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"Reprinted from the Proceedings of the National Academy U. S. A.

Abstract. obtain sharp Gll (1. pscudodifferential

operator p(x, D) by en-ibeddi’no tlie p ;11 a sN,-n-ibolic calculus

speciall,,; designed to reflect the behavior of p. We sketch tlic develop-

ment of symbolic ezilculi iii this connection, I and use our results

to give simple proofs of the sharp Carding inequality and of fllificicnc)r

of Nirciaberg- Troves’ condition (P) for local so .vauility of

principal 

1. A Caletiltis cf Symbols. 0

Lr--t 0 and ~o be positive smooth function s on Rnx R1: satisfying

the inequalities
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. Ni,m -

For real numbers M 
and m we define the class of s, m bols to

- 

0, 

condst oi all smooth functions 
on RnX Rl1 which satisfy the con-

- - I - I j i

il1diccs a and P.

for all multi-

is essentially I-Il rmand c r ’ s class

’ ’ 

Corresponding to a(X, ~ ) E S M,m we define an operator a(x, D)
, 0, (p

from the Schwartz class .1~ to itself by the standard formula

where 1B denotes the Fourier transform.

(A) The operator a(x , D) o b (x, D) defined on /@ is the pseudodifferential

operatir arising from a symbols 
a 0 b E Moreover, aob

operator arising from a symbol aob e 

has the asymptotic expansion

sense that for any N&#x3E;0~

(B) Similarly, the adjoint oper.ator 
restricted to /isthepseudo-.diff

(B) a" (x, D) restr’lcted to is the pseudo-,diff
11 M.m .. -
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Theorem 2. If a(x, (,) is a symbol in SA ’ then a :, D) is

2
bounded on L . 

, C? ,

Remarks: 1. Theorem 2 to an extension of itself in which one

defines analogues of the spaces Hs relative to ~ and (p.

2. If, in addition to (1)-(4) one assumes the estimate

. 

in 
ivi,m

then one can prove a theorem on the behavior of operators 0,(p 
’

. 

"&#x3E;Q’
under smooth changes of coordinates.

We forgo writing down the explicit results.

Our proofs of theorems ! and 2 rely heavily on ideas 
from a recent

paper of A. P. Calderon and Vaillancourt[2].

o

11. Applications. We begin with a simple proof of the sharp Carding

inequality [3). which asserts that Re(a(x, D)u, u) ~ -C 11 u ))  for all ue L2,

whenever a(x,) is a n°n-ncg’it’ive classical first-order symbol" Clearly,

the estimate is unaffected (only the constant C changes) if we replace a by

a + 1 J so we may and shall assume that a(x, gj 2t 1. Now set

that inequalities 1 · - belongs to S -(- .

Thus £01’ T:: al/l(Xt D) we ba,.c T*T:: a(x. D) + a pseudo-dií£eren:i:lThus T = we ’ ’ - + a pseudo-differential

w · and r w h h
operator with by Theorem 1; and we know that the error" °° 

f 
°
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*
term is bounded, by Theorem 2.. That is, a(x. D) = T T + a bounded

0

error, from" which the sharp Garding inequalit- is obvious. Note that

we could have replaced T by T’=(a lA (x,D)) ~ o(a 1/t (x,D)) to obtain

a positive self-adjoint pseudo-differential oper .tor whose sc are differs

from a(x, D) only by a bounded error. A slig: t generalization of this

procedure produces approximate square roots )f operators v.-ith non-

1,1
negative symbols in S classes; the squar, roots have symbols in

’ 

for suitable ’

Next we sketch a new proof of sufficien’ y of Nirenberg-Treves’

condition (P) for local solvability of partial dif~ erential equations of

’ 

principal type. In their paper [4], Nirenberg ~ nd Treves reduced the

whole problem to proving the following result: Lemma NT: Let 

be a first-order classical symbol depending sn oothly on the real para-

meter and suppose that for each fixed (x, g , the function t - p t(X ~)
does not change sign. Then the corresponding operator p t(x, D) may be

written in the form Pt(x, D) = A B + C , where B is a fixed (unbounded)
t t t

self-adjoint operator, A t is self-adjoint, ’ bourded and non-negative, and

Ct is a bounded error.

Ideally, one should prove the lemma si 1.ply by writing the symbol

I) in the form 
’

() put = at* b + et , where a &#x3E; 0 and at, 1:, 0, are classical symbols
t t t t 

. of order 0,1,0 respectively.
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If p t 
could be so expressed, the conclusion of Lemma NT would follow

instantly from the classical symbolic calculus and sharp C arding inequality.

Nirenberg and Treves carried this out in ~ 6 ~ for the case of real-analytic

symbols p , but unfortunately p cannot in general be written in the form

16 ’~ ) using classical symbols. (The unpublis11ed counterexample is due to

Mather.) In our original solution [5] to the sufficiency problem, the authors

circumvented direct use of Lemma NT by a complicated argument. Now,

M, m .

however, we can use S classes to give a rather simple direct proof

of Lemma NT: we simply pick the proper $ and q5 to enable us to

O} 0 1,1 0,0
write in the form  y with at,b,Ct in S 0, 0 &#x3E; S &#x3E; S Q,t t t 
respectively. Essentially, we can take

- 

1y I

does not change sign as a function of (t, y, 11) in the region
- . I-

The construction of a b, c t is not hard, and can be made without mentioning

the elaborate Whitl1.ey decompositions of [5], though the latter still lurk in

the background.

. 

Detailed proofs of the results mentioned in this note will appear

in (6]. 
1
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