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Le pr6sent expos6 nous est parvenu trop tard pour paraitre dans le
s6minaire 1974-75 ; il est done ins6r6 en premier dans le present 
naire 1975-76.
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Propagation of s for Partial Differential

and ?Qefl-ectioii.u 3, a Boundary

’

Nirenberg

Courant of Mathematical Sciences
iiew York 

,

- §1. There has study of of singularitiesTtiere has inucti -:3-1-udy A . Of s 

of solutions of v particularly

hype rbolic the pure initial value problem for

hyperbolic equate is weJi at least if

only simple A.: occur. w In . case of higher multi-

plicity things can 1;1~ very complicated (an interesting example

is r 0 1 )’ one has results only in

certain generic situations.

For the wave and pure initial problem

the singularities are propagated along the characteristics 2013

straight lines inclined 5° to If there is a

bOUl1dary, the are reflected by the boundary

accordi11g to the of optics. one for

following of Povzner Sukharevskii 

Consider the w inside a 0.......l .

in R" and u satisfying c 0) 1

IF2013201320132013201320132013201320132013201320132013’

This wan &#x3E; j a .! 

. 

Grant 1 
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For small time the characteristics

from x carrying the siiiguiari;I:1z&#x3E;I.i

fill up a right circular cone.

Consider the multiply reflected

sheet obtained by extending each

characteristic, when it hits the

boundary., by its geometrical

reflection.

Theorem: Outside )f the sheet of surfaces so obtained the

solution u belongs to COO 

’ 

The strict convexity of iK7 is essential here; it ensures

that every characteristic fro;;: the interior of n strikes the

boundary traaisversal-7,.y. i.e. there are no "glincing" (or

"grazing" ) rays. When glancing rays occur things are still

very unclear - a variety of phenomena can occur’ - though simple

generic cases are now being worked out. After the early., 

work of J. Keller and D. Ludwig recent developments are due -co

F. G. F r i e d 1 arl è e 1"’ [2], R. B. Melrose [6] and M. Taylor 

How singularities are propagated in the case of 

rays 1. s now rather well and I .’i ---~ jB~.’ I

result in this Gircction .;,, -: i_ ti the i~ .L-

proof, first i ~ , , ;- ,, ; .’L ; ..n &#x3E; i 01’ I 
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rather general framework is due to P. Lax and the author (see §9

of [7] ~; it operates under boundary conditions which prescribe

the function u and a number of its normal derivatives at the

boundary - as in the preceding example. Recently A. Majda

and S. Osher [5] extended thins result to much more general

boundary conditions. M. Taylor [ lO J has given an elegant.

derivation of this result and we shall present his argument

here. A week before this lecture J. Duistermaat gave a talk

at IRES in Bures in which he presented arguments very similar

to those of Taylor [10] and also some results on glancing rays.

§2. We start by recalling a basic result of H5rmae:der on

propagation of singularities of a distribution scalar solution

u(x) of a (pseudo) differential equation

P = pm +p m- 1+... a sum o 11oInogeneous ternis,

and the symbol of the leading part

Theorem’([31): If (x O.-~0) c WFu (so that necessarily

0), then the entire null bicharacteristic r of p

through (x ol e0) belongs to WFu.

2013201320132013201320132013201320132013201320132013 J

. 

We asswiie fwniliarity with the notion of wave front set of

a distribution u in the cotangent spac:o. It;s projection down

in physical space is the singular support of u.
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The null bicharacteristic r is the curve in the cotangent

space given by

(as t ; t ,,3 

’I =, n  &#x3E; ii  ;4; I. , . I i,  . &#x3E; j. s of bi-

i ,. i , Y the is locale

¡ c with boundary in (for

convenience) R~". B by x e ’Rn y  R" aJ1d with

y &#x3E; 0 in 0~ 0 in ~Q Denote dual variables by ) « 

R so that denotes a point in the cotangent space

T*Rn+l The symbol of our differential operator P I s

real of order m

For (x 0 0) a fixed point and fixed; Li e I-r- B 0., consider

the real roots il of the polynomial

Assume that there are exactly’ k fl roots 

_. of ai-e of which 

tG that ,CB. rlu:L1 Cl11’ves

#y , ... Cf 
ii Rn-] .!-1-1I’"’ p ).n ’ ’ q . ( 0) t::. () )1 C) f -"L i ...t. RnA-I, the l a ç, , s ,

