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"Reprinted from the Proceedings of the National Academy U.S. A."

Abstract, One can obtain sharp information cn a pscudodifferential
operator p(x,D) by embedding the symbol p in a symbolic calculus
specially designed to reflect the be'havior of p. We sketch the develop-
ment of symbolic calculi arising in this connec‘ion, and usc our results
to give simple proofs of the sharp ngrding incqaality and of sufficicncy

of Nircnberg-Treves' condition (P) for local so vability of ecaations of

principal type,

I. A Calculus of Symbols,

oy . n r AP
Let ﬁ and ¢ be positive smooth functio: s on R X R satisfying
the inequalities

(1) c<pbat) cct+le]HY2 ctaleld) Mot <c.

(2) fo >c.

() Ipel<C, [pglsc, D) < cLlb
IPeotint)] 5 cfEl
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. : M,m
Tor real numbers M and m we define the class S of s'mbols to
1
consist of all smooth functions af(x, E£) on R X R” which satisfy the con-
a P M~|[3| m—lc'i )
ditions ‘thg alx,&)| < Caﬁ 4] (x,€) @ (x,£) for all multi-
indices o and f.
2 P/2 , 2.~ 8/2
Example: Take §= (i+ l1E]7) and ¢ = (1+'€]|7) with
M,m \
o<6<pst (8 # 1). Then S¢ is essentially Hormandcr's class
@
Mp - md ’
S (see [1]).
p,b
M,m
Corresponding to a(x,£) ¢ S we define an operator a(x,D)
'@

from the Schwartz class AK to itself by the standard formula

a(x, D) ulx) = f A o 5a(x, £) G(E)aE

R

where A denotes the Fourier transform.

M,n M',m'

Theorem 1. Let ae S and b ¢ S¢ be symbols. Then
@ ’

(A) The operator a(x,D)eb(x, D) defined on )Zg is the pseudodifferential

M+M', m+m'

operatcr arising from a symbol aocb e S¢ . Moreover, aob
H]

has the asymptotic expansion aob ~ 2 -CI;'- Bg a(x, &) Dzb(x, g£) in the
a o

sensc that for any N > 0,.

1 o o M+M!' - N, m+m'~N
aeb - — 9 aD € S
(049 g X ¢,{P . B
'|a| <N

(B) Similarly, the adjoint operator a™(x,D) restticted to /f is the pseudo--diff

) M, m
rential operator arising $rom a symbol- a#(*x',' £) e S -~y Moreover
0 '¢
a# has the asymptotic expansion a# ~ 2 —&!’-—— B: Di_y a(x, £), i.e.,
foON )l e M-N, m-N @ T
a - __u__,--,-aD_acS
@l E X q)o‘P *

la|<N
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. 0,0 ]
Theorem 2. If a(x,{) is a symbolin S , then a x,D) is
1%

bounded on LZ.

Remarks: 1. Theorem 2 leads to an extension of itself in which one
[ematzs
defines analogues of the Sobol:v spaces HS relative to ¢ and ¢.

2. If, in addition to (1)~(4) one assumes the estimate

(5) ‘b(xs £) 2 C|§I‘[’(K,§.) ’
’ . M, m
then one can prove a theorem on the behavior of operators in Sé)
¥

under smooth changes of co-urdinates.

We forgo writing down the explicit results.
Our proofs of theorems ! and 2 rely heavily on ideas from a recent

paper of A.P. Calderdn and R. Vaillancourt [2].

II. Applications. We begin with a simple proof of the sharp Ggrding

inequality [3], which asserts that Re(a(x,D)u,u) 2 -C |l 2 forall ue LZ.
whenever a(x,£) is a non-ncgative classical first-order symbol, Clearly,
the estimate is unaffected (only the constant C changes) if we replace a by

a+l, so we may and shall assume that a(x,£) 2 1. Now set
144 1 ' -
o €)= (1416122 8) and ol ) = (141618742 ?0 ) ama
wend 12 1/2,1/2

observe that inequalities (1)-(4) hold, that a /Z!I'x,g) belongs to S .

g,o

1
Thus for T =a /Z(x, D) we have T*T = a(x,D) + a pseudo-differential

0,0

operator with symhel in. S¢ by Theorem 1; and we know that the error

1

.
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A
term is bounded, by Theorem 2. That is, a(x.D)= T T + a bounded
error, from which the sharp Ggrding inequalit: is obvious. Note that
1/4 o 1/4
we could have replaced T by T'=(a (x,D)) o(a’ (x,D)) to obtain
a positive self-adjoint pseudo-differential oper .tor whose sc are differs
from a(x,D) only by a bounded error. A sligl t generalization of this

procedure produces approximate square roots >f operators v-ith non-

1,1
negative symbols in S¢’ classes; the squar' roots have symbols in
1/2,1/2 . '
S\I/,q; for suitable ¥, .

Next we sketch a new proof of sufficien' y of Nirenberg-Treves'
condition (P) for local solvability of partial dif erential equations of
principal type. In their paper [4], Nirenberg : nd Treves reduced the
whole problem to proving the following result: Lemma NT: Let pt(x,g)
be a first-order classical symbol depending sn.oothly on the real para-
meter t; and suppose that for each fixed (x,£ , the function t = pt(x, £)
does not change sign, Then the corresponding operator pt(x, D) may be

written in the form pt(x, D) = AB+C,, where B is a fixed (unbounded)

seli-adjoint operator, A, is self-adjoint, bour ied and non-negative, and

t

Ct is a bounded error.

Ideally, one should prove the lemma si aply by writing the symbol

pt(x, £) in the form

() P, = at-b + ¢y where at?_ 0 and at’h'gt are classical symbols

of order 0,1,0 respectively,

e e P A AP oo
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If P, could be so expressed, the éonclusion of Lemma NT would follow
instantly from the classical symbolic calculus @nd sharp Ggrding inequality.
Nirenberg and Treves carried this out in [ 6 ] for the case c.>f real-analytic
symbols Py but unfortunately P, cannot in general be written in the form
() using classical symbols. (The unpublished counterexample is due to
Mather.) In our original solution [5] to the sufficiency problem, the authors
circumvented direct use of Lemma: NT by a complicated argument. Now,

classes to give a rather simple direct proof

M,m
however, we can use S¢
' @

of Lemma NT: Wwe simply pick the proper ¢ and ¢ to enable us to
: . 0,0 1,1 0,0

write p, (%, £) in the form (*) with a_,b,c, in S , S ,
t t t ¢' @ 4), ) q)’ @

respectively. Essentially, we can take

o60,8) = (1416137 4 sup (10, p,608) | + 1 [D_p,(x, 8)[} + sup(s>0[p,(yon

1]

does not change sign as a function of (t, y, ) in the region
2,172
ly-x| <6, |g-n] <8]E]|}, and O(x, &)= (1 +]&]| )/fp(X.&)-
The construction of at,b, c, is not hard, and can be made without mentioning

the elaborate Whitney decompositions of [5], though the latter still lurk in

the background,

" Detailed proofs of the results mentioned in this note will appear

in [6].
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