SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

D. GOURDIN

Systèmes faiblement hyperboliques

Séminaire Équations aux dérivées partielles (Polytechnique) (1975-1976), exp. nº 22, p. 1-21

http://www.numdam.org/item?id=SEDP_1975-1976_____A23_0

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1975-1976, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

PLATEAU DE PALAISEAU - 91120 PALAISFAU

Téléphone : 941.81.60 - Poste Nº
Télex : ECOLEX 69 15 96 f

S E M I N A I R E G O U L A O U I C - S C H W A R T Z 1 9 7 5 - 1 9 7 6

SYSTEMES FAIBLEMENT HYPERBOLIQUES

par D. GOURDIN

§ O. INTRODUCTION

La classification des systèmes différentiels à l'aide des facteurs invariants introduite par J. Vaillant [11] [12] conduit à la définition des systèmes faiblement hyperboliques à caractéristiques de multiplicités constantes que nous allons donner ci-après.

On résoudra alors le problème de Cauchy dans des espaces de Sobolev convenables, par la méthode de K. Yoshida [14], en imposant une condition de bonne décomposition inspirée par celle de J. C. de Paris [9] pour les opérateurs scalaires. Soit

$$\begin{array}{lll} \boldsymbol{x^o} > \boldsymbol{0}, \ \Omega = \left[\left(\boldsymbol{0}, \boldsymbol{x^o} \right] \times \boldsymbol{R^n} \right] = \left\{ \left(\boldsymbol{x^o}, \boldsymbol{x} \right) \in \boldsymbol{R^{n+1}}; \boldsymbol{x^o} \in \left[\boldsymbol{0}, \boldsymbol{x^o} \right], \ \boldsymbol{x} \in \boldsymbol{R^n} \right\} \\ \boldsymbol{\mathfrak{G}^{\infty}}(\Omega) &= \left\{ \boldsymbol{u} \in \boldsymbol{C^{\infty}}(\Omega) \right\}; \ \boldsymbol{D_{\phi}^{\alpha}} \ \ \text{born\'e} \ \ \text{dans } \Omega, \ \boldsymbol{\Psi}\alpha \ \ n+1-\text{uple d'entiers} \right\} \\ \boldsymbol{\mathcal{O}_{m}^{\theta}}(\Omega) &= \left\{ \text{op\'erateurs diff\'erentiels sur } \Omega \ \ \boldsymbol{\hat{a}} \ \ \text{coefficients matriciels } m \ \boldsymbol{Xm} \\ & \text{dont les \'el\'ements appartiennent } \boldsymbol{\hat{a}} \ \boldsymbol{\mathfrak{G}^{\infty}}(\Omega) \ \ \text{et d'ordre} \ \boldsymbol{\theta} \in \boldsymbol{N} \right\} \\ \boldsymbol{\mathfrak{O}_{m}}(\Omega) &= \bigcup_{\boldsymbol{\theta} \in \boldsymbol{N}} \boldsymbol{\mathfrak{I}^{m}} \boldsymbol{\mathfrak{I}^{\theta}}(\Omega) \ . \end{array}$$

§ I. LES SYSTEMES FAIBLEMENT HYPERBOLIQUES A CARACTERISTIQUES DE MULTIPLICITES CONSTANTES DE $\mathcal{O}_{m}(\Omega)$. [5].

Soit
$$h = h(x^0, x; D_{x^0}, D_x) = (h_B^A(x^0, x; D_{x^0}, D_x))_{\substack{1 \le A \le m \\ 1 \le B \le m}} \in \mathcal{D}_m^t(\Omega)$$

et $H = H(x^{O}, x; \ell_{O}, \ell) = (H_{B}^{A}(x^{O}, x; \ell_{O}, \ell))_{\substack{1 \leq A \leq m \\ 1 \leq B \leq m}}$ sa matrice caractérisitque

H vérifie les hypothèses suivantes :

1) Quel que soit (x^0, x) fixé dans Ω , le déterminant caractéristique det $H = \det H(x^0, x; \ell_0, \ell) \neq 0$ dans $R[\ell_0, \ell]$ et admet une décomposition en facteurs irréductibles H_S dans $R[\ell_0, \ell]$ de multiplicité v_S constante dans Ω à coefficients appartenant à $\mathcal{B}^{\infty}(\Omega)$:

det
$$H = (H_1)^{v_1} \dots (H_s)^{v_s} \dots (H_s)^{v_s}$$
;

2) Dans la représentation de H dans l'anneau localisé $^\Phi_{~S}$ de R[$^\ell_{~O}$, $^\ell_{~O}$] par rapport à l'idéal premier défini par H $_{S}$ [11] on a

avec $q_1(s) \ge ... \ge q_m(s)$ et $v_s = q_1(s) + ... + q_m(s)$, et on suppose que les multiplicités $q_1(s) = q^s$ sont constantes dans Ω , quel que soit $s = 1, ..., \sigma$.

3) Le radical caractéristique $\prod_{s=1}^{\sigma} H_s$ est strictement hyperbolique par rapport au covecteur $(1,0) \in T^*$ (Ω) en tout point (x^0,x) de Ω , à (x^0,x) distance finie et infinie dans Ω [7], ce qui signifie :

Dans $R[\ell_0]$, $\frac{\sigma}{s=1}$ a toutes ses racines p_0^i réelles et distinctes et en posant :

$$H_{1}(x^{0}, x; \ell_{0}, \ell) = H_{1}(x^{0}, x; 1, 0) \prod_{i=1}^{\tau_{1}} (\ell_{0} - p_{0}^{i}(x^{0}, x; \ell))$$

$$\vdots$$

$$H_{s}(x^{0}, x; \ell_{0}, \ell) = H_{s}(x^{0}, x; 1, 0) \prod_{i=\tau_{s-1}+1}^{\tau_{s}} (\ell_{0} - p_{0}^{i}(x^{0}, x; \ell))$$

$$\vdots$$

$$H_{\sigma}(x^{0}, x; \ell_{0}, \ell) = H_{\sigma}(x^{0}, x; 1, 0) \prod_{i=\tau_{\sigma-1}+1}^{\tau_{\sigma}} (\ell_{0} - p_{0}^{i}(x^{0}, x; \ell))$$

on a

$$\begin{aligned} 0 &= \tau_0 < \tau_1 < \ldots < \tau_s < \ldots < \tau_\sigma \;,\; d^O H_s = \tau_s - \tau_{s-1} \;\; \text{et les inégalités} \\ 0 &< \inf \{ (p_o^i(x^o, x; \ell) - p_o^j(x^o, x; \ell) | \;;\; i \neq j,\; (x^o, x) \in \Omega \;,\; |\ell| = 1 \} \\ 0 &< \inf \{ |H_s(x^o, x; 1, 0)| \;;\; (x^o, x) \in \Omega \;,\; 1 \leq s \leq \sigma \} \end{aligned}$$

Définition 1 : Dans ces conditions, l'opérateur h est dit faiblement hyperbolique par rapport aux covecteurs $(1,0) \in T^k$ (Ω) et à caractéris- (x^0,x) tiques de multiplicités constantes dans Ω .

La matrice A' des cofacteurs des éléments de H dans le développement de det H est divisible par

$$\begin{array}{ccc}
\sigma & q_2(s) + \dots + q_m(s) \\
\pi & (H_s) & & & & \\
s = 1 & & & & \\
\end{array}$$

En posant

$$A' = \frac{\sigma}{s+1} (H_s)^{q_2(s)+\ldots+q_m(s)} A$$

on a

$$HA = AH = \prod_{s=1}^{\sigma} (H_s)^q^s I_m$$

où I_{m} est la matrice unité mX m.

 θ étant un entier positif ou nul.

On peut toujours supposer que la suite $(q^s)_{1 \le s \le \sigma}$ est décroissante au sens large : $q^1 \ge q^2 \ge \ldots \ge q^s \ge \ldots \ge q^\sigma$. Appelons τ le degré de $(H_1)^{q'} \ldots (H_{\sigma})^{q^{\sigma}}$ et τ - t le degré des éléments de A dans $R[\ell_{\sigma},\ell]$.

