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III.1

In this lecture are considered two kinds of function spaces

10 Function spaces of Lebesgue - Besov type which are Banach spaces, and

2. Nuclear function spaces. 
We shall give a survey about some isomorphic

properties for spaces of 
such a type. We do not give any proofs. ’ All

proofs are given in 
the technical reports [6], which are the first version

of a pl,,.led book Ifinterpolation theory, function spaces, differential

operators". . If the results are published elsewhere, we shall give special

references. 0

~ 1, STRUCTURE THEORY OF FUNCTION SPACES OF LEBESGUE-BESOV-TYPE WITHOUT

WEIGHTS

1 j Definitions Rn denotes the real n-dimensional euclidean space.
(R n) denotes the set of tempered distributions ; F is the Fourier-

transformation in SI(Rn), is the inverse Fourier-transformation.

Let -aJ  
Then

are he Lebesgue-spaces, (ip(Rn) has the usual meaning) . Let Q c Rn be
a junded domain, Then 8s(0) denotes the restriction of H’(R ) on Q,p p n ¿,

where

where ( , 
denotes the real interpolation method of Lions-Peetre. The

definition is independent of the choice of so and s1. &#x3E; For s &#x3E; 0 one

obtains the usual Besov spaces. At least for s &#x3E; 0 there are many

equivalent norms ; y see [2] and the references given there. Let
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ws(a) are the Sobolev-Slobodeckij spaces. Let Q be either 0 = R or a
p B n

bounded domain of the class e. Then

1. 2 The case Q 7’: R n : Let A be a Banach space, and let 1 ~ q s co. Then

(with the usual modification for the case q = 00) denotes the vector valued

1 means isomorphic property.

Remarks : ( 1) The proof is given in [3]. There are further results of
such a type.

( 2) The spaces £ (0,1) and 1 ( 1 ) have unconditional Schauder
p q p

bases ;  oo . The Theorems shows that this is true for

the spaces and Bs ( R ) also ; -. 00  1  p  ~ ; 1 ~ q  00.
p n p, q n 

’

(3) As a special case of the theorem one obtains

(Sobolev spaces)

~ (Slobodeckij spaces)



III.3

This shows that the spaces WS(R ) for integers s on the one side and for
p n

non-integers’s on the other side belong to different isomorphic classes.

(4) The spaces Bs (R ) are not separable.
n

1.3 The case 0 E COO : Let Q be a bounded domain in R 
n 

with smooth

boundary,o E COO.

os

Remarks : (1) There are similar results for the sp aces H 
p 

(Q) and

(0) which are defined as the completion of Gp° ( ) in the norm of
P,q 

, 0

HS(O), resp. B s q ·p p,q

(2) The proof is given in [3] ; there are further results in
B

this direction.

(3) One can carry over the remarks (2) and (3) from section 1.2

for p = q.

(4) One can show that all the spaces Bs (0) ; 1  p  ;
. Pq

have a common Schauder basis : a system of functions
p

of Haar-type (see [3]). o

(5) Problem : What is the structure of Bs (Q) ; p / q?
pgq

§ 2. STRUCTURE THEORY OF FUNCTION SPACES OF SOBOLEV-SLOBODECKIJ TYPE WITH

WEIGHTS

We shall consider two kinds of Sobolev-Slobodeckij spaces
with weights.

2.1 The s aces c R be an arbitrary domain (bounded
---- p n

or unbounded, no smoothness assumptions are needed) . Let 0  p (x) E COO (0) ;
3 c &#x3E; 0 , I  c p 2 ( x) f or all l x E Q ; p(x) ~ oo f or or x oo.
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Let 1  p  m ; p and v are real numbers ; s &#x3E; 0 , Then

pp Pv) denotes the completion of i6 the norm
p 0

s = 0,1, 2 , 3, .... (for s = 0 we assume _ y) , and

if 0  s = [s] + ~s) ; [s] integer ; 0  ~ s~  l.A more detailled conside-

ration of these spaces is given in [5J .

