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Let P = P(0161) be a homogeneous polynomial hyperbolic with

respect R n B i.e. 0 when g G Rn

and t ~ ~. Then

defines the unique fundamental solution E = E(P) for P(D)

which has support in = ~ x~ &#x3E; x,t4-&#x3E; &#x3E; 0 . 0 f course ( 1 )

should be understood in the distribution sense, L.e.

The problem of describing the singul~3rities of E(P) has a

long history and recently Atiyah, Bott and Garding C2,3~ have

studied this question in detail. For the location cf the singu-
larities of E(P) only the local behaviour of P(C), in neigh-
bourhoods of real points ~ ~ ~’, is relevant. It is therefore

possible to extend many results to a rather general class of

operators P(D) which I shall now describe.

As usual, @ 
n 

denotes the ring of germs of functions holo-

morphic at the origin in c . If we write h for the
n 00 

-

first non-zero term hk in the expansion h = ¿ h . , where h .

is homogeneous of degree j. 
0 J J

Definition. is called locally hyperbolic with respect
/7 n 

n

The class of h:s locally hyperbolic with respect to ;. will be

denoted by 

Let now Rn ~ ~ -~ (T‘~ C Rn be a vectorfield homogeneous of

degree zero. A homogeneous polynomial is then called locally
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hyperbolic with respect to A E) if, for every £ E n, the

polynomial C belongs to is a slight

variation of the definition given in [1]).
For a polynomial which is locally hyperbolic with respect to

E) it is possible to define a fundamental solution by a for-

mula similar to (1). When E is close to 0 one integrates
over the chain C = E - and the construction is then

completed by means of a suitable partition of unity. This construc-

tion, which in particular is valid for an arbitrary operator P(D)

of real principal type, gives fundamental solutions with optimal

regularity properties.
However, rather than describing these results, I want to indi-

cate how the concept of local hyperbolicity can be conveniently
used to examine the singularities of the fundamental solution (1)

of a hyperbolic operator.
First we note that if h £1 then ~~ i.e.

h is hyperbolic with respect In fact, if h = h k then

tends to +00. Since 0

it thus follows from (3) that h 6 If h(C) = we

shall use the notation = 

Let now P be a homogeneous polynomial hyperbolic with respect
to ~. Then it follows from basic properties of hyperbolic polyno-
m i a 1 s that - P(E+C) belongs t 0 for every ~. 

(A stronger result is contained in Lemma 1 below). Thus

pEC- and we can define by the formula (1). If we

denote by WF(u) the wave front set of the distribution u, we

have the following theorem which is just a special case of a more

general result (see Hbrmander [5, 
Theorem 1. ~n, then
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where m,k are the degrees of P and Par respectively and

Rg,x(11 iS a P°lYn°mial in X -1 Then Xm -k Fx -* 
in JO’(R )~ when X - 00, and the theorem is proved.

In the other direction the following result, with a less pre-

cise formulation, is proved in [2].

where K is the convex hull of supp E(P ).
Here WF A denotes the analytic wave front set defined as

follows (see C6 ). First one observes that there are bounded se-

quences in such 1 on a fixed neighbour-N 0 N
hood of XOl independent of N, and

If u cz .0’ (R ’ ) , WFA(u) is then defined as the complement, in

R x ~n’, of the points such that for some sequence of

this type there is a conic neighbourhood A of 0 in Rn with

It is easily proved that the projection (x,~) - x maps 

onto the complement of the largest open set where u is analy-
tic.

For any we know that h E and thus the

component of = 01 containing fl is an open convex

cone which we denote by r(h~). In particular, if = 

it is well-known that KE = c.h. supp E(Ps) = {x; 0}.

The main step in the proof of Theorem 2 is now the following
Lemma 1. Suppose that h 6 and put T h(C) = 

If M is a compact subset of then, for small 6 R n

Note that (6) and (7) implies that

so (8) makes sense.
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The condition (8) can be expressed by saying that the mapping
is inner continuous for small E . n. In the same

way a mapping ~ + H , H compact, is called outer continuous

if any open set containing N io also contains M 
E 

when E is

close to Eo. (7) can then be sharpened as follows.

Lemma 2. Suppose that h 6 and that S is com-

pact. Let &#x3E; 

,

&#x3E; - I

be an outer continuous mapping whose values are compact sets. Then

These two lemmas are proved in [4] using only elementary facts

about Puiseux series and continuity of zeros of holomorphic func-

tions. We shall now s.ee how Theorem 2 follows from Lemma 1. Lemma

2 will then be used to improve Theorem 2.

