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§ 1. INTRODUCTION

In the microlocal study of pseudodifferential operators

(cf.[2]) one often encounters initial value problems, bearing on operator-
valued functions of time, of thé kind .

(sometimes in view of forming solutions of

For the sake of simplicity let us assume, here, that

where a (x,t,E), for each’v, is a C function of (x,t,§), positive-
k ’ 

’

homogeneous with respect of degree 1 - v, when x varies in an open

set H of Rn and t in an interval ]-T,T[ (though ( 1) is relative to the

positive half-interval [0,T[). In some instances one is content with

an approximate solution of (1) module operators which are regularizing

(in the x-variables, and depend smoothly on t), sought in the form of

a Fourier Integral Operator

Formally the phase ç should be determined by the eikonal équation :

usually under the initial condition :
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whereas the amplitude

transport equations :

should satisfy the

where and are the standard functionals

(F = 0 if ~ = 0). Furthermore the k are usually submitted to the initial
v v

conditions :

The trouble with this method is that need not be real, and

thus (5)-(6) and (7)-(8) might not make sense ( indeed, in general, the

solution ç should then be non real and what is then the meaning of

)). But even if they make sense, e.g. when the a (x~t~) are

(uniformly) analytic with respect to g, those Cauchy problems might then

not be solvable. r

Yet the method can be redeemed - at least when there exists a

continuous function p(x,t,~) with the properties we now describe. For

convenience we shall assume p positive-homogeneous of degree zero with

respect to §. We shall solve (approximately) the above Cauchy problems

on the unit sphere (~) =1, and afterwards reestablish the appropriate

homogeneity degrees. First of all we consider an extension of ao (and

eventually of each a ) to complex values E + in of § of the form
v

where ~

with C1 independent of 0. It is well known that we may choose the
A a

+ 0 such that the se ries at the right in (9) converges in
» 

a 
_

t’ 1a o is an almost-analytic extension of a 
o 

; if â 
0 

is another extension,
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analoguous to ( 9) , â’ - -: vanishes of inf inite order at q = 0) .0 0 "

Suppose that, after substitution of the â for a (v = 0, 1, ...)
v v

in ( 5) and in (7) ( the av for y &#x3E; 0 enter in the def inition of C(x,t;q)
and of the F ) we have found smooth solutions ç, kv of (5) and (7) - not

v ’ v

exact ones, but only modulo functions which vanish of infinite order with

respect to p (more precisely, p -f 1at : see Def . 1) - and which also satisfy

(6) and (8). Suppose furthermore that we prove that

for some constants C à 0, d&#x3E; 0. Then the error arising from taking (4)

as a solution of ( 1) will be of the form

where, for any a suitable CN &#x3E; 0 ,

and similar estimates hold for all the derivatives of r (we have exploited

the homogeneities of thé ingredients). A consequence of such inequalities
is that R(t) is regularizing. It also follows from (1.1) and the preceeding

=
remarks that different choices of the extensions "a, â ,..., lead to

0 1

solutions (4) which only differ by regularizing operators.

In what précéder lies the motivation for the result presented

here. Its generality far exceeds that required for solving (1) or (2).

We hope that it will be an asset in future applications. Even when

studying (1) and (2), one must make sure that the application of Th. 1

below leads to the existence of a function p with the above properties,

in particular (Il). It is easy to see that this is not always so

(otherwise all PDO’s of principal type would have parametrices t). One

still must investigate the relevant properties of the principal symbol

ao(x,t,~). At the end we return briefly to this question.
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§2.STATEMENT OF THE THEOREM

co

Definition 1 : Let X be a C manifold, p a continuous non negative

fonction in X. We say that f e c co (X) is p-flat if, given any integer N

and any differential operator P (with C= coefficients) in X. p-Npf is
continuous in X.

In the sequel C1 denotes an open subset Rn (variable :
x = (x , ... , x ) ) , u a C mapping 0 0 an open subset of

Rm(n+1) which contains the image of 0 under the mapping : ·

(f denotes the gradient of f ; subscripts mean differentiations). We
x 

oo

are also given a C mapping :

We study the (nonlinear) Cauchy problem :

where UCQ and 0  T (we could as well limit the variation of t in

(14) With (14)-(15) we associate the ordinary diff. equ.