Theorem :

2.2 The spaces w (R) (spaces of Kudrjavzev-type) : -. Let
p 9 p n ----

o(x) = (1+ lxl2)1/2 x E R, a weight function. Let lp  co and
n

-00p co. Then

and
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for 0  s = [s]+ (s) ; [s] integer ; 0 (s)  1. Spaces of such a type
where s is an integer, are considered by Kudrjavzev.

Remark : An investigation of these spaces from the point of view of

interpolation theory, a proof of the theorem, and also a proof of the

theorem of the last section is given in [6] ( and will be given in the

announced book) .

§ 3. STRUCTURE THEORY OF NUCLEAR FUNCTION SPACES

3.1 Nuclear (F) -spaces : An (F)-space is a complete locally convex space,
the topology is generated by a countable set of semi-norms. Let be

(without loss of generality)

the countable set of semi-norms. For sake of simplicity we assume that

are norms. Let F . be the completion of the ( F) -space F in the norm
j J

. Then hol ds F k c F . f or k &#x3E; j . The imbedding. operator is denot ed

by I .. By definition the (F) -space F is nuclear, if for each j 1,2, . there
J , k

exuts such a number k k( j) that the imbedding operator I . 
k 

is a nuclear
J 

operator. [An operator S E where A and B are Banach spaces, is

nuclear, if it has a representation of the type
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An important nuclear ( F) -space is the space

of rapidly decreasing sequences. Grothendieck conjectured, and T. and Y.

Komura proved that each nuclear (F) -space is isomorphic to a subspace of

the topological product (s)[1,2,3,...}. .

3.2 The spaces D(A~) : An (F)-space is (by definition) a Montel space

if each bounded set is a pre-compact set.

Let H be a separable (complex) Hilbert space. Let A be a

self adjoint operator, acting in H. The domain of definition is denoted

by D(A). Then

is an (F)-space.

Theorem : (a) D( A°°) is a Montel space iff A is an operator with

pure point spectrum.
(b) D(A=) is a nuclear space iff A is an operator with pure

point spectrum and ther e exist c &#x3E; 0 and T&#x3E;0 such that holds

(The eigenvalues of A denoted by

J

the function of the eigenvalue distribution).

(c) D(A~°) is isomorphic to s iff A is an operator with pure

point spectrum and there exit i1 &#x3E; 0, and T2 &#x3E; 0, such that

holds

Remark : The theory of the spaces D(A70) are developped by Mitjagin,
Pietsch, and the author. Detailed references are given in ~1~,6~ .
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3.3 General structure theorem for nuclear function spaces

Theorem : ; Let Q c Rn be an arbitrary domain ; let

0

a symmetric operator ; let A be a self adjoint extension of A in ~2(~) , ’
and let D(A~) be a nuclear (F)-space. Then D(Aoo) is isomorphic to s.

Remark : In the formalism of the theorem no assumptions for the type
0 00

of A are needed. But one can expect "good" spaces D(e) ô11ly in the cases
0

if A is elliptic, degenerate-elliptic, semi-elliptic..., but not hyperbolic,

3.4 Special function spaces

(a) Let 0 c R n be an arbitrary domain; let 0  p ( x) E 

for suitable numbers c 
y 

&#x3E; 0 ;

is an (F)-space.

Remark :a)Each operator Au = - = C~(n) fullfils
- 

~ ~ ~ ~ 0

the assumptions of the theorem in sect.3.3. It is possible to show that

holds D(A°°) = We refer to [4].

b) Let Q be a bounded domain. Then

equipped with the seminorms
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Theorem 2

(2) Let p -1(x) , d(x) = distance of a point x E 0 from the

boundary. Then holds S p (X) (n) - ’~’O(n) 0 (in the sense of topological equality)’
This shows that theorem 2 is a special case of theorem 1.

(c) Let n be a bounded domain, n E Coo. Let v 
z 
be the inner

normal for z E an, and let j = 1,2,..., and l=0,..~j. Then

is an (F)-space. (The topology is given by

special cases are

Theorem 3 :

Remark The proof uses .;echniques of degenerate elliptic differential

operators. A description of the principles is given in [1]. A full proof

is given in [6].
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