Enfin. pour r réel quelconque, on désigne les espaces de Sobolev par $\mathfrak{D}_{L^2}^r = \operatorname{tu/u} \in \mathfrak{Z}^r (\mathbb{R}^n)$ et $(1+|\mathfrak{x}|^2)^{r/2} \widehat{u} \in L^2(\mathbb{R}^n)$ avec leurs normes $\|\mathfrak{u}\|_r = \|(1+|\mathfrak{x}|^2)^{r/2} \widehat{u}\|_{L^2(\mathbb{R}^n)}$; $\mathcal{D}_{L^2}^r = \bigcap_{r \in \mathbb{R}} \mathcal{D}_{L^2}^r = \operatorname{est}$ un espace de Fréchet pour les semi-normes $\|\mathfrak{u}\|_r$, $\mathcal{E}_{[0,X^0]}^\theta = (\mathfrak{p}_{[0,X^0]}^r) = (\mathfrak{p}_{[0,X^0]}^r + \mathfrak{p}_{[0,X^0]}^r) = (\mathfrak{p}_{[0,X^0]}^r) = (\mathfrak{p}_{[0,X^0]$

Théorème 1 : Le problème de Cauchy posé par le système

(1.1)
$$h(x^{0}, x; D_{x^{0}}, D_{x}) y(x^{0}, x) = f(x^{0}, x)$$

et les données de Cauchy sur l'hyperplan x⁰ . O notées

$$\begin{bmatrix}
\mathbf{D} & \left\{ \begin{pmatrix} (\mathbf{y}, \mathbf{D}_{\mathbf{x}} \mathbf{o}^{\mathbf{y}}, \dots, \mathbf{D}_{\mathbf{x}}^{t-1} \mathbf{y}) (\mathbf{0}, \mathbf{x}) = (\mathbf{y}_{\mathbf{0}}(\mathbf{x}), \dots, \mathbf{y}_{t-1}(\mathbf{x})) \\ \mathbf{y}_{\mathbf{i}} \in (\mathcal{D}_{\mathbf{x}}^{n})^{m} \\ \mathbf{L}^{2} \end{bmatrix}^{m}$$

avec le second membre $\mathbf{f} \in \mathcal{E}_{[0,X^0]}^{0} \left(\sum_{L^2}^{\infty} \right)^{m}$, admet une solution $\mathbf{y} \in \mathcal{E}_{[0,X^0]}^{\mathbf{t}} \left(\sum_{L^2}^{\infty} \right)^{m}$, s'il existe un opérateur $\mathbf{a}_1 \in \mathcal{I}_{\mathbf{m}}^{\tau-\mathbf{t}}(\Omega)$ de symbole principal A tel que $\mathbf{k}_1 = \mathbf{h} \, \mathbf{a}_1$ soit bien décomposable dans $\mathcal{I}_{\mathbf{m}}^{0} \left(\Omega \right)$; cette solution est unique s'il existe un opérateur $\mathbf{a}_2 \in \mathcal{I}_{\mathbf{m}}^{\tau-\mathbf{t}}(\Omega)$ de symbole principal A tel que $\mathbf{k}_2 = \mathbf{a}_2\mathbf{h}$ soit bien décomposable dans $\mathcal{I}_{\mathbf{m}}^{0} \left(\Omega \right)$.

Dans le paragraphe II, nous allons introduire la bonne décomposition dans $\mathcal{O}_{\mathbf{m}}(\Omega)$ et les notions équivalentes.

Remarque: Dans [4], nous avons étudier le problème de Cauchy dans le cas particulier où $v_1 = 2$, $q^1 = 2$ et $q^2 = \ldots = q^{\sigma} = 1$, v_2, \ldots, v_{σ} étant des entiers quelconques, sous une condition équivalente à la bonne décomposition, mais dans des espaces de Sobolev plus larges, en remplaçant (1.1) par un système d'équations du premier ordre mais pseudo-différentiels.

R. Berzin [1], sous la même condition (divisibilité d'un polynôme construit à partir de la matrice sous-caractéristique par le facteur de multiplicité 2 dans le déterminant caractéristique) a résolu le problème de Cauchy \mathcal{C}^{∞} dans ce même cas particulier en construisant une paramétrix au moyen d'opérateurs intégraux de Fourier.

Dans [2], il étudie un autre cas particulier : $v^1 = 3$, $q^1 = 3$; $v^2 = 3$, $q^2 = 2$; v_s quelconque, $q^s = 1$ ($s = 3, \ldots, \sigma$). Petkov [10] a étudié les cas particuliers où l'on a soit $v_s \le 3$, soit $v_s \ge 3$ et $q^s = 1$.

Y. Demay a traité dans [3] le cas des systèmes du premier ordre à caractéristique double, avec la condition d'annulation du symbole sous-caractéristique.

Soient $a_1 \in \mathcal{O}_m^{\tau-t}(\Omega)$ et $a_2 \in \mathcal{O}_m^{\tau-t}(\Omega)$ de même symbole principal A.

Alors les opérateurs $k_1 = h$ a_1 et $k_2 = a_2 = a_2 h$ sont de la forme $k(\mathbf{x}^0,\mathbf{x};\mathbf{D}_{\mathbf{x}^0},\mathbf{D}_{\mathbf{x}^0}) \in \mathfrak{F}_{\mathbf{x}^0}^{\tau}(\Omega)$ de symbole principal diagonal $K(\mathbf{x}^0,\mathbf{x};\boldsymbol{\ell}_0,\boldsymbol{\ell}) = H_1^q \ldots H_\sigma^q(\mathbf{x}^0,\mathbf{x};\boldsymbol{\ell}_0,\boldsymbol{\ell})\mathbf{I}_{\mathbf{m}}$.

§ II. LES CONDITIONS DE BONNE DECOMPOSITION

1) <u>La condition de bonne décomposition pour les opérateurs</u> $k(x^0, x; D_x, D_x)$ <u>dans</u> $\mathcal{O}_m(\Omega)$.

Fixons H_0 un des facteurs H_s ($1 \le s \le \sigma$).

 $\begin{array}{ll} \underline{\text{Proposition 1}} & : & \text{Quel que soit } h_o \in \mathcal{O}_1(\Omega) \text{ de symbole principal } H_o, \text{ illexiste des opérateurs } e_j \in \mathcal{O}_m(\Omega) \text{ (}0 \leq j \leq \tau \text{) et des nombres entiers } \beta_j \\ & (0 \leq j \leq \tau) \text{ avec } \beta_o = q^o \text{ tels que} \end{array}$

(2.1)
$$\begin{cases} k = \sum_{j=0}^{\tau} e_{j}(h_{0})^{\beta_{j}} \\ j = 0 \end{cases}$$
 pour tout $j = 0, \dots, \tau - 1$.

(on dit que dans $\mathfrak{I}_{\mathfrak{m}}(\Omega)$, $\mathfrak{p}_{\mathfrak{S}} \mathfrak{q}$ si $\mathfrak{p} - \mathfrak{q} \in \mathfrak{I}_{\mathfrak{m}}^{\mathfrak{d}} - \mathfrak{I}(\Omega)$).

Proposition 2 : Si k possède une bonne décomposition par rapport à H_0 toute décomposition par rapport à H_0 est une bonne décomposition.

de symboles principaux respectivement H_1, \ldots, H_σ et des opérateurs $e_0, \ldots, e_\tau \in \mathcal{O}_m(\Omega)$ tels que :

(2.2)
$$\begin{cases} \mathbf{k} = \sum_{\mathbf{j}=0}^{\tau} \mathbf{e}_{\mathbf{j}} \mathbf{h}_{1}^{\left[q'-\mathbf{j},+\dots\mathbf{h}_{\sigma}^{\left[q^{\sigma},+\dots\mathbf{h}_{\sigma}^{\left[q^{\sigma},+\dots\mathbf{h}_{\sigma}^{\left[q^{\sigma}-\mathbf{j},+\dots\mathbf{h}_{\sigma}^{\left[q^{$$

où [r] + r si $r \ge 0$ et 0 sinon.

Proposition 4 : Si k possède une décomposition de la forme:

$$\begin{pmatrix}
\mathbf{2.3} & \begin{cases}
\mathbf{k} = \sum_{j=0}^{\tau} \mathbf{e}_{j} & \mathbf{h}_{\alpha_{1}^{j}} & \mathbf{h}_{\alpha_{2}^{j}} & \dots \mathbf{h}_{\mathbf{u}_{j}} \\
\mathbf{j} & \mathbf{k} & \sum_{\tau-j}^{\Sigma} \mathbf{e}_{\gamma} & \mathbf{h}_{\alpha_{1}^{j}} & \mathbf{h}_{\alpha_{2}^{j}} & \dots \mathbf{h}_{\alpha_{p}^{j}} \\
\mathbf{k} & \sum_{\tau-j}^{\Sigma} \mathbf{e}_{\gamma} & \mathbf{h}_{\alpha_{1}^{j}} & \mathbf{h}_{\alpha_{2}^{j}} & \dots \mathbf{h}_{\alpha_{p}^{j}}
\end{pmatrix} \quad (0 \leq j \leq \tau)$$

où
$$u_j = \sum_{s=1}^{\sigma} [q^s - j]$$

$$\alpha^{j}$$
 est une bijection : $\begin{bmatrix} 1, \dots, u_{j} \end{bmatrix}$ $\begin{bmatrix} 1, \dots, 1; \dots; \sigma, \dots, \sigma \end{bmatrix}$ $\begin{bmatrix} q'-j \end{bmatrix}_{+}$ fois $\begin{bmatrix} q^{\sigma}-j \end{bmatrix}_{+}$ fois

$$\alpha^{j}(i) = \alpha^{j}_{i}$$
,

 $lpha^{j}(i) = lpha^{j}_{i}$, $h_{s} \in \mathfrak{I}^{(\Omega)}$ a pour symbole principal H_{s} ,

$$\mathbf{e}_{\mathbf{j}} \in \mathfrak{I}_{\mathsf{m}}(\Omega)$$

alors k est bien décomposable par rapport à chaque H_s (1 \leq \leq σ) dans $\mathcal{I}_m(\Omega)$.

