SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

J. WERMER

Some rationally convex sets

Séminaire Équations aux dérivées partielles (Polytechnique) (1972-1973), exp. nº 17, p. 1-5

http://www.numdam.org/item?id=SEDP_1972-1973 A18_0>

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1972-1973, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ECOLE POLYTECHNIQUE

CENTRE DE MATHEMATIQUES

17, rue Descartes 75230 Paris Cedex 05

SEMINAIRE GOULAOUIC-SCHWARTZ 1972-1973

SOME RATIONALLY CONVEX SETS

by J. WERMER

We consider a compact Hausdorff space X and on X a <u>uniform algebra</u> ∂L . That means that ∂L is an algebra of continuous complex-valued functions on X, closed under uniform convergence on X, separating the points of X, and containing the constants.

With norm

$$||f|| = \max_{X} |f|$$
,

Ot is than a commutative Banach algebra with unit, According to Gelfand, Ot possesses a spectrum $\mathfrak{M}(\mathcal{O}L)$, i.e. the space of all non-trivial homomorphisms of $\mathcal{O}L \to \mathfrak{C}$. $\mathfrak{M}(\mathcal{O}L)$ is a compact Hausdorff space, in Gelfand's topology.

There is a natural injection of X into $\mathfrak{M}(\mathcal{O}t)$, namely the map sending each point x into the functional of evaluation at x. This injection may or may not be onto, i.e. we may have $\mathfrak{M}(\mathcal{O}t) = X$ or $\mathfrak{M}(\mathcal{O}t)$ larger than X.

When $\mathcal{O}_{\mathcal{C}} = C(X)$, one has $\mathfrak{M}(C(X)) = X$. We have

<u>Problem</u>: Let $\mathcal{O}\mathcal{C}$ be a uniform algebra on X such that $\mathfrak{M}(\mathcal{O}\mathcal{C}) = X$. What additional condition assures that $\mathcal{O}\mathcal{C} = C(X)$?

Of course, one has the classical condition of Stone:

$$f \in \mathcal{O} \Rightarrow \overline{f} \in \mathcal{O}$$
.

But in problems of uniform approximation in the complex domain this condition is usually difficult to verify.

In 1959, E. Bishop in [1] introduced the notion of a <u>peak</u> point. Let X now be metrizable, \mathcal{O} t a uniform algebra on X. Fix $x_0 \in X$.

 x_o is a peak point for $\mbox{\it OC}$ if $\frac{1}{2}$ $f\in\mbox{\it OC}$ with $f(x_o)=1$ and |f|<1 on $X\backslash\{x_o\}$.

Evidently, when $\mathcal{O} \mathcal{C} = C(X)$ every point of X is peak point. When $\mathcal{O} \mathcal{C}$ is the disk algebra of functions analytic in the open unit disk and continuous in $|z| \leq 1$, $\mathfrak{M}(\mathcal{O} \mathcal{C})$ is the full disk while the peak points are exactly the points on the boundary. In general, the set of peak points does not coincide with the Silov boundary of $\mathcal{O} \mathcal{C}$, but in fact coincides with the Choquet boundary.

Let now X be a compact subset of C. We denote by

R(X)

the uniform algebra on X which is the closure on X of the set of rational functions of z which are holomorphic on X.

It was pointed out by Mergelyan that there exist sets X without interior points such that $R(X) \neq C(X)$. In [1] Bishop proved the following

Theorem : R(X) = C(X) if and only if each point of X is a peak point for R(X).

The question now arose to what extent this result was a general property of uniform algebras. It is not easy to find, among examples arising in a natural way, uniform algebras distinct from C(X), yet such that the spectrum of the algebra consists entirely of peak points.

In 1968, in his Yale thesis Brian Cole gave a very general construction of uniform algebras $\mathcal{O}t$ with the property that every element of $\mathcal{O}t$ has a square root in $\mathcal{O}t$, and used this construction to produce an example of an $\mathcal{O}t$ with $\mathfrak{M}(\mathcal{O}t) = X$, every point of X is a peak point, yet $\mathcal{O}t \neq C(X)$. Later on, he modified his construction to obtain an example which is doubly generated.

It remained of interest, however, to exhibit concrete and simple examples of such algebras. I want to discuss such a construction, due to Richard Basener and contained in his thesis, Brown University (1971).

Let X now be a compact set in ${\bf C}^n$. We define R(X), in analogy with the case n = 1, as the closure in C(X) of the set of quotients $\frac{P}{Q}$ where P, Q are polynomials in z_1, \ldots, z_n and $Q \neq 0$ on X.

