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Propagation of Singuizrities for Lincar Partial Diffevrential

Equaviocn: and Reflectiong at a Boundary

P
L. Nirenberg

Courant Institute of Mathematical Sciences
New York Univeviity

’

§1. There has heen much study ~f vropegation of singularities
of solutions of pértia? differential =quations, particularly
hyperbolic equazions. For the pure initial value problem for
hyperbclic eguaticis this is weil understcod — at lecast if
only simple characieristics occur- In case of higher multi-
plicity things can Lo very zomplicated (an interesting example
1s presented in . Ralston [2]} and one has results only irn
certain generic situations.

For the wave =guation, and pure initial valuc vroblem,

the singularities are proragated along the characteristics —

m

etraight lines inclined at 450 te the t-axis. If there is a
boundary, the characteristics are reflected by the boundary
according %o the rules of gecmetrical optics. One has, for
instance, the following result of Povzner, Sukharevsiii (81,
Consider the wave eyuation inside a strictly convex cylinder ()

)

n . .
In RY and considor Lhe colubttlorn u

(]

elisfying (here 5 ¢ O)

—
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XXVI.2
u(0,x) = 0, u (0,x) = 6(x-xo) ,

u =20 on X} .

T
CT/’”A--N\~\ For small time the characterist’es

TT— from x_ carrying the singularitizc
p)
£111 up a rignt circular cone.
\\\ Consider the multiply reflected
/ o sheet obtained by extending sach
/s —_— ,/7‘
/ 4 3 3 .9 » 4 £
T characteristic, when it hits the
boundary, by its geometrical
~ X
N S . reflection.

Theorem: Outside »f the sheet of surfaces so obtained the

solution u belongs to ¢® in Qx [Oy0 )

The strict convexity of X7 is essential here; it ensures
that every characteristic from the interior of (0 strikes the
boundary transversally, i.e. there are no "glancing" (cr
"egrazing" ) rays. When glancing rays occur things are still

very unclear — a variety of phenomena can occur — though simpis

-

generi~z cases are now being worked out. After the early, bauic,

work of J. Keller and D. Ludwig recent developments are dus T0O

F. G. Friedlander [2], R. B. Melrose [6] and M. Taylor [10i,iilL].
How singularities are propagated in the case of noct~-q lancin:

rays 1s now ruather well understose, and I will deseribe w oror oy

result in tnls clircetion vogether with tlie ideas invalvod o o1,

. ) My, Sy~ e Y . . N . . .
proot. LI PLrs T oresdly o relleciion 01 £ingT
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rather general framework is due to P. Lax and the author (see §9
of [7]); it operates under boundary conditions which prescribe
the function u and a number of its normal derivatives at the
boundary — as in the preceding example. Recently A. Majda

and S. Osher [5] extended this result to much more general
boundary conditions. M. Taylor [10] has given an elegant.
derivation of this result and we shall present his argument
here. A week before this lecture J. Duistermaat gave a talk

at IHES in Bures in which he presented arguments very similar

to those of Taylor [10] and also some results on glancing rays.

§2. We start by recalling a basic result of Hbrmander on
propagation of singularities of a distribution scalar solutiocn

u(x) of a (pseudo) differential equation
Pu=feC®
P = pm-+pm_l-k... a sum of homogeneous terms,
and the symbol of the leading part

P(x,€) = p(x,£) is real.

Theorem'([}]):l If (xo,eo) € WFu (so that necessarily
p(xo,go) = 0), then the entire null bicharacteristic r of p

through (xo,g°) belongs to WFu.

-
We assume familiarity with the notion of wave front set of

a distribution u in the cotlangent spuace. TIts projection down

in physical space is the singular support of u.
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The null bicharacteristic I is the curve in the cotangent

space given by

X = D,
. through (xo,éo)
£ =D

as lorym ag the ou o ve wxisis).
&
We now expiowoo whnt 185 meant oy el
characierivtios «n o soundery. Since the Jiscussion is local,

3

consider = domain ¢ with dlocally | boundary in (for

Lot
o
+

n

n+l . . v 1 .
convenience)} R 7, ziven by coosdinutes x € R, y € RT and with

: o S
y >0inQ, y = 2 in . Dencte the dual variables by £ € R,

1

1 € R* so that (y,x,q,ﬁ) denotes a point in the cotangent space

n+1 . . - . -
T*R e The izading symbol of ocur differential operator P 1

&

[a

ply,%x,1,£) real of order m .

- Cm . o n
For (x_,0) a fixed point on X), and fixed £~ ¢ R \0O, coneider

the real roots 7 of the polynomial
p(oxxorﬂxﬁo) = 0 .