Proposition 5 : Si k possède une décomposition de la forme :

$$(2.4) \begin{cases} k = \sum_{j=0}^{\tau} e_{1}^{j} h_{\alpha_{1}^{j}} e_{2}^{j} h_{\alpha_{2}^{j}} \dots e_{u_{j}^{j}}^{j} h_{\alpha_{u_{j}^{j}}^{j}} e_{u_{j}+1}^{j} \\ k \sim \sum_{\tau-j}^{\tau} e_{1}^{\rho} h_{\alpha_{1}^{\rho}} e_{2}^{\rho} h_{\alpha_{2}^{\rho}} \dots e_{u_{\rho}^{\rho}}^{\rho} h_{\alpha_{u_{\rho}^{\rho}}^{j}} e_{u_{\rho}+1}^{\rho} \end{cases} \quad (0 \leq j \leq \tau)$$

où $h_s \in \mathcal{O}_1(\Omega)$ a pour symbole principal H_s $(1 \le s \le \sigma) e_i^j (0 \le j \le \tau; 1 \le i \le u_j + 1)$ appartient à $\mathcal{T}_{m}(\Omega)$, alors k est bien décomposable par rapport à chaque $H_{s}(1 \le s \le \sigma)$ dans $\mathcal{T}_{m}(\Omega)$.

La définition 2 a été introduite et les propositions 1, 2 et 3 prouvées par J. C. de Paris [9] dans le cas scalaire (m = 1); les démonstrations s'adaptent facilement au cas m entier quelconque et se prolongent aux propositions 4 et 5.

Nous allons maintenant étudier la bonne décomposition dans un espace d'opérateurs $\mathfrak{G}'_{\mathbf{m}}$ (Ω) plus grand que $\mathfrak{G}_{\mathbf{m}}(\Omega)$.

L'espace d'opérateurs $\mathfrak{I}_{\mathfrak{m}}^{(\Omega)}$ [16]

On désigne par

$$\left[\epsilon_{[0,X^0]}(s^r) \right]$$
 (r réel)

l'espace des fonctions $\mathcal{E}\in\mathcal{Z}^{\infty}(\Omega\times R^n)$ telles que, quel que soient l'entier ρ , les n-uples d'entiers μ et ψ , il existe $C_{\rho,\mu,\psi}$ constante positive telle que

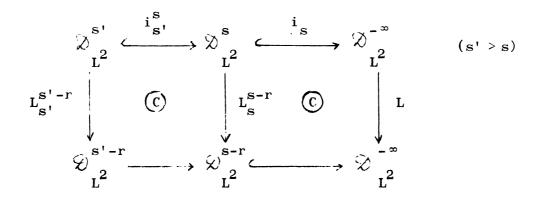
$$\psi_{\mathbf{X}}^{\mathbf{o}} \in [0, \mathbf{X}^{\mathbf{o}}], \ \psi_{\mathbf{X}} \in \mathbb{R}^{\mathbf{n}}, \ \psi_{\mathbf{k}} \in \mathbb{R}^{\mathbf{n}} \Rightarrow \left| \mathbf{p}_{\mathbf{X}}^{\mathbf{o}} \circ \mathbf{p}_{\mathbf{X}}^{\mathbf{\mu}} \ \mathbf{p}_{\mathbf{k}}^{\mathbf{v}} \in (\mathbf{x}^{\mathbf{o}}, \mathbf{x}; \ell) \right| \leq C_{\rho, \mu, \nu} (1 + \left| \ell \right|^{2})^{2}$$

$$\boxed{ \epsilon_{[0, \mathbf{X}^{\mathbf{o}}]}(\mathbf{S}^{\mathbf{r}}) }$$

l'espace des opérateurs pseudo-différentiels en x, scalaires, dépendant du paramètre $x^o \in [0,X^o]$, $\epsilon(x^o,x;D_x)$ dont le symbole $\epsilon(x^o,x;\ell)$ appartient $\dot{a} \, \ell_{[0,X^{0}]} (s^r)$. On a :

$$\mathcal{E}_{\left[0,X^{0}\right]}(\mathbf{S}^{r}) \subseteq \mathcal{E}^{\infty}_{\left[0,X^{0}\right]}[\mathfrak{L}^{r}(\hat{\mathcal{D}}^{-\infty}_{L^{2}},\hat{\mathcal{D}}^{-\infty}_{L^{2}})] \quad \text{où} \quad \hat{\mathcal{X}}^{-\infty}_{L^{2}} = \underbrace{\bigcup_{\mathbf{s}\in\mathbb{R}}\widehat{\mathcal{Z}}_{R}}_{\mathbf{s}\in\mathbb{R}}\widehat{\mathcal{Z}}_{L^{2}}^{\mathbf{s}}$$

limite muni de la topologie inductive est un espace de Silva [15], $\mathfrak{L}^{\mathbf{r}}\mathcal{Q}_{\mathbf{L}^2}^{-\infty}$, $\mathfrak{L}^{-\infty}_{\mathbf{L}^2}$) est l'e.v.t.l.c. des applications linéaires continues L d'ordre r de $\sum_{1,2}^{-\infty}$ dans $\sum_{1,2}^{-\infty}$. c'est-à-dire que L est la limite d'un système inductif d'applications formé pour les restrictions L_s^{s-r} de L à $\mathcal{Z}_{\tau^2}^s$ dans $\mathcal{Z}_{\tau^2}^{s-r}$:



 $\text{muni des semi normes } \|\mathbf{L}\|_{\mathbf{S}}^{\mathbf{S}-\mathbf{r}} = \sup_{\|\mathbf{u}\|_{\mathbf{S}-\mathbf{r}}} \|\mathbf{L}\mathbf{u}\|_{\mathbf{S}-\mathbf{r}} \text{ . et } \mathcal{E}_{[0,X^{0}]}^{\infty}[\mathfrak{T}^{\mathbf{r}}(\varnothing^{-\infty},\varnothing^{-\infty})]$ est l'espace des applications de $[0,X^0]$ dans $\mathfrak{L}^{\mathbf{r}}(\mathcal{I}_{\frac{7}{2}}^{-\infty},\mathcal{I}_{\frac{7}{2}}^{-\infty})$ indéfiniment différentiable par rapport à $x^o \in [0, X^o]$

 $\varepsilon_{\mathbf{x}^{0}}^{(i)}(\mathbf{x}^{0},\mathbf{x};\ell)$

D'autre part, θ étant un entier fixé. $\bigcup_{s \in D} \mathcal{E}^{\theta}_{s}(\mathcal{Z}^{s})$ est aussi un espace de Silva égal $\hat{a} \in [0,X]^{-1} (\mathcal{Z}_{\tau^2}^{-\infty})$ et tout

$$\begin{split} &\epsilon(x^0,x;\textbf{D}_x) \in \mathcal{E}_{\left[0,X^0\right]}\left(\vartheta^r\right) \text{ opère continument sur cet espace comme un} \\ &\text{opérateur d'ordre r}: on note \\ &\epsilon(x^0,x;\textbf{D}_x) \in \mathcal{F}_{\left[0,X^0\right]}^{\mathcal{E}_{\left$$

$$\begin{array}{c}
\epsilon_{[0,X^{0}]}^{\theta} \xrightarrow{s'} \xrightarrow{\epsilon_{[s']}^{\theta}} \epsilon_{[0,X^{0}]}^{\theta} \xrightarrow{s} \epsilon_{[0,X^{0}]}^{\theta} \xrightarrow{s} \epsilon_{[0,X^{0}]}^{\theta} \xrightarrow{s} \epsilon_{[0,X^{0}]}^{\theta} \xrightarrow{s} \epsilon_{[0,X^{0}]}^{\theta} \xrightarrow{s} \epsilon_{[0,X^{0}]}^{\theta} \xrightarrow{s'-r} \epsilon_{[0,X^{0}$$

On introduit aussi

$$\varepsilon_{[0,X^{0}]}(\mathfrak{L}^{-\infty}) = \varepsilon_{[0,X^{0}]}^{\infty} [\mathfrak{L}(\mathcal{L}^{-\infty}), \mathcal{L}^{+\infty})]$$

qui est l'espace des applications indéfiniment délivables de $[0,X^{c}]$ dans l'e.v.t.l.c. $L(\partial_{L^2}^{-\infty}, \partial_{L^2}^{+\infty})$ des applications linéaires continues L

de $\mathcal{Z}_{L}^{-\infty}$ dans $\mathcal{Z}_{L}^{+\infty} = \bigcap_{s \in \mathbb{R}} \mathcal{Z}_{L}^{s}$ avec la topologie engendrée par les semi normes $\|L\|_{s_{1}}^{s_{2}} = \sup_{\|u\|_{s_{1}} \le 1} \|Lu\|_{s_{2}} \|(s_{1} \in \mathbb{R}_{1}, s_{2} \in \mathbb{R}_{2})$ on a les propriétés suivantes:

 $\begin{array}{lll} \text{Si } g \in \mathcal{E}_{\left[\begin{array}{c} 0,X^{o} \right]}(\mathfrak{L}^{-\infty}) \text{ , alors quelque soit } i \in \mathbb{N}, \text{ la dérivée } i \overset{\mathbf{\hat{e}me}}{=} \text{ de } g \text{ par} \\ \text{rapport } \grave{a} \overset{\mathbf{\hat{x}}}{=} \mathbf{x}^{o}, \ g_{\overset{\mathbf{\hat{x}}}{=} 0}^{(i)} \text{ admet un noyau } G_{\overset{\mathbf{\hat{i}}}{=} (\mathbf{x}^{o},\mathbf{x};\mathbf{x}^{i}) \in \mathcal{F}\left(\left[\begin{array}{c} 0,X^{o} \right], \mathfrak{B}^{\infty}(\mathbf{R}^{n} \times \mathbf{R}^{n})\right) \left[\begin{array}{c} 6 \end{array}\right]. \end{array}$

. Quel que soit $\theta \in N$, g opère continument :

$$\mathcal{E}_{\left[0,X^{0}\right]}^{\theta}(\mathcal{Z}^{-\infty}) - \mathcal{E}_{\left[0,X^{0}\right]}^{\theta}(\mathcal{Z}^{+\infty}) = \bigcap_{s \in \mathbb{R}} \mathcal{E}^{\theta}(\mathcal{Z}^{s})$$

C'est un opérateur d'ordre arbitraire .

Soit
$$\varepsilon_{[0,X^0]}(\mathbf{S}^{-\infty}) = \bigcap_{r \in \mathbb{R}} \varepsilon_{[0,X^0]}(\mathbf{S}^r)$$
, on a $\Psi_r \in \mathbb{R}$,

$$\mathcal{E}_{[0,X^0]}(S^1)$$
 is $\mathcal{E}_{[0,X^0]}(I^{-\infty}) = \mathcal{E}_{[0,X^0]}(S^{-\infty})$

$$\mathcal{E}_{[0,X^{0^{-}}(S^{\omega})]} \subset \mathcal{E}_{[0,X^{0}]}(\mathcal{I}^{-\infty})$$
.

$$\left[\frac{\varepsilon_{\lfloor 0, X^{0} \rfloor}(x^r)}{\varepsilon_{\lfloor 0, X^{0} \rfloor}(x^r)} \right] = \left[6 \right]$$

est l'espace des opérateurs $\lambda(x^0, x; D_x)$ de la forme :

$$\lambda(x^{0}, x; D_{x}) = \epsilon(x^{0}, x; D_{x}) + g(x^{0}) \text{ avec } \epsilon \in \ell_{[0, X^{0}]}(8^{r}) \text{ et } g \in \ell_{[0, X^{0}]}(x^{-r})$$

Il a les propriétés suivantes :

Soit $\lambda \in \mathcal{E}_{[0,X^0]}(\mathfrak{T}^r)$; on dit que $\mathcal{E}(x^0,x;^{2})$ est un symbole de λ , il est unique modulo $\mathcal{E}_{[0,X^0]}(S^{-\infty})$.

- i) λ opère continuement : $\mathcal{E}^{\theta}_{[0,X^0]}(\mathcal{S}^{-\infty}) \mathcal{E}^{\theta}_{[0,X^0]}(\mathcal{S}^{-\infty})$ comme un opérateur d'ordre r.
- ii) λ admet un adjoint $\lambda^* \in \mathcal{E}_{[0,X^{0}]}(\mathfrak{L}^r)$ au sens suivant :

$$(\lambda u, v) \underset{L^{2}(\mathbb{R}^{n})}{:=} (u, \lambda^{*}v) \underset{L^{2}(\mathbb{R}^{n})}{:=} u \in \mathcal{Z}_{o}^{\infty}(\mathbb{R}^{n}), \ v \in \mathcal{Z}_{o}^{\infty}(\mathbb{R}^{n}),$$

 λ^{*} admet un symbole ϵ^{*} tel que :

$$\Psi$$
 N entier, $\epsilon^*(\mathbf{x}^0, \mathbf{x}; \ell) = \sum_{j=0}^{N-1} \epsilon_j^*(\mathbf{x}^0, \mathbf{x}; \ell) \in \epsilon_{(0, X^0)}(s^{r-N})$

avec
$$\varepsilon_{j}^{*}(x^{0}, x; \ell) = \frac{\sum_{|\alpha|=j}^{n} \frac{1}{\alpha!}}{|\alpha|=j} \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} (\frac{1}{i} \frac{\partial}{\partial \ell})^{\alpha} \varepsilon(x^{0}, x; \ell) \in \varepsilon_{[0, X^{0}]}(s^{r-j})$$

$$(\lambda^*)_{x^0}^{(i)} = (\lambda_{x^0}^{(i)})^* \quad \forall i \in \mathbb{N}.$$

Soient $\lambda_1 \in \mathcal{E}_{[0,X^0]}$ (\mathcal{L}^{r_1}) et $\lambda_2 \in \mathcal{E}_{[0,X^0]}$ (\mathcal{L}^{r_2}) de symboles respectifs

$$\varepsilon_1(x^0, x; \ell)$$
 et $\varepsilon_2(x^0, x; \ell)$.

iii) $\lambda, \lambda_2 \in \mathcal{E}_{[0,X^0]}$ $(\mathfrak{x}^{r_1+r_2})$ a un symbole $\mu(x^0,x;\ell)$ tel que \forall N entier. $\mu(x^0,x;\ell) = \sum_{j=0}^{N-1} \mu_j(x^0,x;\ell) \in \mathcal{E}_{[0,X^0]}(s^{r_1+r_2-N}) \text{ avec}$

$$\begin{split} &\mu_{\mathbf{j}}(\mathbf{x}^{\mathbf{o}},\mathbf{x};\ell) = \frac{\sum_{|\alpha|=\mathbf{j}} \frac{1}{\alpha!} \cdot (\frac{1}{\mathbf{i}} \cdot \frac{\mathbf{b}}{\mathbf{b}}_{\ell})^{\alpha} \epsilon_{1}(\mathbf{x}^{\mathbf{o}},\mathbf{x};\ell) (\frac{\mathbf{b}}{\mathbf{b}}_{\mathbf{x}})^{\alpha} \epsilon_{2}(\mathbf{x}^{\mathbf{o}},\mathbf{x};\ell) \\ &(\lambda_{1}.\lambda_{2})_{\mathbf{x}^{\mathbf{o}}}^{(1)} = (\lambda_{1})_{\mathbf{x}^{\mathbf{o}}}^{(1)} \cdot \lambda_{2} + \lambda_{1}.(\lambda_{2})_{\mathbf{x}^{\mathbf{o}}}^{(1)}. \\ &[\lambda_{1},\lambda_{2}] \in \mathcal{E}_{[0,\mathbf{X}^{\mathbf{o}}]}^{(1)}(\mathfrak{L}^{\mathbf{r}_{1}+\mathbf{r}_{2}-1}). \end{split}$$

Toutes ces définitions et ces propriétés se transportent des opérateurs scalaires aux opérateurs matriciels m X m. On note alors les espaces d'opérateurs matriciels de la façon suivante :

$$\begin{split} & \varepsilon_{\left[0,X^{o}\right]}(s_{m}^{r}), \ \varepsilon_{\left[0,X^{o}\right]}(s_{m}^{r}), \ \varepsilon_{\left[0,X^{o}\right]}(s_{m}^{-\infty}), \ \varepsilon_{\left[0,X^{o}\right]}(s_{m}^{r}). \\ & \text{on a aussi} : \left[\lambda_{1},\lambda_{2}\right] \in \varepsilon_{\left[0,X^{o}\right]}(s_{m}^{r}) \text{ si } \lambda_{1} \in \varepsilon_{\left[0,X^{o}\right]}(s_{m}^{r}) \text{ et} \\ & \lambda_{2} \in \varepsilon_{\left[0,X^{o}\right]}(s_{m}^{r}). \text{ on désigne enfin par } : \end{split}$$

$$\varepsilon_{[0,X^{0}]}^{(\Lambda^{r})}$$

le sous-espace des opérateurs $\lambda_r(x^0,x;D_x)$ de $\mathcal{E}_{[0,X^0]}(\mathfrak{T}^r)$ ayant un symbole $\varepsilon_r(x^0,x;\ell)\in\mathcal{E}_{[0,X^0]}(S_m^r)$ développable en symboles $\varepsilon_{r,j}(x^0,x;\ell)\in\mathcal{E}_{[0,X^0]}(S_m^{r-j})$ homogène de degré r-j par rapport à ℓ pour $|\ell|\geq 1$ au sens que :

$$\forall \text{ N entier, } \epsilon_{\mathbf{r}}(\mathbf{x}^{0},\mathbf{x};\ell) = \sum_{j=0}^{N-1} \epsilon_{\mathbf{r},j}(\mathbf{x}^{0},\mathbf{x};\ell) \in \mathcal{E}_{[0,X^{0}]}(\mathbf{S}_{\mathfrak{m}}^{\mathbf{r}-\mathbf{N}})$$

