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IX.1

The Enflo’s construction of Banach spaces without the appro-

ximation property consists of three parts : the criterion for a Ba-

nach space to fail to poses the approximation property, decomposition

of finite dimensional spaces into two "bad subspaces" and the final

construction which is a "convolution" of constructed in the second

step finite dimensional subspaces. Each of these steps is interesting

i its own. We shall discuss them separately. Also we shall give some

other comments and we shall pose some problems.

I - Let E be a Banach space and El its dual. Let (e. ? 9 
1

a family of elements of E X E’ 0 Given a finite subset A of I for each

u E L(E) let us define

Proposition 1 : Assume that there exists a sequence (a ) at positive
n

numbers with ( oc oo and a sequence (A ) of finite subsets of N such

n-2 n 
" 

n
n=l 

that

and assume that

The E has not the approximation property.
The condition 1 0 is fulf iled if , 

&#x3E; = 1 f or each i E I , and the
i 1

condition 2 0 is fulfiled if one of the following is true;

a) for some constant

of mutaly disjoint
subsets of I.



IX.2

Proof s It is known that E has the approximation property if and

only if the canonical mapping i o El is an injerctiono But

z - n tr A ( o ) E E? @E and I" the assumption c Since
n

cc 

( ) 
, 0 

A
the sequence 2; is convergeant in to some z 0

n!1 n n 0

But then lo implies that z o ’ 0 and 20 implies that i(z ) 0 == Oo o

and thus E has not the approximation property.

Remark 1 : Proposition 1 enables us to avoid the use of Grothendieck

result that for reflexive spaces the approximation property and the

bounded approximation property coincide,

Remark 2 : It is not known yet if there exists a

Banach space with the approximation property and which has not the

bounded approximation property.

II - Let X be a finite dimensional Banach space o Let (e, 
i 

be a biorthogonal complete system in E, and let Ac 10 Assume that for

each u E L(E) there holds

then in particulary this implies that if P is any projection of X onto

then
1

Thus X may be decomposed into in such way that each projection
from X onto Xfl and each projection of X onto X B is of norm greater than
1

a 
0

If X and Y are Banach spaces of the same dimension let us

dpfj ne

d(X,Y) = inf (ilTIl J T is an isomorphisme of X onto YI

and let h(X) =d(Xyti) where H is a Hilbert space of the same dimension

as X.



IX.3

Conjecture : If X is a finite dimensional Banach space then there

exist a biorthogonal complete system 9 and a subset
111

Ac I such that

(C is a universal constant). 0

Let Exactly in the same method as in Lemma 1 and

Lemma 2 of the preceeding note. we can find a subset Ac:[l,n] such that

for each u E L(LE 1, n]) .

p 
- -

It is known that chapt. X, Theorem

7.10) and it is easy to see that

all these we arrive at : 1

Proposition 2 : Let There exist a constant C 9 a biorthogo"- - 

n 
p

nal system [e. 9 in 1 n and a subset AC I such that
1 p

By duality arguments we can extend this result on 1 
p 

1  p  2 Ð

In fact this is true for It was observed by Ao Pel-

czynski that the Sobezyk decomposition of I n gives the desired property.
p

Also we can obtain it in a similar method to the one used in Lemma 1

and Lemma 2 of [4], but ins+ead of the unite circle T the Cantor group

K = taken and the trigonometrical system is replaced by the

Walsh system. This approach was developed by Figiel [2] and by Figiel
and Pelczynski The advantage of this approach is that it allows

to construct subspaces of 1 
p 

~ without the approximation pro-

pert Yo o 
°

Rp f" j4]



IX.4

Problem 1 i If E is not isomorphic with Hilbert space is it true

that E contains a subspace without the approximation property ?

Problem 2 : Let 1  p  20 Does L 
p 

contain a subspace without the appro-

ximation property ?
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