Assume that there are =xactly k real roots ql(e°),...,qk(g°)

all of which are simple.

Definitizon: We say that the ~ null bicharactzristic curves
n~§~l e o]
(t.. ),€7),

Y10tV of p in T*R through the points (0,x
J=1,40.,% belong to the same reflected family (associated

o’nj

with (0,% ,£°) ¢ T*XN).

» X4
Note: The zscumption that the roots qi(gg) are cimple is

equivalenl o ithe aswcrtion that each of these bichuracterictic

[ad
~
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(or rather its projection in physical (y,x) space) is non-

glancing at (0,0). For on yj we have at
(y:x:n:g) = (O’Xonj(eo),go) P)

y o) o]
y = Pn(O:XO,nj(i ),é ) # 0 .

Lax and Nirenberg proved (under certain boundary conditions)
that if g of these null bicharacteristics Yy eV are not in
WFu for y > O then the same is true of the rest (i.e. they
formulate the result as propagation of singularity-free rays).

This result is micro-local but somewhat primitive in that
if some of the yj are in WFu, 1t does not say which others are;
this is because 1t does not study their inﬁeraction, Indeed
if a boundary is present in a hyperbolic problem, knowledge of
the wave front set of a solution for t < to is not sufficient
to enable one to predict the wave front set for later time -
because of the interaction of the bicharacteristics at the
boundary.

Taylor's method of treating reflection of singularities
under more general boundary conditions uses the Calderodn
reduction of the equation Pu = f tc a first order system (with
which we assume the reader is familiar (sse for instance [7],
§6). So we will simply start with that, and consider a gen.ral

first order system for an N-vector u(y,x) = (ul,.n.,uN):

= +
uy Gu+1f

where
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is a first order pseudo-differential operator in the x variables

varying smoothly with y in some neighborhood of y = O.

Gl(y,x,g) is its leading symbol hoﬁogeneous of degree one in £,

and the remaining terms are homogeneous of degrees 0,-1,-2,«¢ece =

We assume that £ € C® in some neighborhood of (y = O, xo).
Consider a solution in y > 0 satisfying boundary conditions

ony =20

Bu = ¢ given
y=0

where B is a (classical) pseudo-differential operator in the

X variables of order zero. Assume

det (T'II-% G, (¥,m,€)) = p(¥,%,n,€) is real

and that at (0,xo,§°),p has exactly k real roots Al,...,xk all
of which are simple (i.e. the corresponding null-bicharacteristics
Yy ee Vg of p are non-glancing).

Supposing that
ony =0 :(xo,ﬁo) ¢ WFBu ,
and that for y > O, 71,...,7Z are not in WFu, we will find
conditions to ensure that
(1) V412 oV 8re nct in WFu for y > 0 .

(2) In addition, .(xo,g°)¢wma§u) for J = 0,1,e00 &
y=0

As in [7] the result is obtained by reduction to classical
results r'or hyperbolic, elliptic and parabolic equations, how-

ever here the argument is simpler,
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§3. To begin, in some neighborhood of (y = O,xo,ﬁo) we may

find a nonsingular matrix U(y,x,£), homogeneous of degree zero

in € with which we may make Gl essentially diagcanal:

’
P

(1in

'._l
O

O

{
‘ !
N I

G (y,%x,€E) = Uy, % 6)

rt

]
+

Ll
»
=
-
o
g e = s ¥ 02

O

Here E+ (E_) is a sguare matrix with eigenvalues all having
positive (negative} real parts.

Since T(y,x,€) is nonsingular *the ccerresponding pseudo-
differential operator U(y) 1s elliptic and so has = parametrix

which we call U(y)"la Set v = U(y)u: then

v = UguTt

-1 :
v V-+UyU + Ry + Uf

where R is an infinitely smocthing operator in the » variavles,
i.e. is an integral operator in the x variables (depending on y)

with COD kernel. Thus

.FJ
O
s

&1
| —

v + Av + U

<

/
I
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where A(y) is a pseudo-differential operator in the x variables

of order zero.