(\Rightarrow les symboles $\varepsilon_{r,j}(x^0,x;\ell)$ sont uniques pour $|\ell| \ge 1$).

l'espace des opérateurs $p(x^0, x; D_{x^0}, D_x)$ de la forme θ

$$p(\mathbf{x}^{0}, \mathbf{x}; \mathbf{D}_{\mathbf{x}^{0}}, \mathbf{D}_{\mathbf{x}}) = \sum_{i=0}^{\theta} \lambda_{\theta-i}(\mathbf{x}^{0}, \mathbf{x}; \mathbf{D}_{\mathbf{x}}) p_{\mathbf{x}^{0}}^{i} \text{ où } \lambda_{\theta-i}(\mathbf{x}^{0}, \mathbf{x}; \mathbf{D}_{\mathbf{x}}) \in \mathcal{E}_{[0, \mathbf{X}^{0}]}(\Lambda_{m}^{\theta-i})$$

p possède un adjoint appartenant à $\mathfrak{I}_{\mathbf{m}}^{\theta}(\Omega)$, on a aussi

$$\mathcal{O}_{m}^{\theta} (\Omega) \mathcal{O}_{m}^{\theta} (\Omega) \subset \mathcal{O}_{m}^{\theta} 1^{\theta} (\Omega) \qquad .$$

En appelant symbole principal homogène pour $|\ell| \ge 1$ de $p(x^0, x; D_{x^0}, D_x) = \sum_{i=0}^{\beta} \lambda_{i} (x^0, x; D_x) D_x^i$ l'expression $\sigma(p) = P(x^0, x; \ell_0, \ell) = \sum_{i=0}^{\beta} \epsilon_{\theta-i} (x^0, x; \ell) \ell_0^i$, on a :

i) $\sigma(p)$ est homogène de degré θ et unique (pour $|\ell| \ge 1$).

ii)
$$\sigma(p \ q) = \sigma(p) \sigma(q) \text{ pour } |\ell| \ge 1 \text{ si } p \in \mathfrak{I}_{m}^{\theta}(\Omega) \text{ et } q \in \mathfrak{I}_{m}^{\theta'}(\Omega).$$

iii) Soit
$$p = \sum_{i=0}^{\theta} \lambda_{\theta-i} D^i_{x^0}$$
 et $q = \sum_{i=0}^{\theta} \mu_{\theta-i} D^i_{x^0}$ alors $p \in \mathbb{Q}$ $q \in \mathbb{Q}$ (c'est-à-dire) $p-q \in \mathbb{Q}$ $q \in \mathbb{Q}$

on dira que $p \in \mathcal{D}_m^{\,\,\,\theta}(\Omega)$ est unitaire si $\lambda_o(x^o,x;D_X) = I_m$. Enfin si $p \in \mathcal{D}_m^{\,\,\,\theta}(\Omega)$ et $q \in \mathcal{D}_1^{\,\,\,\theta'}(\Omega)$, on a $[p,q] \in \mathcal{D}_m^{\,\,\theta+\theta'-1}(\Omega)$ si et seulement si $[\lambda_o,\mu_o] = 0$ (par exemple si p ou q unitaire).

Considérons les opérateurs $k'_1 = \frac{k_1}{H_1^{q'} \dots H_0^{q'}(x^0, x; 1, 0)}$ et

$$k_2' = \frac{k_2}{H_1^{q'} \dots H_\sigma^{q^\sigma}(\mathbf{x}^o, \mathbf{x}; 1, 0)}$$
 . Ils sont de la forme

On pose $(H'_1)^{q^1}$... $(H'_{\sigma})^{q^{\sigma}} = \pi_{\tau}(x^0, x; \ell_0, \ell) = \frac{\tau_{\sigma}}{\pi}(\ell_0 - p_0^i(x^0, x; \ell))^{\lambda_i}$.

Soit $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}^n)$ qui vaut 0 pour $|\ell| \le 1/2$ et 1 pour $|\ell| \ge 1$.

On pose
$$\begin{cases} \Delta_{\tau}(\mathbf{x}^{o}, \mathbf{x}; \ell_{o}, \ell) &= \frac{\tau}{\pi^{\sigma}} (\ell_{o} - p_{o}^{i}(\mathbf{x}^{o}, \mathbf{x}; \ell) \varphi(\ell))^{\lambda_{i}} \\ &= 1 \end{cases}$$
$$K'_{\mathbf{i}}(\mathbf{x}^{o}, \mathbf{x}; \ell_{o}, \ell) &= \ell_{o} - p_{o}^{i}(\mathbf{x}^{o}, \mathbf{x}; \ell) \varphi(\ell) \quad (1 \leq i \leq \tau_{\sigma})$$

on a $\begin{cases} \triangle_{\tau} = \pi_{\tau} & \text{et homogènes de degré τ pour } |\mathcal{L}| \geq 1 \\ \text{les K'_i sont homogènes de degré 1 et premiers entre eux deux à deux dans $R[\mathcal{L}_{\sigma}]$ pour } |\mathcal{L}| \geq 1. \end{cases}$

3) <u>La condition de bonne décomposition pour les opérateurs</u> $k'(x^0, x; D_{x^0}, D_x) \xrightarrow{\text{dans } \mathcal{D}'_{m}(\Omega)}. \text{ Fixons } k'_{0} \text{ un des facteurs } k'_{1}(1 \le i \le \tau_{\sigma}). \text{ [16]}$

 $\begin{array}{lll} \underline{\text{Proposition 1'}} &: & \text{Quel que soit } k_o^{\prime} \in \mathfrak{I}_{1}^{\prime}(\Omega) \text{ unitaire, de symbole principal} \\ K_o^{\prime} & \text{(pour } \left| \ell \right| \geq 1), \text{ il existe des opérateurs } e_j^{\prime} \in \mathfrak{I}_{m}^{\prime}(\Omega) \text{ (0 } \leq j \leq \tau) \text{ et des nombres entiers } \beta_j^{\prime} & \text{(0 } \leq j \leq \tau) \text{ avec } \beta_o^{\prime} = \lambda_o \text{ tels que} \end{array}$

(2.1)'
$$\begin{cases} k' = \sum_{j=0}^{\tau} e_{j}'(k'_{0})^{\beta'_{j}} \\ j = 0 \end{cases}$$
 pour tout $0 \le j \le \tau$.

on a \$\Delta = (K_1')^{\lambda_1} \cdots (K_0')^{\lambda_0} \cdots (K_0')^{\lambda_0'} \cdots (

Parallèlement au paragraphe II.1. on introduit la

 $\begin{array}{c} \underline{\text{D\'efinition 2'}} & : & \text{k' est dit bien d\'ecomposable par rapport \`a K'_0 si les} \\ \\ \text{nombres β'_j introduits dans la proposition 1' v\'erifient les in\'egalit\'es} \\ \beta'_j \geq \beta'_0 - j. \text{ Alors 1'expression (2.1)' r\'ealise une bonne d\'ecomposition de} \\ \\ \text{k' par rapport \`a K'_0 dans $\mathcal{I}'_m(\Omega)$.} \end{array}$

et on démontre les propositions 2', 3', 4' et 5' obtenues en remplaçant $\mathcal{D}_{m}(\Omega)$ par $\mathcal{D}_{m}^{!}(\Omega)$, k par $k^{!}$, h_{s} (1 \leq s \leq σ) par $k^{!}_{i}$ (1 \leq i \leq au_{σ}), H_{s} par $K_{i}' \text{ et } q^{S} \text{ par } \lambda_{i}, \text{ e } \text{par } e_{j}' \text{ } (0 \le j \le \tau) \text{ enfin } e_{i}^{j} \text{ par } e_{i}'^{j} \text{ } (0 \le j \le \tau; 1 \le i \le u_{j} + 1).$ En particulier, la proposition 4' s'écrit :

Si k' possède une décomposition de la forme :

$$(2.3)' \begin{cases} k' = \sum_{j=0}^{\tau} e'_{j} k'_{j} k'_{j} \dots k'_{j} \\ j=0 & \alpha'_{1} \alpha'_{2} \alpha'_{1} \alpha'_{2} \\ k' \sim \sum_{\tau-j}^{\tau} e'_{\rho} k'_{\rho} k'_{\rho} \dots k'_{j} \\ k' \sim \sum_{j=0}^{\tau} e'_{\rho} k'_{\rho} \alpha'_{1} \alpha'_{2} \alpha''_{1} \alpha''_{2} \\ où u'_{j} = \sum_{j=1}^{\tau} \left[\lambda_{j} - j\right]_{+} \end{cases}$$

$$\alpha^{j}$$
 est une bijection : $\begin{bmatrix} 1, \dots, u_{j} \end{bmatrix} \rightarrow \begin{bmatrix} 1, \dots, 1; \dots; \tau_{\sigma}, \dots, \tau_{\sigma} \end{bmatrix}$

$$\begin{bmatrix} \lambda_{1} - j \end{bmatrix}_{+} \text{fois} \quad \begin{bmatrix} \lambda_{\tau} - j \end{bmatrix}_{+} \text{fois}$$

$$\alpha^{\mathbf{j}}(\mathbf{i}) = \alpha^{\mathbf{j}}_{\mathbf{i}}$$

 $\begin{vmatrix} \alpha^{j}(i) &= \alpha^{j}_{i} \\ k'_{i} &\in \mathfrak{I}'(\Omega) \text{ a pour symbole principal } K'_{i}(1 \leq i \leq \tau_{\sigma}) \text{ et unitaire }$ $e_{,j}^{!} \in \mathcal{O}_{m}^{!}(\Omega) \quad (0 \leq j \leq \tau)$

alors k' est bien décomposable par rapport à chaque K' $(1 \le i \le \tau_{\sigma})$ dans $\mathcal{O}_{\mathbf{m}}^{\prime}(\Omega)$.