j = 1,~ ~ o rt 

N t. i rr B..... (:... ê"’ 1 + h L.....J.. ,, n s i j _. ( I ° ) ’) , , . " C"’. i m P J - sNote: .. ....,..:J, B.-W,) . 1 .,f...’f l. ’Uhe t , I .- t l... l.: ..... S
-. l’.) 

I

e qu i J. e 1 t, :. c. ,:, ;’1;;) ;., 1’t.1 i 1 0 f’ t 11e _’. b t e t I r:
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(or rather its projection in physical (y, x ~ space) is non-

glancing at For we have at
J

Lax and Nirenberg proved (under certain boundary coiiditions)

that if 2 of these null bicharacteristics """1’... J)’k are not j.rl

WFu for y &#x3E; 0 then the same is true of the rest they

formulate the result as propagation of singularity-free rays

This result is micro-local but somewhat primitive in that

if some of the -yj are in WFu, it does not say which others are;

this is because it does not study their interaction, Indeed

if a boundary is present in a hyperbolic problem, knowledge ar’

the wave front set of a solution for t  to is not sufficient2013 0

to enable one to predict the wave front set for later time -

because of the interaction of the bicharacteristics at the

boundary.

Taylor~ s method of treating reflection of singularities

under more general boundary conditions uses the Calderon

reduction of the equation Pu = f to a first order system (with

which we assume the reader is familiar (see for instance [’~1.

§6). So we will simply start with that, and consider a general

first order system for an N-vector u(y, x) = 

where
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is a first order pseudo-differential operator in the x variables

varying smoothly with y in some neighborhood of y = 0.

is its leading symbol homogeneous of degree one in ~,

and the remaining terms are homogeneous of degrees o, .~ 1, -2, ....

We assume that f c COO in some neighborhood of (y = 0, 
’ 

Consider a solution in y &#x3E; 0 satisfying boundary conditions

on y = 0

where B is a (classical) pseudo-differential operator in the

x variables of order zero. Assume

and that at has exactly k real roots 

of which are simple (i.e. the corresponding null-bicharacteristics

. p are non-glancing).

, Supposing that

and that f or y &#x3E; 0, not in WFu: we wi .1 f ind

conditions to ensure that

 1 ) -1+1-’-’-I-yk are not in WFu for y 
&#x3E; 0 . 

°

As in [7] the result is obtained by reduction to classical

results for hyperbc-)lic, elliptic a11d parabolic equations, how-

ever here the argument is sinlpler.
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§3. To begin, in some neighborhood of (y = we may

find a nonsingular matrix U(y~x~)~ homogeneous of degree zero

in with which we may make C1 e s s e ril5 I al l y s

Here E + (E-) is a square matrix with eigenvalues all having

positive (negative) real parts~

Since is nonsingular the corresponding 

differential operator U(y) is elliptic and so ha. a parametrix

which we call Set v = U(y)u; then

where R is an infinitely smoothing operator in the x 

is an integral operator in the x variables (depending on y)

with C co kernel. Thus
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where A(y) is a pseudo-differential operator in the x variables

of order zero. 

Suppose A = 0. Then this is an uncoupled system, and the

result on reflection of singularities is an almost immediate

consequence of known results. Namely, write v the form

(Note that since p is real and homogeneous of degree N in £ Lt

follows that N-k is even. ) For each yJ we may remark:

(i) v I satisfies a diagonal hyperbolic system for which 

forward and backward initial value problems are well posed

(thinking of y as time). Hence v I can be extended alsc to

negative values of y as a solution. By hypothesis the null

bicharacteristics -i are not in foi y &#x3E; 0 and he!-2e,
T

by Hbrroander’s theorem above, they are also not in WFV" for

y  0. It follows then that

(In applying H5rmw1der f s result some care should be taken;

is not a genuine pseudo-differential operate::

in the (Y,x) variables. However we are just interested iii a

micro-local analysis in a neighborhood of the of the
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symbol, and the operator may be modified outside to be pseudo-

differential.) 
’

(iii) vIII satisfies 
’

This is a backward parabolic system (I.e, with y as time the

backward initial value problem is well posed) the solution

is automatically micro-local sense ) . Thus in particular

iv v satisfies a forward parabolic system arid so is

automatically in COO for y &#x3E; 0 (again micro-locally).