Suppose A = O. Then this is an uncoupled system, and the

result on reflection of singularities is an almost immediate

consequence of known results. Namely, write v in the form

(VI.\ +« first ¢ componeéents

VII «— next k-2
V=—" -
VI*I « next Nk components

components

\yIV‘/ +~ last —§r~components

+

(Note that since p is real and homogeneous of degree N in £ it

follows that N~k ig even.) For sach vY we may remark:

(1) vI satisfies a diagonal hyperbolic system for which tothr

csed

Ro)

forward and backward initial value problems are well

(thinking of v a8 time). Hence vI can be extended alsc to

negative values of y as a solution. By hypcthesis the null

bicharacteristics ASEREEER D) are not in vaI for y > O and her e,

-

by Hbrmander's theorem above, they are alsc not in WFVI Tor

Yy < 0. It follows then that

J. I

(3.1) . (x,¢°) ¢ WF (35V for 3= 0,1,000 &

(In applying Hbrmander's result some care should be taken;
ay-ihj(y,x,Dx) is not a genuine pseudo-differcniial operato:
in the (y,x) variables. However we are just interested in a

micro-local analysis in a neighborhood of +the zero of the



XXVI.9

symbol, and the operater may be modified outside to be pseudo-
differential.)

(iii) v satisries

JIII _ g JIII

IIT
- + + (Uf) .

This is a backward parabolic system (i.e. with y as time the
backward initial value problem is well posed) ar the solution

. o . . .
is automatically C (in micro-local sense). Thus in particular

(3.2) (x_,£%) ¢ wr(3vItT) for j = 0,1,eee &
Y y=0 .

(iv) VIV satisfies a forward parabolic system and so is

automatically in c® for y > 0 (again micro-locally).

(ii) VII satisfies a diagonal hyperbolic system and so by

regularity thecry for such equations (at the micro-local level)
the null bicharacteristics Yg41? 000 Yk in y > 0 will not be in

II

WEv provided

(3.3) (x,,8°) ¢ Wrvit)

y=0
Thus we are led to the foilowing

Theorem 1: Consider the pseudo-differential system ony = 0

for
vI
v =] .
vIV
(3.4) vl = gI , vIII = gIII s BU'l(O)v = h .
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Suppose this system is elliptic (or merely hypoelliptic) at

(Xo:ﬁo), i.e.
(3.5) (x0,£°) ¢ WwFe',g™™" and h implies (x,€°) ¢ WFv .

Then (1) and (2) hold. Furthermore, if we just assume (on y = O)
that

(3.6) (x,,6°) ¢ Wrg,g™™" and n implies (x,e%) # wrv'T,

then (1) holds.

Both assertions follow by application of the remarks
(1)-(iv) above.

In general the condition (3.5) of hypcellipticity is
difficult to verify, however tc check if the system (3.L) is
elliptic at (xo,go) is done by a direct, well-known. computaiicn-

I

It means that if we set v- = O then v(y) = O is only bounded

solution on (0 2y < co ) of the system of ordinary cdifferent al

equations
o)
fikl(y,xo,ﬁ ) (:) \\
Vy = IN v
J O E+(y:xo,€o)
N E_(y,%56°) |
satisfying Bov = 0 where B0 is the principal part of B.

y=0

We shall give some examples later for which (%.4) is hvpo-

elliptic at (xo,é',o) but not elliptic there.
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§4. We have presented our result in case of a totally
uncoupled system. There 1is a simple procedure t5 accomplish
this which we now describe. For simplicity we shall carry it

out in a case of two blocks (in place of four). Consider

F 0
o= v+Av +F
7 0 E

F O
where H == is
o E/.

X variables, depending smoothly on y, with symbol homogenecus co:

(4.1) v

li

QO

pseudo-differential operat.r in the

degree one in £€; A is a classical pseudo-differential operator
(smooth in y) <! order zero, A = A +A ;+... . Assume that
the square matrices F(y,x,£), E{(y,%x,¢) of orders rxr and sXs
have disjoint sets of elgenvalues for each {y,%,£) in a
neighborhcod of (yo,xo,&o). We will make a sequence of trans-
formations of v which, in succession, decouple the terms
Ao’A~l”'“ » In fact we will just carry out the first step —
for Ao‘

Try wy = (I~+Kl)v with X, of order -1 and of the form

o Ky,
Kl = °

Inserting this in (4.1) we find (ignoring F)

wly = Hw-k(KlH -Hml~kA)wl-%lower order terms

end we wish to choose K K., so that

12’ T2l
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AL O
K-H - HK, + A has the form -
1 1
o 4,
Ir
o o [P Pae
=
Ayy Ay

we find by a direct calculation that KlQ’ K21 are to satisfy

KioF =EKjp = =Ry,

|
1
=

Ko F - EK,; =

There is a simpie exercise in linear algebra (see Malgrange [51])
which enables one to solve uniquely for the matrices

Ky (ysx,8), Kyt

Exercise: If F, E are rXr and sX s matrices with disjoint
eigenvalues then for any given s X r matrix M there is a unique

. 88X r matrix T satisfying
TF-ET=M.

