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§ 0. INTRODUCTION 
, ~

::The calculus of Fourier integral operators/ which can be tra-

ced back to the work of Lax [11], Ludwig [13], Maslov [14] and was
brought into a final form by Hörmander [ 9 ], has beeii applied in at

least thr~e different forms. 

Firstly we have the idea of Egorov [3] to use Fourier inte-

gral operators as similaiity transformations if A is a Fourier inte-

gral operator defined by a canonical transformation ( and if P, Q are

pseudo-differential operators with principal symbols ,p, q respectively,

then p=qioX if PA=AQ. In this way the operator P can be transformed

(at least locally in the cotangent bundle) to an operator which has

a principal symbol in some standard form. Transforming back the results
for the simple operator Q, one can in this way obtain results for P.

This procedure has been used by Egorov [4, 6] and Nirenberg-Trèves [15]
in the study of subellipticity and local solvability,,for general opera-
tors P with complex principal symbol p, and by Duistermaat and Hörman

der [11 in the special case that p is real or (p,p) 0 when p=0 for
(semi-gbbal regularity and existence theorems. See also the review

article of H8rmander [10] for examples of the idea of Egorov. Finally
work of Sj8strand [17, 18] and Sato C. S. [16J gives hope that the same

- L 
i

procedure will be very fruitful in the study of general overdetermined

systems. /
I 

’

Whereas some results obtained by Egorov’s procedure also can

be proved’without using Fourier integral operators (see for instance

Duistermaat [2]), this no longer holds when the solution operators

(partly) are Fourier integral operators defined by a canonical relation
differnt from the identity in making them very much different

from pseudo-differential operators. For instance in the case of the

Cauchy problem for strictly hyperbolic operators a characterization of

the solution operators as certain Fourier integral operators was alrea-

dy given by Lax [11] and Ludwig [13], and Maslov [14] applied this to

the Schr8dinger equation as h-0. The global parametrices E found by
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Dui ate rmaat,-H8rmande r [21 for more general operators /,P also contain
such a part. (In fact they used Egorov’s idea in the construction of E).

/. ’I

Finally it may happen that Fourier integral; operators already
occur in the formulation of the problem at hand. For instance if X 

0
. ’20132013’2013201320132013201320132013- " 

r 0

is a submcinif old of X, then the restriction operator : 
is a Fourier integral operator defined by the normal "/bundle of the dia-

gonal 6x IV cX 0x X. So interior boundary value problems can be form-
0 ’

0 ’: 0
lated in terms : of Fourier integral operators. As an example we shall

treat a simple Cauchy-type problem from this point of view. Hopefully
more complicated mixed boundery value problems can be understood better

, 

. ; B
in this way. One can even imagine that in the future .entirely new in-

teresting problems will be formulated in terms of Fourier integral

operators.’ l’
t . /I

. 

! I

§ 1. . REVIEW OF THE CALCULUS .

Before giving a more detailed description o’f the applications
mentioned above we give a very brief review of the calculus of Fourier

integral operators. 

Let u be a distribution in X= R . According the Pauley-Wiener
theorem we,have Xo i Sing supp u if and only if vu() =?,0(JJ ) for

fo&#x3E;r all N and for some v E Cco with v(x ) / 0. In other words :
o 0

uniformly on for all N. This means that u is rested by rapidly
oscillating test functions and the ~symptotic behaviour
is investigated as the frequency t goes to infinity. Localizing this

with respect to the normal ~ on the wave fronts X,~,&#x3E;= constant, this

leads to the following definition of the wave front set WF(u) of the

distribution u :
j

II
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i 

For each (x )? 0 we have ( x 0 0 WF (u) is valid for some

’vE CCO with’v(x ) 0 and uniformly for all in a neighborhood of fl 0

o « 0 , -o

Jf u is a distribution as a manifold X then 
can be inv’ariantly defined by (x 0 .0 d

Here 9 d (x 0 0 (j is real). 0 Moreover the estimates
6 o o o 

must be locally uniform in the additional parameters on which § may

depend. 
~ 

,,

In terms of pseudo-differential operators an equivalent cha-

racterization can be given by : for some

0 
11 0 0 "

AE L (X) With a principal symbol a(x,0160) which is invertible in a conic

neighborhood of (x 0 0 $ ’,

, Because sing supp u 7t (WF(u) if 7r is the projection : 
WF(u) gives more information than sing supp u, and in )/fac t (101)9 (1.2)

can be regarded as a spect,ral analysis of the singularities of u.