Nous allons à présent formuler une décomposition particulière du type (2.3)' de l'opérateur k'.

4) k' et la condition C

On considère la suite finie $(s_i)_{1 \le i \le \chi}$ strictement croissante à valeurs dans [1,...,o] définie par : au_s est le plus petit au_s tel que $q^{s+1} < q^1, \ldots, au_s$ est le plus petit au_s tel que $q^{s+1} < q^{i-1}$ (2 \le i \le x-2),..., au_s est le plus petit au_s tel au_s

que
$$q^{s+1} = q^{\sigma}$$
, $s_{\chi} = \sigma$.
On a $\tau_{s_1} < \tau_{s_2} < \ldots < \tau_{s_{\chi-1}} < \tau_{s_{\chi}} = \tau_{\sigma}$, $q^{i} = \lambda_{\tau_{s_1}}$ $(1 \le i \le \chi)$ et

$$\lambda = q^{1} = \lambda_{1} = \lambda_{2} \qquad \lambda_{\tau_{s_{1}}} = q^{s_{1}} > \lambda_{\tau_{s_{1}+1}} \qquad \lambda_{\tau_{s_{2}}} = q^{s_{2}} > \dots > \lambda_{\tau_{s_{\chi}-2}+1} = \dots$$

$$= \lambda_{\tau_{s_{\chi}-1}} = q^{s_{\chi}-1} > \lambda_{\tau_{s_{\chi}+1}} = \dots > \lambda_{\tau_{s_{\chi}}} = q^{s_{\chi}} = q^{\sigma} \qquad \text{on pose}$$

$$\rho_{i} = \lambda_{\tau_{s_{i}}} = \lambda_{\tau_{s_{i}}+1} = q^{s_{i}} = q^{s_{i+1}} (1 \le i \le \chi - 1), \rho_{\chi} = q^{\sigma} \qquad \text{on a}$$

$$\tau = \sum_{i=1}^{\chi} \rho_{i} \tau_{s_{i}} \quad \text{et } \lambda = q^{1} = \sum_{i=1}^{\chi} \rho_{i} \qquad .$$

Pour des commodités d'écriture, on convient de poser aussi :

$$\tau_{s_{\chi+1}} = \tau_{\sigma} + 1, \quad \rho_{\chi+1} = 0.$$

Soit $p_0^i(x^0, x; p_x) \in \mathcal{E}_{[0, X^0]}(\mathbf{g}^1)$ l'opérateur pseudodifférentiel scalaire de symbole $p_0^i(x^0, x; \ell) \varphi(\ell) \in \mathcal{E}_{[0, X^0]}(S^1)$. On considère les opérateurs de $\mathcal{O}_{i}^{!}(\Omega)$ suivants $\partial_{i} = D_{o}^{0} - p_{o}^{i}(x^{0}, x; D_{x})$ $(1 \le i \le \tau_{\sigma})$ $\delta_{0} = 1, \delta_{1} = \delta_{1}, \delta_{2} = \delta_{2} \delta_{1}, \dots, \delta_{\tau_{s_{1}}} = \delta_{\tau_{s_{1}}} \delta_{\tau_{s_{1}}} - 1 \dots \delta_{2} \delta_{1}, \delta_{\tau_{s_{1}}} + 1 =$ $,\dots,\delta_{\rho_{1}},\dots,\delta$

$$\delta_{\tau} = \delta_{\rho_{\chi}\tau_{s_{\chi}}} \cdots \delta_{\rho_{1}\tau_{s_{1}}} = \overline{\omega}_{\tau}.$$

On a k' $\frac{1}{7} I_m \overline{w}_{\tau}$ car k' et $I_m \overline{w}_{\tau}$ sont unitaires et de même symbole principal homogène pour $|\ell| \ge 1$; $k' - I_m \bar{w}_{\tau} \in \mathcal{O}_m^{\tau-1}$. En développant les δ_i (1\leq i \leq \tau-1), on calcule de proche en proche par récurrence sur i: $D_{x^0}^i = \delta_i + \sum_{j=1}^i \epsilon_j^i (x^0, x; D_x) \delta_{i-j} \text{ avec } \epsilon_j^i \in \mathcal{E}_{\left[0, x^0\right]}$ (A\frac{1}{1}), et

$$D_{x^{0}}^{i} = \delta_{i} + \sum_{j=1}^{L} \epsilon_{j}^{i}(x^{0}, x; D_{x}) \delta_{i-j} \text{ avec } \epsilon_{j}^{i} \in \mathcal{E}_{[0, X^{0}]} (\Lambda_{1}^{j}), \text{ et}$$

$$k' = I_{m} \overline{u}_{\tau} + \sum_{i=0}^{\tau-1} b_{i}(x^{0}, x; D_{x}) \delta_{\tau-1-i} \text{ avec } b_{i} \in \mathcal{E}_{[0, X^{0}]}(\Lambda_{m}^{i}), b_{i} \text{ a donc un}$$

symbole $\beta_{i}(x^{o}, x; \ell) \in \mathcal{E}_{[0, X^{o}]}(S_{m}^{i})$ développable en symboles

 $\begin{array}{l} \beta_{i,j}(x^0,x;\ell) \in \mathcal{E}_{\left[0,X^0\right]}(S_m^{i-j}) \text{ homogenes de degré i-$j par rapport a ℓ pour } \\ |\ell| \geq 1 \text{ (si } \beta_i \in \mathcal{E}_{\left[0,X^0\right]}(S_m^{i-n_i}) \text{ alors } \beta_{i,j}(x^0,x;\ell) = 0 \text{ pour } |\ell| \geq 1 \text{ et } \\ 0 \leq j \leq n_i - 1 \text{ ; on convient de choisir alors } \beta_{i,j} \equiv 0 \text{ pour } 0 \leq j \leq n_i - 1) \text{ ; on peut écrire :} \end{array}$

$$b_{i}(x^{0},x;D_{x}) = \sum_{j=0}^{i-1} \beta_{i,j}(x^{0},x;D_{x}) + b'_{i}(x^{0},x;D_{x})$$

avec $b_{i}(x^{o}, x; D_{x}) \in \mathcal{E}_{[0, X^{o}]}(\Lambda_{m}^{o})$. On pose :

$$b_{i,j}(x^{0},x;D_{x}) = \beta_{i,j}(x^{0},x;D_{x}) \in \mathcal{E}_{[0,X^{0}]}(S_{m}^{i-j})$$
,

de symbole $\beta_{i,j}(x^0,x;\ell) = b_{i,j}(x^0,x;\ell)$ pour j = 0,...,i-1

$$b_{i,i}(x^0,x;D_x) = b'_i(x^0,x;D_x) \in \mathcal{E}_{0,X^{0^-}}(\Lambda_m^0)$$
.

D'où l'expression de k' :

$$k' = I_{m} \widetilde{w}_{\tau} + \sum_{i=0}^{\tau-1} \sum_{j=0}^{i} b_{i,j} (x^{0}, x; D_{x}) \delta_{\tau-1-i}$$

$$= I_{m} \widetilde{w}_{\tau} + \sum_{j=0}^{\tau-1} \sum_{i=j}^{\tau-1} b_{i,j} (x^{0}, x; D_{x}) \delta_{\tau-1-i}$$

<u>Définition 3</u> : k' vérifie la condition C si :

$$b_{\rho_{\lambda+1}\tau_{S_{\chi+1}}+\dots+\rho_{\alpha}\tau_{S_{\alpha}}+\beta\tau_{S_{\alpha-1}}+v,\rho_{\chi+1}+\dots+\rho_{\alpha}+\beta-1}(x^{0},x;l) = 0$$

pour tout
$$1 \le \alpha \le \chi_{+1}$$
, $0 \le \beta \le \rho_{\alpha-1}$, $0 \le v \le \tau - 1 - \rho_{\chi_{+1}} \tau_{s_{\chi_{+1}}} - \dots - \rho_{\alpha} \tau_{s_{\alpha}} \beta \tau_{s_{\alpha-1}}$.