(1i) v satisfies a diagonal hyperbolic system and so by

regularity theory f or such equations (at the micro-local level)

the null bicharac teris tics in y &#x3E; 0 will not be in

WFvII provided

Thus we are led to the following

Theorem I: Consider the pseudo-differential system on y = 0

for
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Suppose this system is elliptic (or merely hypoelliptic) at

(xo .1~0),, i.e.

(3.5) (x / WF9 I 1,9 III and h implies 

Then (1) and (2) hold. Furthermore, if we just assume (on y 0)

that

then (1) holds.

Both assertions follow by application of the remark
,

iiv above. 
’

, 

In general the condition (3-5) of hypoellipticity is

difficult to veriiy, however to check if the system (3.4; is

elliptic at is done by a direct, well-known; 

It means that if we set vI = 0 then v(y) = 0 is only bounded

solution on ~n ~ y  co ) of the system of ordinary differential

equations

satisfying 0 where B is the principal part of B.
We shall give some examples later for which (3.4.’;, is hypo-

elliptic at but not elliptic there.
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§4. We have presented our result in case of a totally

uncoupled system. There is a simple procedure t o accomplish

this which we now describe. For simplicity we shall carry it

out in a c.ase of two blocks (in place of four). Consider

F 0B
where H ( B0 0) is a pseudo-differential in thewhere H zz 

O E . is a opl-,-ra-,*,-,---c the
0 ] ,

x variables,,1f depending smoothly on y, wi ttl symbol homogeneous or

degree one in ~; p is a classical operator

(smooth in y) or order zero, A = A + A 1 -~ . ~ ~ if Assume that

the square matrices y? s i orders and sxs

have disjoint sets ci eigenval1J.cs for each yr9 :, in a

neighborhood of We will make a sequence of trans-

formations of v which. in succession, decouple the terms

0 In fact we will just carry out the first ste-o
far A 0 

Try = (I + Kj )V with K 1 of order -1 and of the 

Inserting this we find (ignoring F)

-~ order terms

and we to choose ?i-i&#x3E; Ki so thatr ;¿,
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has the form

If

we find by a direct calculation that K12’ K21 are to satisfy

There is a simple exercise in linear algebra (see Malgrange [5])

which enables one to solve uniquely for the matrices

Exercise: If F, E are rx r and s x s matrices with disjoint

eigenvalues then for any given s x r matrix M there is a unique

. s X r matrix T satisfying

Thus K1 is determined so as to decouple Ao in the equation
for w18 Next one decouples the terms of order -1 in this equa-

tion by a similar transformation w 2 = with K2 of o.’der
-2 by the same kind of argument. Repeating this process Ofle

finally sets ,

.

the equation for is totally decoupled (modulo a

smoothing term),
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ff We eo-mbine stli,9 proosdure with wm 

the general result:

Theorem II: Suppose Ti, ... , i g associated with A~...,~ are

not in WFu for y &#x3E; 0. On y == 0 set

If the system of pseudo-differential operators 1 y

is hpoellipt.w at ; then l ) ’J and (2) 1 hold. If we merely 7is v. and ax. AI m If f

assume

then (1) holds.

The principal symbols of P P are the projections onto
linear span of the eigenspaces associated with ’che eigenvalues

of G (0, x, and the generalized eigenspace corre-

sponding to the spectrum of Gi (c) with positive real part.