A Fourier integral distri bution is a distribution A which is

defined by an integral of the form

Here are auxiliary variables, g called the frequency varia-
bleso The phase function cp is supposed to be a real COO function on

Xx homogeneous of degree 1 in e. Moreover it is assumed that

(p is regular,. that is do has maximal rank N if d q) = 0,, This

implies that ;’ &#x3E;

in an n-dimensional conic cC:O submanifold of Xx RNB0 and that the mapping

J
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is an immersion : The image is called ’A and is an
(p &#x26; t cp

n-dimensiohal conic C submanifold of T*(X)BO. It apppars moreover

that A 
(P 

that is if (? is the canonical 2-form on
p ..t

T*(X) and i denotes the identity : i

Conversely it can be shown that every conic Lagrangian- submanifold A
of 

.; 
is locally equal to A 

q&#x3E; 
for some regular phase function (p.

for the amplitude function a we assume that" it belongs to

the symbol 
I 

class x IR N 0p~l~ that is we have estimates
p 1,

The integral C I. ~) , which needs not to be asbsolutely: convergent, can

be interpreted as the limit of the same integrals with a replaced by

a . , a . rapidly decreasing for each j, and finally a . -~ a
J , J 

x 
1 N 

for all lil &#x3E;li as joo. An equivalent 
i’lnterpretation 

canin S (Xx R ) for An equivalent interpretation can
p , 

-

be given using partial integrations. t

Now applying the method of stationnary phase to the integral
t

1 i

one obtains immediately that ’.

Moreover, if the graph of d intersects A p ’transversally,
then the method of stationnary phase leads to an asymptotic expansion
for (1.7).;The leading term of this asymptotic expansion then gives’ . 

rise to an invariantly defined principal symbol of A,- being a density

of order 1/2 with values in a complex line bundle on 11, called the

Maslov line bun«fu L . Here "invariant" means that the principal symbol
at (x 0 yt 0 )E A does not depenq on the choice of the "t,est phase function" :

o o ,
I
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with I intersects A’ 
(P 
transversally

Suppose now that A is an arbitrary closed conic Lagrangian
manifold ;in Then a global Fourier integral Jk of order n, defi-

ned by is a locally finite sum of distribution A. as in (1.3) with
J

(ps=p. , , a==a. 1 the A 

Tj 
forming a locally finite system of open cones

J J Vj t
J i

in A and with a E S’. (The number in the growth
: J p J .

order is necessary to get an order m of A which is independent of the
number of frequency variables used, and the number n/4 is introduced

in order to obtain additivity of the orders when Fourier integral ope-

rators, to be defined later, are multiplied). The mapping :

which assigns to A its principal symbol (defined as ’the locally finite
i 1; 

’

sum of the principal symbols of the A.) is an isomorphism. This is of
!’ i B 

course only useful when p&#x3E;1/2. 
° i’
. If X and Y are manifolds and K is a distribution in Xx Y, then
’ 

It

defines a continuous linear mapping : Conversely
o 

’

Schwartz’s kernel theorem states that every continuous linear mapping
A : -~c0~ (X) can be obtained in this way. The distribution K is

called the distribution kernel KA of the operator A. The formulation is

automatically coordinate invariant if all functions, resp. distributions
are taken, to be densities of order 1/2, as we shall do throughout in

this lecture. ,

,

! 