Thus K, is determined so as to decouple AO in the equation
for Wye Next one decouples the terms of order -1 in this eqia-
tion by a similar transformation w, = (I+K2)wl with K, of o-der
-2 by the same kind of argument. Repeating this process one

finally sets

W= (T+K)V = .. (i+K2)(I-#Kl)v :

the equation for w = is totally decoupled {modulc a

smoothing term). w
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TP wa ecombine wnis prosedure wilth Yheorsk L wo albaln

the general result:

Theorem II: Suppose SAEREETRD) associated with Rl,...,hz are

not in WPu for y > 0. On y = 0 set

J ~l(

P°u=1U L

I+K)“ W, le,an;g]:v.

TTT
iy , Prta . Bu

is hypoelliptic at (XO,QO) ther (1) and (2) heold. If we mercly
assume

(xo,ﬁo) 7z WFPIu, Ly ans au implies ‘x . £°} ¢ wrpi Ly

w

then (1) holds.
The principal symbols of PI, PIII are the projections ontc
linear span of the eigenspaces agsociated with the eigenvalues

1A1,...,1x of Gl(o,x,g) and the generalized eigensrace corre-

£
geponding to the spectrum of Gl(O,x,ﬁ) with positive real part.
Remark: There ics a more quantitative version of Hbrmander's
theorem referring to solutions in u®, Theorem ? also extends
to this case [10].

Using Theorem 2, Taylor [1l0]} proves a generalization of
the result of Povzner and Sukharevskil for systems satisfying
the well posed initial boundary value conditions of Kreiss-
Sakamoto - assuming that the singular support of the initial
data does not touch the boundary. This ig deone with the ald of

an approximate solution having the expected singularities. The
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energy estimates of Kreiss-Sakamoto are used to show that this
differs from the solution by a smooth error. J. Chazarain [1]
at a conference in Rennes in June 1975 presented a similar

result.

§5. We now present some examples in which Theorem 2 applies.

These are due to Majda and Osher [4].

Exercise 1l: Consider a simple second order hyperbolic equation

with one space variable x
(9, +3;, +a)(d, -3, +BJu =0 in x >0

with boundary conditions:

M1x=0,(ax-ybt+oh1= € c® .

Here a, B,y are constants.

A

/
//

2K

Setting w = ux-ut-PBu we shall give an entirely

elementary analysis



XXVI.15

Suppose u is smooth on the outgoing characteristic r+

(with slope 1) for t > t_. Since

I
(@]

(BX-+Bt-+a)w
we see that w x is smooth near t = Xo and hence
o}

(l—y)ut~+(o—6)u is smcoth there.

Thus if v # 1 we find u x;o is smooth there. Since the Cauchy
data of u is smooth there it follows that u is smooth on I'_.

The same conclusion still maintains in case y = 1 and
o-B # 0. This corresponds to the hypoelliptic, but not elliptic
case in Theorem 2.

Suppose v = 1, B = ¢ = C. Then any function of the form

u = w(x+t) satisfles the squation and the boundary condition.

For suitable w, u is smooth on r, but not on r_

Exercise 2: Consider the wave equation

@ in Yy >0 .

n-1
utt"uyy - z ux{xi =f e C
Under boundary conditions

uy-(yl-fiya)ut =0 ony =0, wyp,y, real .
Let 7 be the dual variable to t. Associated with (t,¢), ge:Rn'l

2

for v~ »> lel% are two bicharacteristic curves corresponding to

the roots n = t v -!€l¢5 consider them parametrized by time t.

These are ' (t,£), " (7,£) outgoing and incoming, i.e. Q% > 0,

3
gt < 0
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t , 2 2

We suppose r* ¢ WFu and wish to conclude, using Theorem 2, that
r" ¢ WFu.

One ﬁerifies that the condition for ellipticity means

JT( -lef° - (Yl“*iye)f # 0 for 12..!5)2 >0 .

" Thus it is elliptic if Y1Yo # 0. If Y, = © then it is elliptic
€=%>yl 2 0oryy >1l. In case Y, = 1l one can construct solu-

tions of the form

u = w(y+t)

s0 that, in fact, the solution is identically zerc after a
finite time -~ showing that the backward problem is not well
posed.

In Theorem 2 the condition of hypoellipticity 1s satisfied
.(one has, in fact, subellipticity) in case y, = constant # 0

and, wherever Yo Vanishes,

3y, 271/2
3. . 2 %%,
3T V2 ) ‘

1.~yl
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