(in which x plays the role of a parameter) :

with initial conditions :
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In (16), and throughout the forthcoming, we manipulate

products of tensors with varying degrees of covariance and contravariance,

according to the standard index contraction rule, without ever specifying
what these degrees are. We note that, given any U CC Q, there is

Ôu E such that (16)-(17) has a unique solution in

U"x For (x, t) in the latter set we write :

Theorem 1 : Given any relatively compact open subset U of n there is

a number d, 0 ô !9 ÔU, such that the following is true : ».

(i) There is a COO function u : U x ]-d, d[ -+ Rm verifying

1

Furthermore, there is a continuous function C(x,t) &#x3E; 0 in

such that, in this set,

(II) Any two C mappings of U x j -8, 8[ into Rm satisfying ( I9) -(20) are

p -equivalent in U x ] -6, 6L .

By modifying v and q one can obtain more precise approximations

of u and of its derivatives (of any order) as shown in ~33, sect. 4 . Th.1

strengthens the main result of ~3].

The proof of Th. i is m~ainly that of the existence of the

approximate solution u. Its uniqueness (mod. p~-equivalence) will

follow at once from one of the lemmas, and estimate (21) will also be

a byproduct.
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We begin by a standard quasilinearization, setting

and transformaing (14)-(15) into

where

We call w the "vector" ( v) in (16)-(17) ; the latter reads
q

and we have

§ 3. PROOF 0F THEOREM 1§ 3. PROOF OF THEOREM 1

The first step consists in proving a weaker version of

Assertion (I), namely that Eq. (22) has an approximate solution, in a

suitable fixed interval Itl  8, modulo arbitrarily high, but finite,

powers of Ixl (i.e. functions vanishing of arbitrarily high order at

x = 0) and also modulo p (0, t)-flat functions.

To do this we study, in the ring of formal power series in x
oo t t

whose coefficients are C functions of t, |t|  ô, the Cauchy problem :

We write As a matter of far(. r

it is convenient to call 41v(t) (resp. yv) the "vector" with components

gs (t) for 0,1,.... In order to determine the
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Bj/ we differentiate v times (25) with respect to x and put in the
v

result 9 we obtain, thus :

The functionals G , H 
v 

are easy to draw from (25). They are polynomials
v v

with respect to Y1’...Yv-1 and Y1 resp. 1) with coefficients

of the form , For us the crucial
o 

. 

o

fact is the linearity of (2()v&#x3E;1 with respect to : It enables us to

select Ó &#x3E; 0, Ó ~ ÔU9 such that (26) 0 - (26) 1 have unique, smooth solutions

for |t|  d, and then solve recursively (26) v&#x3E;1 without furthero 1 v

decreasing 6. Let us denote by P 
v 

the (real) vector space of vectors

such as y , , and set P = Po + P1 + ... (Ô’ can be regarded as a linear space
v o

of formal power series in the with coefficients in .

By solving (26) 
v 

we have defined a C depending

smoothly on t, 6, of an open subset of P y ‘~ , into P. Actually

this open set is of the form S ~’ 2 P, C.... where

is a neighborhood of and diam 1 is small enough. If

Consider then the Fréchet derivative Dqf (at some point of%). In the
Dq

direct sum decomposition P = + r v it is represented by a triangular
v

matrix, according to (27). It will be an automorphism of P if, for

D~
every y, D V is an automorphism ofP . ° Identity ofP

V v v t=’u v

the last assertion i8 standard. Thus, we have proved
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(28) an automorphism of P, depending on C fashion on 
Dy -- 

-

We introduce an (unknown) formal power series in x, y(t), de-

pending smoothly on t, and set

We put this into (22’) which will serve to determine cp ; for Itl small

q 0 (t) will stay ’a eo, in Commutation yields :

recalling that 6(o,~) = q. . But, by (25) ,

since Putting (31) into (30) yields :

where

At this point we recall that T (t,cp) = qf 0 , the solution of (26) .0 0 0 0

But here Comparing with (23) shows that

hence

We apply an elementary lemma about ODES (in a Banach space with norm )) ~~) -
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Let e0 E E, V be an open neighborhood of eO’ g(t,e) a continuous
0 ’ 0

function in [-ô,ôJ x V, valued in E, Lipschitz continuous with respect

to e : t

We introduce the function :

Lemma 1 ~ Under the preceeding hypotheses there is a number e &#x3E; 0 and

a C1 function $ of t, valued in V C E, such that 

-

in the set

Moreover, if 1 t 1  6 and J

Proof : Apply Pi card’ s method, taking where

In particular, and thus

~j(t) E V if e &#x3E; 0 is small enough. The conclusion of Lemma 1 follows

at once.