From the calculus of wave front sets it follows that if

WF(K ) does not contain points of the form (Xl§l Y, 0).’ 0 or
then A can be extended to a continuous linear mapping



XXVII.6

and

Here have

identified with and regarded WE’(K.) as a relation
&#x3E; 

’ 

A
between and T(Y) in (1.1) acting on T9F(Y) . A’,can be extended to

a continuous linear mapping : -0 ’ (Y) - 1? ( X) still satisfying (1.10)

if in addition the projection of supp KA onto X is at’proper mapping.
1

il
:Now a Fourier integral operator of order m ef ined by the

closed conic Lagrangian submanifold A of is an opera-

tor A : such that K E ° That A is Lagrangian
0 A p 

means that vanishes on A. ° 

Because of ( l ~ l I ) and (1.8) we prefer to work with the relation C=A"i ’)

and we get, that c~ T4~ (X) vanishes on C. If C is the graph of a

mapping Ti’,-(Y) T4,-(X) then this condition means that
~~T~Y~ ~~T~~v~ ~ that is ~ is a canonical transformation :
T4~ (Y) , T",- (~X) - 

’

Because C is conic., ~ is homogeneous of degree 1.

For a general conic Lagrangian manifold A, the relation C therefore

will be called a homogeneous canonical relation to T~(X).

The operator A will be called a Fourier integral operator of order m
defined by the canonical relation C, notation AE I (X?Y y C).

0 1

Theorem 1.1 : : Let CI and C2 be homogeneous canonical relations from
to and from to respectively. Assume that

C l x C 2 intersects the ’ diagonal in transver-

sally and that the projection from the intersection to x T-,,(Z)

is proper? thus giving a homogeneous canonical relation C, oc 2 from
T’" ( Z ) t.o T(X). c 

&#x3E;If A1 E ( X: Y o Ci) &#x3E; An E m (Yg Z ; C ) . and .«’the " pr°J e ct i °n °t°and ’the projection to
" 1 p -*- Q ,

x x Z of the intersection of supp K A 1 x supp KA 
2 
with the diagonal in

. 1 2 ,
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xxYxYxZ is proper, then A1 0 A 2 E C 2 and the princi-
-L - p -L 

.

pal symbol of A o A 2 is equal to the product of the principal symbols

A 1 and A28 
,

Here the last sentence means that if a = C ,
y then there is a bilinear mapping 

C. 1 E the fiber at a. of the line bundle over 9 , i 1, 21

0 1 x 0’2 E the fiber of Over C 1 0 C 2 °
This bilinear mapping is canonically defined in terms,of C 1 and Cp .
Then the principal symbol of A 0 A2 at is equal to the finite

S’l’ (j) - (j) Wh (j) 
2 

(j) . th SYb°lS °fsum 9 where and 2 are the principal symbols of
J ; "

A 1 and A 2 At the finitely many such
2013 

B 
J J J J

that 
" 

(

If C = identity from to T*(X)BO, then I(X,X;C) = LX=’ 

~ P P
space of pseudo-differential operators of order m or ~. There is a

standard trivialisation of the line bundle ov 1 rthe identity,

leading to an identification of the principal symbol with the classical

principal part of the symbol of a pseudo-differential! operator. If

and then the principal symbol of AoB at
p , p

(X,§,Y,7) E C is equal to the ordinary product of the principal symbol

of A at (x,~) (a complex number) and the principal symbol of B at

.,
’ 

j

§ 2. OPERATORS WITH REAL PRINCIPAL SYMBOL 

In this section we give a sketch of the results obtained in

[1] for operators with a real principal symbol being

a homogeneous COO function of degree m on We assume that the

Hami lton field is not tangent

to the con’e axis when p(x, ) = 0, that is not d 
F p(x, ) 

= 0 and d p(x, ): I x
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is a multiple of §. In particular dp~ 0 when p= 0, so p= 0 defines

a C~ conic submanifold N of of codimension 1. The vector field

H 
p 

is tangent to N and its solution curves in N are calles the bicharac-

teristic strips for the operator P..’

