(\overline{\Omega}).$$

Moreover (5) gives that

(8)
$$v_{|\partial\Omega} = (R((Pu)^{0}) + Qu)_{\partial\Omega} \mod H_{s+1/2}(\partial\Omega).$$

Because A and R have the transmission property, $Pu \in C^{\infty}(\overline{\Omega})$ and $\gamma \cap WF(u_{|\partial\Omega}) = \emptyset$, we get from (7) and (8) that

$$\mathbf{p_v} \in \mathbf{H_s}(\overline{\Omega}), \mathbf{v}_{\partial\Omega} \in \mathbf{H_{s+1/2}}(\partial\Omega).$$

If now some point on $\Upsilon(\bar{x'},\bar{\xi'})$ is outside $WF(u;\bar{\Omega})$ and $a(x,\xi)$ has support sufficiently close to $\Gamma(\bar{x'},\bar{\xi'})$, it follows that we can assume that v has initial data in C. Note that the pseudo-convexity

means that the bicharacteristics in $\Gamma(\bar{x'}, \bar{r'})$ leave Ω . Well-known regularity theorems for the mixed problem now implies that $v \in H_{s+1/2}(\overline{\Omega})$.

Since $a(x, \xi) = q(x', \xi') = 1$ in a neighborhood of the zeros of $p(x, \xi)$, when (x', ξ') is close to $\gamma(x', \xi')$ and x_n is small, we can assume that $r(x, \xi)$ satisfies

(9)
$$a(x,\xi) = r(x,\xi)p(x,\xi) + q(x',\xi')$$

there. Remember that (5) is only required to be satisfied when $x_n = 0$. From (9) it follows that

$$v = R((Pu)^{\circ}) + Qu \mod H_{s+1}(\overline{\Omega}),$$

close to Y. Thus

$$Qu = H_{S+1/2}(\overline{\Omega}),$$

close to Y, and the proof is finished.

 $\overline{\text{Remark}}$: Just before this lecture we received a manuscript from G. Eskin [5] where a parametrix is constructed for certain mixed hyperbolic problems with gliding rays. For second order Dirichlet problems such a parametrix has also been constructed by one of the authors (Melrose). This construction as well as a fuller account of the argument described above will be published elsewhere.

REFERENCES

- [1] L. Boutet de Monvel : Acta Math., 126, 1971, p.11-51.
- [2] J. Chazarain : Sem. Bourbaki, exposé nº 432, 1973.
- [3] J. Chazarain: Reflection of C singularities for a class of operators with multiple characteristics, Publ. R.I.M.S. Kyoto Univ. [to appear].
- [4] G. Eskin: A parametrix for the mixed problems for strictly hyperbolic equations of an arbitrary order, Comm. in Partial Diff. Eq. [to appear].

- [5] G. Eskin: A parametrix for interior mixed problems for strictly hyperbolic equations [to appear].
- [6] R. Melrose, Duke Math. J., 42, 1975, p.605-635.
- [7] R. Melrose, Equivalence of glancing hypersurfaces, Invent. Math. [to appear].
- [8] L. Nirenberg: A.M.S. Reg. Conf. Series, 17, 1973.
- [9] M. Taylor: Comm. Pure Appl. Math. 29, 1976, p.1-38.