Proof of Theorem 2. Suppose that LJ K x {} and put
. 

h(C) = P(o+C). Then h E Hyp loc and it follows from Lemma 1

and the definition of K that there is a neighbourhood U of

an open conic neighbourhood Al of o and a vector

1’(h,-,) such that

Let A be a conic neighbourhood of o with and

be positively homogeneous of degree one and such

that SUPP &#x26;  A.. ~(~) = l~l [ on A. Put

Then it follows from ( 11 ) that, for some r &#x3E; 0,

To prove that U x WF A(E(P)) = jl$, we take a bounded sequence

00

N in which satisfies (4). With E = E(P), we then have

to prove that
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Denote by Vt the + ivtlEl, C. Since

supp U, it follows from (4) and (10) that

In view of (12) we can apply Stokes’ formula and get

r

where y is a compact chain.

The first term on the right hand side obviously satisfies esti-

mates of the type (13) and, to estimate the second term, we note

that

Therefore (13) follows from (14).

Denote by the fiber of WF A ( u ) over C. Then it fol-

lows from Theorem 1 and 2 that

In general either of these inclusions may be proper, but there

is one important case where the left inclusion reduces to equality.
To be able to describe the complete result, we shall first define

sharpness of a distribution across a hypersurface.
Let H(s) be the Heaviside function, i.e. the characteristic

function of the half-line s &#x3E; 0 and assume that Z is an analy-
tic hypersurface in Rn given by ci(x) = where

grad 0. We shall then say that the distribution u is

normally at Xo if there is a function g ( x J ,

holomorphic in a neighbourhood of xolp such that (x, grad 

Finally we recall the notation K ~n 
= c.h. suppE(P
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and put

denotes the orthogonal complement of the lineality L (Q) =

= 

Theorem 3. Suppose that dim L(P co = 1 and that K WEO’20132013201320132013201320132013 

0 0 o

Then E(P) is normally A-sharp across K co at 

If, in addition, x0 belongs to a lacuna., in K;, for all po-
" 

. 0

wers of and if deg  n - 1 

Remark. For the definition of lacuna we refer to L3] where Theo-

rem 3 is proved in a less precise form using what is called the

local Petrovsky condition.

Proof: We can, without restriction, assume that 0 (1~0~....0)
and i~= (1,1,0,...,0). Then

where m,k are the degrees of P and P respectively,
ct = I’?’°°""nl and,/ n

When 0 and  o (Ç’) fa we can expand P(ç) -1 in a

-’0 .

,finite geometric series

Next we note that

and Q. (D’ ) is homogeneous of degree j (k+1 1 and satisfies
J

converges
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uniformly to a holomorphic function g on some complex neigh-
bourhood of x0’ In fact, since x 

= where 0

we can, as in the proof of Theorem 2, choose a COO vector field

~’ - v’(~’) homogeneous of degree one such that, when x’ is

close to x 6p

and V’ is given by ~’ - ~’ + iv’(~’) when [i"[ &#x3E; C .

From (17) - (20) we get that, if z’ = x’ + iy’ is close to I
then 

’

This proves that g = lim g is holomorPhic in a neighbourhoodN

of x.

We shall now prove that Let there-

fore U be a small neighbourhood of x 0 and ~N a bounded se-

quence in C~(U) satisfying (4). We have to prove an estimate

of type (13) with E replaced by E(P) - H(x1)g and A some

conic neighbourhood of e’ = 0. Since-

when U is small enough, we only have to estimate

For this we shall use Lemma 2. Put
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when z f 0, and since (0,l$’) we have, according

to (7), 0 t E’i small. In par-

ticular

follows from Lemma 2 
. 

that we can choose a vector field

El 1, such that, when x’ is close to x61

In fact, (22) is just another way of writing (9) for our choice

of h and oM.;’ , and that w’ (~’ ) can be taken to satisfy (23)

follows from Lemma 1. 
’

Let be homogeneous of degree zero and such tha
= 1 on Al where A1 and A2 are small conic

neighbourhoods of ~’ = 0. If X when

1 and is equal to 1 when I &#x3E; 2, we put

If A 
2 

and the neighbourhood U around x0’ are small enough,
V is the chain given by ~ = ~ + and if V A1 denotes

the same chain over Al.* then it follows from (21) - (23) and

Stokes’ formula that .
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If A is a conic neighbourhood of E’ = 0 with A ~ {0} C A~ lp
then the estimate for the first term irl ( 24) follows directly.

To estimate the second term we apply Stokes’ formula once more
/

to push V’ keeping the boundary fixed, to a chain V ’- VA1I 1

is possible since

and the estimate for the second term follows when 6 Q A.

Finally it follows from (22) and (23) that

and since, in view of (21),

this gives the estimate for the third term in (24). In fact, if

then . On the other hand we al-

ways have C on V 
I 

and, since the estimate
- /

is trivial when 6())+je() this
completes the proof of the first part of Theorem 3.

The second part now follows directly from the fact (see 131),
that, if x0 belongs to a lacuna for all powers of P(D), then

is a polynomial of degree mj-n, in a neighbourhood of x0’
Here m is the degree of the homogeneous operator 
= Thus )(x’) is a polynomial of degreen 0
(j+1)k " n + 1 close to x0 and since Qi(D) has degree j(k+1J
and k  n - 1 the proof is finished.
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