Because we only shall consider results which are invariant
2

under multiplication by an elliptic pseudo-differential operator, we

may change to q = ap where a/0 is some homogeneous ci function. Because
i

p=0q==0 and H =aH onp=0we see that the same "assumptions are
q P ,j

satisfied by q. Taking a homogeneous of degree 1-m w4 therefore see

that we may assume m= 1. ~
1I .

The condition that H 
p 

is not tangent to the cone axis at

(x 0 0 ig necessary and sufficient for the existence 
:1 

(in a conic neigh-

borhood of (x oE )) of a canonical transformation
, 0 0

I

from to such that X is homogeneous of degree 1 and

ij

lllhis follows from classical Jacobi theory i~ j: the conditions

for X 9 x. 
. ,J J i J i I K

of degree ,° 0 and 1 " respectively. ((f,g) = H f g denotes the classical

Poisson brackets). These first order differential equations can re-

currently be solved by solving a suitable Cauchy problem. In order to

obtain the; desired homogeneity we need that the initial manifold is

conic and because H 
p 
must be transversal to the initial manifold say

for the 0, we see the transversa-

lity condition is used. /j

So if A E with invertible principal symbol near
then where

has principal symbol equal to En = principall symbol of
(This is the idea of Egorov) . By recurren’tly solving

li f
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equations.of the form

for the principal symbols of we obtain elliptic opera-

B1+ ,..EL 0 (Rn) such that QB-B n =0

(* means equality modulo an integral operator with C kernel).
Here r E SO is the principal symbol of R=Q-D . It follows that

J n j

so ;. 1
i :

, It

if C==AB. The formula (2.2) expresses that not only the principal part,

but the whole operator can be transformed to the simple operator D .

(Locally iri 14F(X)N0 and modulo integral operators with C~ kernel of cour-

se). /
Ii

!For the operator D we have the forward and backward solution

E I 0 5(x,-y .H(x -y ) and E = -x n Here iI is the
n n n n n n

Heaviside function, H(t) # 1 for t&#x3E;O and H(t)=0 We have

used the notation 1 for points in nn. It is
j’ n 

°’ 

n &#x3E;

easy to show that if 9 before on a bicharacte-
° 3 . 

Ii 

’

ristic strip of D n then before (x,t) on the bicharacteris-° 

" 

n n (s) -" ,I 
’

tic strip, Similarly with "before" replaced by "after" for E n Here for
, d n

any distribution u, UEH (s) at (x, 0161) E T.)(X)BO means that 

with u 1 and (x~) From this property E~ we obtain the
following regularity theorem.

Theorem 2:1 : : Let PE have a real and homogeneous principal

symbol. If u E and Pu=f then ,

(i) if f E H(s) at x,§&#x3E;, x,§&#x3E; £N, then u Els+m) at (x,).

(ii) if in the open cone and u E It) at 
then on the whole interval of the icharacteristic

strip through (xy§) which is contained inr. )
i
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 .

) follows from the usual elliptic theory
For = ii) note that we may assume that m = 1. Cut off to some

u’ = Au, Ai: L0(X) such that WF(u’ ) cr ,r a conic neighborhood in r of
o 0 

(x, ) where the transformation to D can be carried 0ut, let v be the
. t t4

distribution in Rn corresponding to u’ a Suppose that is the bi-

characteristic strip with (0) (x,g) and let A be such that
, I

The E H for all I  c. Transforming to v, applying E and then
transforming back this impties u’ for all 1:  E. ’In this way we

see that 1; E H(t) after (x,0160) on the bicharacteristic:,strip through

(x, For the other side apply E . "j 
n 

j»

t .