Of course, if g(t,e) is smooth, so is the solution ~. We

apply Lemma 1 to problem (32) - taking V to be the space of polynomials

with respect to x of degree ~ N (with coefficients Of

course in doing so we introduce an error, which is We are

faced with a probl.em
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From (34) (and (28)) it follows at once that

Thus we may take po(t) in lemma 1 equal to CNp(O,t) (see (24)).

We set

by (27) we know that wN is a polynomial with respect to x of degree s N ;
we regard wN(t) as a (smooth) function of (x,t) . It verifies, as we see

by retracing our steps through (30)

This implies at once our claim, at the beginning of § 3. Note that if
00

the functions A, B and the initial datum uo are C functions of a

parameter z, and if the numbers ÔU9 8 can be chosen independently of

z (which is true if z varies in a compact manifold), the approximate

solutions wN can be selected so as to depend smoothly on Z (and 8 does

not have to be decreased through the argument).

§ 4. END OF THE PROOF OF THEOREM 1

At this stage we connect the argument to that in pp, 352-367

of ~3]. We apply the result in sect. 3 to the problem
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Here x plays the role of a parameter, varying in The number 8

of sect. 3 can be chosen independently of x. The analogue of 

here is w(x+y, t) and that of p (x, t) is p(x+y,t). This means that the

role of p (o, t) will now be played by p (x, t) . We denote by WN(x, y, t) the

corresponding approximate solutions of (45), mod. in a set

Let us set

We apply the last part of lemma 1 to (47). We get *

(48) if EN &#x3E; 0 is small enough and CN &#x3E; 0 large enough,

. We consider the approximate eq. (45) (where wN replaces w)
and differentiate with respect first to x, then to y, and subtract : 1

We set, for any

We apply to both sides of (49) and make y=0 in the resultWe 
x y t 

t y su ’

obtaining :



XI.12

*

The summation in ~ extends to triples a’;~’,~’ such that

From (50) and the fact that 191  N we derive

Putting this into (51) and induction on (¡3,t), 1131 + t  N , shows that

We apply Lemma 1 to problem ( 5i ) - ( 53) s regarding the f or

role of data (this for

Here C’ is a continuous positive function in E . *N N 

At this stage we take advantage of (48) ; it implies (in EN)N

hence, by (54)

By descending induction on k= N-1,...,0, we obtain, in EN9
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Actually we shall need the following consequence of t 5’?) .. ·

From now we set
. We have t

where

satisfies, for all k=0,l,...,N (according to (58) )

(C (iv)is a continuous positive function in E ). We shall apply the

following

Lemma 2 : Let Xi 
. 

(j =1,2) be any two C 00 funetions in EN’ satisfying
there " 201320132013201320132013-

where the Ri (j = 1, 2) verify

for every
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Then, for every k =. 0,1, ... , N , 9

Proof k Set , whence, by ( 63) - ( 64) ,

and B(x~0) = 0. Let us rewrite (68) in the form

and apply to both sides of (69) .

We obtain 1

Induction on ~ = 0,1, ... , N ~ ~ , shows that

We regard (70)-(71) as an initial value problem for a system of linear

ODES, e b aàey J 1  k, and data the same but whereODES, with unknowns th dx dt X , 1 a 1 +1 --, k, and data the same but where

and we let k range over 0,1,...,N-1. We apply Lemma 1 ;

because of the linearity of our system with respect to the unknowns

we are not forced to decrease the number e N in (46). We get, for a

suitable positive function C N E CI 0 (EN),
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We have taken (66) into account. We may reach t,he desired conclusion if

we reason by descending induction on k and if we show that

which in turns follows f rom the fact that

In order to prove (74) ît suffices to observe satisfies

We apply once more Lemma 1 regarding (75) as an initial value problem

for a linear ODE with unknown q) and we get easily (74).