Fix $m \in \mathbb{R}(R(X))$. Put

$$a = (m(z_1), \ldots, m(z_n)). a \in \mathbb{C}^n$$
.

We claim :

For if not,
$$\frac{1}{2}$$
 Q, $Q(a) = 0$, $\frac{1}{Q} \in R(X)$. Then
$$1 = m\left(\frac{1}{Q} \cdot Q\right) = m\left(\frac{1}{Q}\right) m(Q) = 0$$
,

since m(Q) = Q(a). So (*) holds.

<u>Definition</u>: $h_r(X) = \{ a \in \mathbb{C}^n \mid (*) \text{ holds} \}.$

 $h_r(X)$ is called the <u>rationally convex envelop</u> of X. To each $m \in \mathfrak{M}(R(X))$ there corresponds, as we have just seen, a point $a \in h_r(X)$. The map is easily seen to be bijective, and we may identify $\mathfrak{M}(R(X))$ with $h_r(X)$. We note that when n = 1, $h_r(X)$ evidently coincides with X. For n > 1, $h_r(X)$ may be larger than X.

Fix now a closed subset S of the open disk |z| < 1 in the z-plane. Denote by B the ball : $|z|^2 + |w|^2 \le 1$ in C^2 and by ∂B its boundary. Put

$$X_S = \{(z, w) \in \partial B \mid z \in S\}$$
.

Thus \boldsymbol{X}_{S} is the set of those points on $\partial \boldsymbol{B}$ which project into \boldsymbol{S} .

Note that if $z \in S$, the entire circle

$$\Gamma_{z} = \{(z, \sqrt{1 - |z|^2} \cdot e^{i\theta}) | 0 \le \theta < 2\pi\}$$

lies in \mathbf{X}_S . Thus \mathbf{X}_S is, in a sense, a fibrespace with base S and fiber a circle.

Basener's result is the following:

Theorem : $\frac{1}{2}$ S such that the algebra $R(X_S)$ has the properties :

- (a) $R(X_S) \neq C(X_S)$.
- (b) $h_r(X_S) = X_S$.
- (c) Each point of X_S is a peak point for $R(X_S)$.

The proof of (c) is trivial.

Let $(z_0, w_0) \in \partial B$. Put

$$P(z, w) = \frac{1}{2} \{ z \overline{z}_0 + w \overline{w}_0 + 1 \}$$
.

Then $P(z_0, w_0)$ and |P| < 1 on the rest of ∂B . So (c) holds.

To obtain (a) we only need S such that $R(S) \neq C(S)$. For then $f(S) \neq C(S)$ complex measure $f(S) \neq C(S)$ with $f(S) \neq C(S)$. For each $f(S) \neq C(S)$, put

$$L(F) = \int_{S} d\mu(z) \left\{ \int_{\Gamma_{z}} F dm_{z} \right\} ,$$

where m is normalized Lebesgue measure on $\Gamma_{\bf Z}$. The L is a bounded linear functional on $C(X_{\bf S})$, and $\neq 0$.

If F is holomorphic in some neighborhood of ${\bf X}_S$, it is easily verified that $\int_{\Gamma_{\bf Z}} {\sf F} \; d{\bf m}_{\bf Z}$ is holomorphic in Z in a neighborhood of S, and

so $\in R(S)$. Hence L(F) = 0. It follows that L vanishes on $R(X_S)$, and so (a) holds.

To obtain (b) we must restrict S rather severely, and we do not give the details here. They are given in Basener's forthcoming paper [2], and also in [3], pp. 202-203. The crucial point in the proof of (b) is the notion of a <u>Jensen measure</u>.

Let ${\cal H}$ be a uniform algebra on a space X and $m\in {\mathfrak M}({\cal H})$. A Jensen measure μ_m for m is a probability measure on X such that Jensen's

inequality

$$\log |\hat{f}(m)| \le \int_{X} \log |f| d\mu_{m}$$

holds for all $f \in \mathcal{H}$. Concerning Jensen measures, see [3] or [4].

Cole's work, discussed above, also is treated in [3] and [4].

REFERENCES

- [1] E. Bishop, A minimal boundary for function algebras, Pacific J. Math. 9 (1959), 629-642.
- [2] R. Basener, On rationally convex hulls, Trans. Amer. Math. Soc., (to appear).
- [3] E. Stout, The theory of uniform algebras, Bogden and Quigley, Inc. (1971).
- [4] A. Browder, Introduction to function algebras, W. A. Benjamin, Inc. (1969).
- [5] B. Cole, One point parts and the peak point conjecture, Ph. D. dissertation, Yale University (1968).