Note that we may allow in theorem 2.1 thatH 
p 

is tangent
to the cone axis because on conic bicharacteristic sirips (ii) is

trivial. 
’ 

J,

Corollary 2.2 : Same assumptions as in Th. 2.1 but assume in addition

that no complete bicharacteristic curve (= projection into X if a bicha-

racteristic strip) is contained in a compact subset K of X. Then

(ii) the space is a finite+dimensional sub-

space of 0 (K) orthogonal to !

(iii) if g~H. ~(X)~ resp. and g is orthogohal to N(K) then

one can (X) resp. such that Pv=g in a

neighborhood of K. )/
Proof : (i) follows directly from Theorem 2.1 and tii)y (iii) follow

from (i) ~y standard functional analysis. Note that the bicharacteris-
tic strips for P are the antipodals of the bicharacteristic strips
for P, solwe obtain a semi-global existence theorem for P under the
same conditions.



XXVII.11

The E also can be used to construct parametrics for P. Note
J n

that E -E = 1 5(x,-vl) which is a Fourier integral operator with
n n 

n-I (n-
phase function H and amplitude (2?r) i. It

follows that

is the bicharacteristic relation for D 
n 

y that is (x) (x)- n n

and are on the same bicharacteristic strip It follows

that is the union of the diagonal in 

and the part of C where x ;¿v &#x3E; and C) ifand the part of C11 where 5 and I (]R R . cn) if
" 

n nn n

x )0) vanishes near the diagonal.

,Cutting off the E in a suitable way, transforming the back
n 

to the manifold X, adding these "local parametrices" for P along the

diagonal of NxN and finally also adding the local

parametrices obtained outside N by the classical elliptic theory, we

obtaiii operators %°/ such that : :

Her Cl denotes ihe relation in x defined by

(x,,) and are on the same bicharacteristic strip, sufficiently
close to eacl1 other. It follows that this "local bicharacteristic rela-

I

tion" is automatically a homogeneous canonical relation~ v denotes an

open and closed subset of C+ 
1 

the part of C where (Y, 17) E v’ 

. 
B} Ioc loc " ’

is after (Y"11;) on the bicharacteristic strip on (Y,7) £ NEv
and is before on the bicharacteristic strip. is the

complement of C+ 
1 

in  

’ 

v i oc
’ loc
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If we want to get genuine paramptrices forL1 P we must get
rid of the term R~. For this we need two lemmas. !’

! v

Lemma 2.3. : Let C denote the bicharacteristic relation defined by :

(x, ~) a, d, are on the same bicharacteristic strip. Then the

following! conditions are equivalent 
,,

a) There;.are no periodic bicharacteristic strips and C is a closed

submanifold of (T4,’(X) x Ti~(X))BO. 
’

b) 1) Nb complete bicharacteristic curve is contained in a compact

subset of X and 
" t 1

2) For every compact KdX there exists a compact, K’ c:X such that
1::

every, interval on a bicharacteristic strip with, 4nd points in K is
 :

contained in KI 
’ 

X

c) There,,exists a conic manifold N , an open neighborhood N of N x(ol. 0 1 0

in N x It which is convex in the H-direction y and a diffeomorphism

9 homogeneous of degree 1, which carries H .into the operator

b t . Here points in No x R are denoted by q = ap, a/0
0 0 

0

homogoneous of degree 1-m. .
The manif§ld X will be called pseu40-conyex with resoect to the oper,gE-The manifold X will be called pseudo-convex with respect to the opera-
tor P if b) is satisfied, i

Lemma 2,4 ’ : Let C be a homogeneous canonical B from T%F(Y)N0Lemma 2.4 : Let C be a homogeneous canonical relation from 

to T4,’(X)BQ, such that p vanishes on the projection oi C into 

If A E I4(X,Y ; C) with principal symbol a, then with
p p

principals symbol equal to 
.