- 5) Théorème 2 : Il y a équivalence entre les assertions suivantes :
- i) k' vérifie la condition C.
- ii) k' est bien décomposable par rapport à chaque K' (1 \le i \le τ) dans $\mathcal{O}_{m}^{+}(\Omega)$.
- iii) k' est bien décomposable par rapport à chaque H' $(1 \le s \le \sigma)$ dans $\mathcal{G}'_{m}(\Omega)$.
- iv) k' est bien décomposable par rapport à chaque $H'_{s}(1 \le s \le \sigma)$ dans $\mathfrak{I}_{m}(\Omega)$.
- v) k est bien décomposable par rapport à chaque $H_s(1 \le s \le \sigma)$ dans $\mathfrak{I}_m(\Omega)$.

Démonstration

$$i) \Rightarrow ii)$$

En effet si k' vérifie la condition C, la décomposition

$$\mathbf{k'} = \mathbf{I}_{m} \overline{\omega}_{\tau} + \frac{\tau - 1}{\sum_{j=0}^{\tau-1} \sum_{i=j}^{\tau-1} b_{i,j} (\mathbf{x}^{0}, \mathbf{x}; D_{\mathbf{x}}) \delta_{\tau-1-i} \text{ est du type(2.3)'}.$$

ii)
$$\vec{\tau}$$
 i)
$$r-1 \quad \tau-1$$
 On a k' $r-1 \quad \vec{\tau}$ if $\vec{\tau}$ if existe desdecomposable par rapport à K' if $\vec{\tau}$ if $\vec{\tau}$ if existe desdecomposable par rapport is $\vec{\tau}$ if $\vec{\tau}$ if exist is $\vec{\tau}$ if $\vec{\tau}$ if exist is $\vec{\tau}$ if $\vec{\tau}$ if $\vec{\tau}$ if $\vec{\tau}$ if exist is $\vec{\tau}$ if $\vec{\tau}$ if $\vec{\tau}$ if $\vec{\tau}$ if exist is $\vec{\tau}$ if $\vec{\tau}$

opérateurs
$$e_{\rho}^{\prime} \in \mathcal{O}_{m}^{\prime}(\Omega)$$
 $(0 \le \rho \le \tau)$ et $k_{s}^{\prime} = \frac{\partial}{s}(1 \le s \le \tau_{\sigma})$ tels que
$$k_{s}^{\prime} = \frac{r}{\tau - r} \sum_{\rho = 0}^{r} e_{\rho}^{\prime} k_{1}^{\prime} \frac{(\lambda - \rho)_{+}}{\tau_{\sigma}} \dots k_{\tau}^{\prime} \frac{(0 \le r \le \tau)_{+}}{\sigma}.$$

La condition C se décompose en $\lambda-1$ sous conditions car $r-1=\rho_{\chi+1}+\ldots+\rho_{\alpha}+\beta-1$ varie de 0 à $\lambda-2$.

Démontrons par récurrence sur r que ces sous conditions sont satisfaites : Pour r = 1, on a

$$I_{\mathfrak{m}} \overline{\overline{w}}_{\tau} \stackrel{\mathfrak{r}-1}{\stackrel{\Sigma}{=} 0} b_{\mathbf{i},0} \delta_{\tau-1-\mathbf{i}} \stackrel{\widetilde{\tau}-1}{\overset{e'}{=} 0} k' \stackrel{1}{1} \cdots k' \stackrel{\lambda_{\tau}}{\tau_{\sigma}} + e'_{\mathbf{i}} k' \stackrel{1}{1} \stackrel{1}{\cdots} k' \stackrel{\lambda_{\tau}}{\tau_{\sigma}} \stackrel{(\lambda_{1}-1)_{+}}{\stackrel{(\lambda_{\tau}-1)_{+}}{\tau_{\sigma}}}$$

D'où

$$I_{\mathfrak{m}}^{\overline{\omega}}_{\tau} - e_{o}^{\dagger}k^{\dagger}_{1}^{1} \dots k^{\dagger}_{\tau}^{\tau}_{\sigma}^{\tau}_{i = 0}^{\Sigma} \qquad b_{i,o} \delta_{\tau - 1 - i} + \sum_{i = \tau}^{\tau - 1} b_{i,o} \delta_{\tau - 1 - i} \qquad \overbrace{\tau - 1}^{\tau - 1} e_{1}^{\dagger}k^{\dagger}_{1}^{1} \qquad \dots k^{\dagger}_{\tau}^{\tau}_{\sigma}^{\tau}$$

Ces deux opérateurs de $\mathfrak{G}^{,\tau-1}(\Omega)$ ont donc même symbole principal pour $|\ell| \geq 1$ à savoir $E_1'(K_1') \stackrel{(\lambda_1^{-1})_+}{\dots (K_{\tau_{\sigma}}')} \dots (K_{\tau_{\sigma}}')$, on démontre que :

$$\begin{bmatrix}
\mathbf{I}_{\mathfrak{m}} & \widetilde{\boldsymbol{\tau}} & \widetilde{\boldsymbol{\tau}} & \mathbf{I}_{\mathfrak{S}} & (\boldsymbol{\lambda}_{\mathfrak{S}} - 1)_{+} \\
\mathbf{E}_{\mathfrak{o}} & \mathbf{k}_{1} & \mathbf{k}_{1} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} \\
\mathbf{E}_{\mathfrak{o}} & \mathbf{k}_{1} & \mathbf{k}_{1} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} \\
\mathbf{E}_{\mathfrak{o}} & \mathbf{k}_{1} & \mathbf{k}_{1} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} \\
\mathbf{E}_{\mathfrak{o}} & \mathbf{k}_{1} & \mathbf{k}_{1} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} & \widetilde{\boldsymbol{\tau}}_{\mathfrak{o}} &$$

Donc $I_{in} \overline{w}_{\tau} - e'_{o} k'_{1} \dots k'_{\tau}$ a un symbole principal divisible par (λ_s^{-1}) pour tout $s = 1, \dots, \tau_{\sigma}$ et $|\ell| \ge 1$. D'autre part $\sum_{i=0}^{\infty} b_i, o^{\delta} \tau - 1 - i$ a aussi un symbole principal divisible par $K_S^{(\lambda_S-1)}$ pour $|\ell| \ge 1$ dans $\mathbb{R}^{[\ell_0]}$. On en conclut que le symbole principal de Σ bi, o $\delta_{\tau-1}$ i doit être aussi divisible par $K_S^{(\lambda_S-1)}$ (s = 1,..., τ_0) pour $|\ell| \ge 1$, ce qui n'est possible qu'à la condition : bi, o $(x^0, x; \ell) = 0$ tout $i = \tau$,..., $\tau-1$ qui est la première des sous-conditions de C.

On démontre de la même façon que si les r-1 premières sous-conditions sont satisfaites (1 \le x \ge λ -1) alors la r $\stackrel{\text{ème}}{=}$ condition l'est aussi.

k' vérifie donc la condition C.

Les équivalences avec les autres assertions se démontrent à l'aide des propositions de II.1 et II.3 [16].

6) Décomposition en opérateurs portés par les bicaractéristiques

Soit \mathcal{M}_m l'ensemble des sommes finies de monômes ω_j ... ∂_j ∂_j ... ∂_j ∂_j ... ∂_j ∂_j ... ∂_j ∂_j ∂_j ... ∂_j ∂_j ∂_j ∂_j ... ∂_j ∂_j

$$\underbrace{\lambda_{1}^{\text{fois}}}_{\lambda_{1}^{\text{fois}}};\underbrace{\lambda_{2}^{\text{fois}}}_{\lambda_{2}^{\text{fois}}};\ldots;\underbrace{\lambda_{\sigma}^{\sigma},\ldots,\partial}_{\sigma},\ldots,\underbrace{\lambda_{\sigma}^{\sigma}}_{\sigma}$$

 $\frac{\text{Proposition 6}}{\omega' = k' - I_m \omega_{\tau}} \in \mathcal{M}_m. \text{ La démonstration de cette proposition est très longue et très technique [16].}$

§ III. RESOLUTION DU PROBLEME DE CAUCHY POUR LES OPERATEURS K' BIEN DECOMPOSABLES

Proposition 7: Si k' est bien décomposable par rapport à H_1',\ldots,H_σ' dans $\mathfrak{I}_m(\Omega)$ alors le problème de Cauchy posé par le système

(3.1)
$$k'z = f' \quad avec \quad f' \in \mathcal{E}_{[0,X]}^{0} \cdot (\mathcal{D}_{\underline{L}^{2}}^{\infty})^{m}$$

et les données de Cauchy sur l'hyperplan $x^0 = 0$, notées $z_i \in [\frac{2}{L^2}, \frac{\pi}{m}, i = 0, ..., \tau - 1]$ admet une solution et une seule $z \in \mathcal{E}^{\tau}_{[0, X^0]}, \frac{\pi}{L^2}]^m$.