Remark: There is a more quantitative version of Hbrniander’s

theorem referring to solutions in Hs Theorem 2 also extends

to this case [10].
iii

Using Theorem 2, Taylor [10] proves a generalization of

the result of Povzner and Sukharevskii for systems satisfying

, 
the well posed initial botmdary value conditions of Kreiss-

Sakamoto - assuming that the singular support of the initial

data does not touch the boundary. This is done with the ai of

an approximate solution having tl1e expected singularities. The
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energy estimates of Kreiss-Sakamoto are used to show that this

differs from the solution by a smooth error. J. Chazarain [ 1]

at a conference i n Rennes in June 1975 presented a similar

result. 
’ 

,

§5- We now present some examples in which Theorem 2 applies.

These are due to Majda and Osher [4].

Exercise 1: Consider a simple second order hyperbolic equation

with one space variable x

with boundary conditions:

Here oc, are constants.

Setting w = we shall give an entirely

elementary analysis
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Suppose u is smooth on the outgoing characteristic r+

(with slope 1 ) for t &#x3E; t0. Since 
’

o

we see that w x is smooth near t = x O and hence
(1-’)’ JUt is smooth there.

Thus if 1 we find u is smooth there. 
. 

Since the Cauchy

data of u is smooth there it follows that u is smooth on r .

The same conclusion still maintains in case = 1 and

0* This corresponds to the hypoelliptic, but not elliptic

, 
case in Theorem 2.

Suppose -y = 1, J « 0. Then any function of the foim

. u = w(x+t ) satisfies the equation and the boundary condition.

For suitable w. u is smooth on r+ but not on p~ a

Exercise 2o Consider the wave equation

. 

Under boundary conditions

k, ( 
!I- 1

Let T be the dual variable to t. Associated with (r)eR
for T 2 &#x3E; are two bicharacteristic curves corresponding to

the roots consider them parametrized by time t.

. 

These are r + r ~  = , i J outgoing and incoming, i.e. # &#x3E; 0,

at
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We suppose r + i WFu and wish to conc.lude using Theorem 2, that

r- t WFu.

One verifies that the condition for ellipticity means

Thus it is elliptic == 0 then it is elliptic

§#4&#x3E;y ,  0 or &#x3E; 1. In case 1’1 = 1 one can construct solu-

tions of the form ,

so that, in fact., the solution is identically zero after a

finite time - showing that the backward problem is not well

posed.

In Theorem 2 the condition of hypoellipticity is satisfied

(one has, in fact, subellipticity) in case y = constant 0

and, wherever 2 vanishes,



XXVI.17

Bibliography

[1] J. Chazarain, Parametrices for mixed problems for wave

equations, Proc. Conf. Rennes, June 1975.

[2] F. G. Friedlander, The wave front set of the solution of a

simple initial boundary value problem with glancing rays,

Math. Proc. Cambridge Phil. Soc., to appear.

[3] L. Hörmander, On the existence and regularity of solutions of

linear partial differential equations, L’Enseignement Math.

(1971), pp. 99-163.

[4] A Majda, S. Osher, Reflection of singularities at the boundary,

Comm. Pure Appl. Math., Vol. 28 (1975), to appear.

[5] B. Malgrange, Sur les points singuliers des equations

différentielles (suite), No. 21, Sem. Goulaouic-Schwartz,

École Polytechnique, 1971-72.

[6] R. B. Melrose, Microlocal parametrices for diffractive boundary

value problems, to appear.

[7] L. Nirenberg, Lectures on linear partial differential equations,

Regional Conference Series in Math., No. 17, Amer. Math. Soc.

(1973).

[8] A. Povzner, J. Sukharevskii, Discontinuities of the Green’s

function of a mixed problem for the wave equation. Mat. Sbornik

Akad. Nauk, 51(1960), pp. 3-26; Amer, Math. Soc. translations,

Ser. 2. Vol. 47, pp. 131-156.



XXVI.18

[9] J. V. Ralston, On the propagation of singularities .n solutio ns

of symmetric hyperbolic partial differential equatitons, 

appear. 

[10] M. E. Taylor, Reflection of singularities of solutions to

systems of differential equations, Comm. Pure Appl. Math., to

appear.

[11] M. E. Taylor, Grazing rays and reflection of singularities of

solutions to wave equations, to appear.


