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XVII.1

We consider a compact Hausdorff space X and on X a uniform

algebra GL. That means that 0L is an algebra of continuous complex-

valued functions on X, closed under uniform convergence on X, separa-

ting the points of X, and containing the constants.

With norm

0t is than a commutative Banach algebra with unit. 3 According to

Gelfand, (~ possesses a spectrum 3J!( C(.) ~ i.e. the space of all non-trivial

homomorphisms of 0fl o J£(0l) is a compact Hausdorff space, in

Gelfand’s topology.

There is a natural injection of X into namely the map

sending each point x into the functional of evaluation at x. This in-

jection may or may not be onto, i.e. we may have or larger

than X.

When ()(, ~ C (X), one has = X ~ ð We have

Probl em : Let M, be a uniform algebra on X such that = X . What

additional condition assures that 

Of course, one has the classical condition of Stone :

But in problems of uniform approximation in the complex domain this

condition is usually difficult to verify.

In 1959, Eo Bishop in [1] introduced the notion of a peak

point. Let X now be metrizable, 9 ~C a uniform algebra on X. Fix x E X.
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Evidently, when Ot = C(X) every point of X is peak point.

when 0i is the disk algebra of functions analytic in the open unit

disk and continuous in Iz) S 1, t(0i) is the full disk while the peak

points are exactly the points on the boundary. In general, the set of
f, 
W

peak points does not coincide with the Sil.ov boundary of et, but in

fact coincides with the Choquet boundary.

Let now X be a compact subset of C. We denote by

R(X)

the uniform algebra on X which is the closure on X of the set of ratio-

nal functions of z which are holomorphic on X.

It was pointed out by Mergelyan that there exist sets X without

interior points such that R(X) ~ C(X) . In Bishop proved the following

Theorem : R(X) = C(X) if and only if each point of X is a peak point

for R(X) .

The question now arose to what extent this result was a gene-

ral property of uniform algebras. It is not easy to find, among examples

arising in a natural way, uniform algebras distinct from C(X), yet such

that the spectrum of the algebra consists entirely of peak points.

In 1968, in his Yale thesis Brian Cole gave a very general
construction of uniform algebras 0C with the property that every ele-
ment of ~ has a square root in 0C, and used this construction to pro-

duce an example of an with 0% = X, every point of X is a peak

point, yet 0C/C(X), co Later on, he modified his construction to obtain

an example which is doubly generated.

It remained of interest, however, to exhibit concrete and

simple examples of such algebras. I want to discuss such a construction,
due to Richard Basener and contained in his thesis, Brown University

(1971).
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Let X now be a compact set in We define R(X), in analogy

with the case n = 1 as the closure in C(X) of the set of quotient- pQ
where P, Q are polynomials in zi, ... 2znand Q/0 on X.

Fix m6JR(R(X)) . Put

We claim :

For every polynomial Q :

Q(a) = 0 ~ Q vanishes sonBewhere on X.

since m(Q)=Q(a). So holds.

Definition : h (X)=fa6E (-s ) holds
201320132013201320132013201320132013 r l I

hr(X) is called the rationally convex envelop of X. To each

m e %(R (X)) there corresponds, as we have just seen, a point a E hr(X).
The map is easily seen to be bijective, and we may identify )2’(R(X))

with hr(X). We note that when n= 1, hr(X) evidently coincides with X.

For n&#x3E; 1, hr(X) may be larger than X.

Fix now a closed subset S of the open disk 1 in the

z-plane. Denote by B the ball : Iz12+ Iw12::;; 1 in ([2 and by gB its
boundary. Put

Thus X~ is the set of those points on 6B which project into S.

Note that if z E ~-9, the entire circle
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lies in XSs a Thus XS is, in a sense, a fibrespace with base S and fiber

a circle.

Basener’s result is the following :

Theorem : 5 S such that the algebra R(X ) has the properties :

(c) Each point of X s is a peak point for Rxs&#x3E;.

The proof of (c) is trivial.

Then P(z w ) and )?)! on the rest of aB. So (c) holds.
o o

To obtain (a) we only need S such that R(S)/C(S). For then

~ complex measure ~i on S, with For each put"

where m is normalized Lebesgue measure on F . The L is a bounded li-
z z

near functional on C(XS), 

If F is holomorphic in some neighborhood of XS , it is easily

verified that SF dm is holomorphic in Z in a neighborhood of S, and

’r. 
Z

so E R(S). Hence L(F) =0. It follows that L vanishes on R(XS), and so

(a) holds.

To obtain (b) we must restrict S rather severely, and we do

not give the details here. They are given in Basener’s forthcoming paper

[2J, and also in [3J, pp. 202-203. The crucial point in the proof of

(b) is the notion of a Jensen measure.

Let (Jt be a uniform algebra on a space X and A

Jensen measure p for m is a probability measure on X such that Jensen’s
m
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inequality

holds for all f E 0(, . Concerning Jensen measures, see [3] or [4].

Cole’s work, discussed above, also is treated in [3J and [4].
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