Démonstration : On montre d'abord le lemme suivant :

On prouve la proposition 1 en se ramenant à un problème de Cauchy à données nulles par le changement de fonctions inconnues défini par $z = \beta' + \sum_{i=0}^{T-1} \frac{(x^0)^i}{i!} \beta_i$. Notons ce problème :

(3.3)
$$\begin{cases} k'z' = f'' \\ z'_0 = \dots - z'_{\tau-1} = 0 \end{cases}$$

on résoud d'abord le problème

(3.4)
$$\begin{cases} \overline{w}_{\tau} u = f'' \\ u_{0} = \dots = u_{\tau-1} = 0 \end{cases}$$
équivalent au système
$$\begin{cases} D_{v} u - p_{0}^{1}(x^{0}, x; D_{x}) u = v^{1} \\ D_{v}^{0} - p_{0}^{2} v^{1} = v^{2} \\ \vdots \\ D_{v}^{0} v^{\tau-1} - p_{0}^{\tau} v^{\tau-1} = f'' \\ u_{0} = v_{0}^{\tau} = \dots = v_{0}^{\tau-1} = 0 \end{cases}$$

 $\psi_p \in \mathbb{R} , \quad f'' \in \mathcal{E} \\ [0, X^o] \stackrel{(\nearrow p)}{L^2})^m \Rightarrow v^{\tau - 1} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^1 \stackrel{(\nearrow p^{-1})^m}{L^2})^m$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^2 \stackrel{(\nearrow p^{-2})^m}{L^2})^m \Rightarrow \dots \Rightarrow u \text{ existe et appartient }$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^1 \stackrel{(\nearrow p^{-2})^m}{L^2})^m \Rightarrow \dots \Rightarrow u \text{ existe et appartient }$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^1 \stackrel{(\nearrow p^{-1})^m}{L^2})^m \Rightarrow \dots \Rightarrow u \text{ existe et appartient }$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^1 \stackrel{(\nearrow p^{-1})^m}{L^2})^m \Rightarrow \dots \Rightarrow u \text{ existe et appartient }$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^1 \stackrel{(\nearrow p^{-1})^m}{L^2})^m \Rightarrow \dots \Rightarrow u \text{ existe et appartient }$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^1 \stackrel{(\nearrow p^{-1})^m}{L^2})^m \Rightarrow \dots \Rightarrow u \text{ existe et appartient }$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^1 \stackrel{(\nearrow p^{-1})^m}{L^2})^m \Rightarrow \dots \Rightarrow u \text{ existe et appartient }$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^1 \stackrel{(\nearrow p^{-1})^m}{L^2} \Rightarrow \dots \Rightarrow u \text{ existe et appartient }$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^1 \stackrel{(\nearrow p^{-2})^m}{L^2} \Rightarrow \dots \Rightarrow u \text{ existe et appartient }$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^1 \stackrel{(\nearrow p^{-1})^m}{L^2} \Rightarrow \dots \Rightarrow u \text{ existe et appartient }$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^1 \stackrel{(\nearrow p^{-1})^m}{L^2} \Rightarrow \dots \Rightarrow u \text{ existe et appartient }$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^1 \stackrel{(\nearrow p^{-1})^m}{L^2} \Rightarrow \dots \Rightarrow u \text{ existe et appartient }$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^1 \stackrel{(\nearrow p^{-1})^m}{L^2} \Rightarrow \dots \Rightarrow u \text{ existe et appartient }$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient à } \mathcal{E}_{0, X^o}^1 \stackrel{(\nearrow p^{-1})^m}{L^2} \Rightarrow \dots \Rightarrow u \text{ existe et appartient }$ $\Rightarrow v^{\tau - 2} \text{ existe et appartient } \Rightarrow v^{\tau - 1} \text{ existe et appartient } \Rightarrow v^{\tau - 1} \Rightarrow v^{\tau$

(3.6) $\begin{cases} \overline{\omega}_{\tau} z^{\alpha+1} = f'' - \omega' z^{\alpha} & \alpha = 0, 1, \dots (z^{\alpha} = 0) \\ \text{Données de Cauchy nulles sur } x^{\alpha} = 0 \end{cases}$

Le lemme 1 assure la convergence de ce processus dans $\mathcal{E}^7_{[0,X^0]}(\mathcal{D}^\infty_{12})^m$ par une inégalité du type

$$\sum_{\mathbf{s} \in \mathcal{M}_1} \|\mathbf{s}(\mathbf{z}^{\alpha+1} - \mathbf{z}^{\alpha})\|_{\mathbf{p}}^2 \leq \mathbf{M}^{(\mathbf{c}^{\prime} \mathbf{X}^0)^{\alpha}}$$

D'où l'existence d'une solution z du problème (3.1). L'unicité résulte aussi du lemme 1; de plus

Proposition 8 : [14] La solution z du problème de Cauchy (3.1) vérifie l'inégalité d'énergie :

$$\frac{\sum_{j=0}^{\tau-\lambda} \| p_{x}^{j} \| z(x^{0}, ...) \|^{2}_{p+\tau-\lambda-j}}{\sum_{j=0}^{\tau-\lambda} \| z_{x}^{j} \| z(x^{0}, ...) \|^{2}_{p+\tau-1-j}}$$

$$+ \int_{0}^{\infty} \| k' z(x^{0}, ...) \|^{2}_{p} dx^{0} \| k' z(x^{0}, ...) \|^{2}_{p} dx^{0}$$

§ IV. DEMONSTRATION DU THEOREME 1

On se ramène à un problème à données nulles par un premier changement de fonctions inconnues $y = y' + \sum_{i=0}^{\infty} \frac{(x^0)^i}{i!} y_i$:

(4.1)
$$\begin{cases} h y' = f' \\ y'_0 = \dots = y'_{\tau-1} = 0 \end{cases}$$

par le second changement de fonctions : $y' = a_1z$ on obtient le système

(4.2)
$$\begin{cases} k_1 z = f' \\ z_0 = \dots = z_{\tau-1} = 0 \end{cases}$$

équivalent à

(4.3)
$$\begin{cases} k_{1}'z = \frac{f'}{H_{1}^{q'} ... H_{\sigma}^{q^{\sigma}}(x^{\sigma}, x; 1, 0)} = f'' \\ z_{0} - ... = z_{\tau-1} = 0 \end{cases}$$

La proposition 7 assure une solution $z\in \mathcal{E}_{\left[\begin{array}{c}0.X^{O^{-}}\end{array}\right]}^{7}\left(2\right)^{m}$ à ce système et par suite une solution

$$y = a_1^z + \sum_{i=0}^{t-1} \frac{(x^0)^i}{i!} y_i \in \mathcal{E}^t_{[0,X^0]}(\mathcal{S})^{\frac{\alpha}{2}})^m$$
 au système (1.1).

L'unicité de la solution y dans $\mathcal{E}_{[0,X^0]}^{t}(\mathcal{D}_{\mathbb{L}^2}^{\infty})^{m}$ se démontre par la méthode de Holmgren, en vérifiant que l'adjoint de l'opérateur bien décomposable k₂ - a₂h est aussi bien décomposable grâce au théorème 2 et la proposition 6 [16].

BIBLIOGRAPHIE

R. Berzin

- [1] C. R. Acad. Sc., t.280 (17 Février 1975) série A. p.443 à 445. [2] C. R. Acad. Sc., t.281 (13 Octobre 1975) série A, p.637 à 640.

I. Demay

[3] C. R. Acad. Sc., t.278, série A, 1974, p.771.

D. Gourdin

- [4] C. R. Acad. Sc., Paris, t.278, 1974, p.269-272 [5] C. R. Acad. Sc., Paris, t.282, 1976, fascicule 18.

H. Kumano-go

[6] Remarks on pseudo differential operators, J. Math. Soc. Japan, 21, 413-439 (1969).

J. Leray [7] Hyperbolic differential equations, cours de Prínceton, 1954.

S. Mizohata

[8] Systèmes hyperboliques, Journal of the Math Soc. of Japan, vol. II, n^o3, july 1959.

J. C. De Paris

[9] Problèmes de Cauchy asymptotique. Lien avec l'hyperbolicité. Séminaire Goulaouic-Schwartz 1972-73, exposé 20.

V. M. Petkov

[10] Le problème de Cauchy et la propagation des singularités pour une classe des systèmes hyperboliques non symétrisables. Séminaire Goulaouic-Lions-Schwartz 1974-75, exposé 5.

- J. Vaillant $\begin{bmatrix} 11 \\ 211 \end{bmatrix}$ Annales de l'Institut Fourier, t.15, fasc. 2, 1965, p.225-311.
- J. Maths Pures et Appliquées, t.51, 1971, p.25 à 51.

H. Whitney

L13 Analytic extensions of differentiable functions defined inclosed sets. Trans. Am. Math. Soc. 36, 63-89 (1934).

K. Yoshida

14 Energy inequalities and finite propagation speed of the Cauchy problem for hyperbolic equations with constantly multiple characteristics. Proc. Japan Acad. 50 (1974) p.561-565.

R. Matagne

[15] Les espaces de Silva, Bull. Soc. Royale Sciences Liège 33ème année n°12, 1964, p.754-768.

D. Gourdin
[16] A paraître.

A. Lax [17] Communications on Pure and Applied Math. Vol.9, 1956, p.135-169.