We can conclude the proof of Th. 1. First of all notice that

by applying Lemma 2 with N get at once the uniqueness part, (II).

On the other hand, returning to (59)-(60) and applying Lemma 2 with

xi = wN+j-2 (j:=1,2 9 we assume ’ and   We see that. ’

for a suitable constant and every k==0~1~...~N- 1,

By using a partition of unity à la Whitney we may find a

sequence {CN} of C functions in having the following proper-i L

ties s

such that, for all all



XI.16

We shall take in such a way that the series at the in

converges in and that w satisfies (45) if we interpret the

first eq. (45) as a congruence mod p-flat functions. By taking advantage

of (76), it is easy to see that such a choice is possible.

Let us remark that is the approximate solution (79)

and if we set we have 0, whence, by1 t 2 
pp

differentiating this with respect to x, and taking (22) into account : 1

whence immediately u N w2 and, consequently, (19). ° By subtracting (24)
x p

from (22) we easily see that (w - w) /p is continuous in which

implies that + | 1 u - ql) is also continuous there. But we have
x

also ( cf . ( I6) and ( i9) ) ?,

with (u-v)) = 0 . Weawly once more the estimate ( 38) . We obtain

that, modulo p-flat functions ,

in view of what we have just said (C and C1 are positive continuous
functions of (x,t)).

Q.E.D.



XI.17

§ 5. RETURN TO THE EIKONAL AND TRANSPORT EQUATIONS

We apply Th. 1 to the problems (5)-(6) and (7)-(8). We may

assume that a 0 -.’V-1 b 0 with b 0 real. Indeed, ’ by means of a canonical

transformation (which only affects U(t) by changing it into

V(t)U(t)V(t), where V(t) is an elliptic F.1.0. with real phase)
we may reduce the situation to this case. In order that the errors

resulting from application of Th. 1 be negligeable (cf. (11» we need some

hypotheses on b . We suppose that
o

(actually the argument is local). It is easy to see that (82) implies,

in the same region, with a suitable M &#x3E; 0,

~ -11

We apply Th. 1 to (5) - (6) where a o = ib 
0 

has been replaced by ao = ib 0
given by (9) . Of course we view (5)-(6) as bearing on functions valued

in IR 2 ~ but it is convenient to maintain the identification The

particular function F(x,t,u,p) in this case is independent of u, and

the defining equations (16)-(17) of (v,q) simplify. First of all,

Estimate (38) applied to (84) yields

whence by (83) ,

Thus, if we set



XI.18

we get, for t ~ 0,

Next we look at the equations defining v :

Again by (38), this yields

B Y the f irst inequality ( 21 ) and si nce p 2  const . tB ,
o

we apply now the second ~nequality (21), in conjunction with (85) :

This, i.e. (87), (90), (91), gives us all we want : the assertions in

Sect. 1 concerning the eikonal equations are all valid if we substitute

tBo for p (and take the time interval [0,T[ short enough), in particular

( 1I) , with d = 2.

Finally we look at (7)-(8), where suitable extensions "a"" have
v

been substituted for a . The relevant observation, here, is that when F
v

is affine with respect to (u,p), i.e.

the function denoted by p in Th. 1 is nothing else but

In our case it will be
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If we apply (91) we find at once that p1 is also s const. (tB ) (cf.
o

proof of (8?)). As a conclusion we see that the found phase and amplitu-

de are approximate solutions modulo p-flat functions (with now p=tBo)
o

of (5) and (7) resp., and that (11) holds. Furthermore a careful inspec-

tion of the estimate for the length of the time interval co"bl would show

that it depends only on (uniform) properties of thus

opening the door to globalization. On this we refer to works of Melin

and Sjôstrand, in particular 0 Let us also mention that the argument

outlined in sect. 1 and 5 of the present article yields a construction

of parametrices for the class of differential operators considered in

[2j, and also for wider classes of pseudodifferential operators.
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