Here p, c, are the pull-backs to of P, C by the projec-

tion on the first factor, is the so-called subprinci-

pal symbol of P and finally Z denotes Lie-derivative.
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Theorem 2.5 : : Let X be pseudo-convex for P. Then one can find E such
2013201320132013201320132013201320132013201320132013201320132013r- ~ v

that 
I 

:B

E* are automatically also left 
parametjices 

and any rightThe E are automatically also left and any right

or left parametrix satisfying (2.10) must be equal to Ei mod Coo. The

parametrices E. are called the distinguished parametrices, because

there exist many other parametrices for P. For these qdestions and many
other details, see [1], 6.5, 6.6. 

,j
finally we mention as another application of Lemma 2.4 the

following converse of the regularity Theorem 2.1. "

Theorem 2.!6 : Let Ic:R be an open interval and let y: 
be an interval on a bicharacteristic strip which doeil not return to the

same cone axis. Denote by r the closed conic hull of y(I) and by

r" the limit points = n(closed conic hull of I 
0 

compact in I).
j 

’ 

0 r. o

For any sE]R one can then find such that
" i_

(i) UE H( t) (X) for all ts «
_

(ii) wF( n) CI r ’ 
,

(iii) = rBrv. 
’

Here WFs&#x3E;U&#x3E; is defined by
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3. A CAUCHY-TYPE PROBLEM 
r

If X is a submanifold of X of codimension,k. then the res-
t 0 1, 

,

triction operator p : is a Fourier integral operator of

class X; R 0 ), 9 where 
0 

:. I

To see this it suffices to consider the case X* n J! X andTo see this it suffices to consider the case 
v 

==JR and

then we have 
’

From the calculus of wave front sets it follows that p can

be continuously extended to the distributions u with
1 1;

So in particular, if X 
o 
has codimension 1 and P has homogeneous

real principal symbol then p can be continuously extended to
all distribution solutions u of 1 if X is non-characteris-

. 

’ 

0 .* 
-

tic with respect to P, that is if p(x ,§) = 0, i 1 0 implies

are given we want to construct
l

operators such that

where I = identity operator on X 0 øo

In this case we have for any choice of f E"6’ (X 0
that Pu = 0,., pQjusfj for all j = 1, .,~t if we take So the

operators E. solve a Cauchy-type problem modulo Coo. ~ We try
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, ,

for a suitable homogeneous canonical relation C from )B0 to
; o o

T3X)Bo. (Also the order should be filled in later)
,, t,

, 
’

In view of (3.4) we demand that the pro jection of C 
0 

on the
i 

, 0

first factor T4(X)BO is contained in the set N of zeros of p. Note

that this implies that C 
0 

is invariant under H- , of p to
p "

T(X)BOx T(X )B0. 
o p 

/ 
, o

In view of 
. 

3, 5) we need that R x C 
o 

intersects the diagonal in
; 0 0 -1- - 

i i 
,

transversally and that Roe = diagonal
(See Theorem 1.1) , The last property means that

and that every (x09E0)
oo

occurs in this way. 
I

1.

This leads to the definition of C 
0 

as the set of all
. 

o 
.

(Y71X 0 0 where (y,,,I,) is the bicharacteristic strip through a point

Theorem ,1 ; : Let X 
o 

be a connected submanifold of codimension 1,
o 1

n:t3. Suppose that X is non- characteristic for P and that every bi-, o

characteristic curve intersects X o at most once and transcersally.
Assume finally that

(i) no bicharacteristic curve starting on Xo stays, is a compact
,j o

subse t of ’X and

( ii) fort’every compact Ko KcX there is a compact such that
. 0 0 .

if ’Y is an , interval on a bicharacteristic curve with, one end point in

K 
o 

and th~ othe r in K, then y c K’ . 

‘ Then the number 4 of solutions k (x of (3 , 7) is
k o 0;

fi11ite and 
‘ 

does not depend on (x , o 0 ’; f T(X )B0, the’ 
- 

relation C defined., 

o o - o 
. 

o

above is a homogeneous canonical relation from T’O’.(X o ))0 to 
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R x C intersects the diagonal in x x x T4F (X ) trans-
o 0 f. o . 0

versally and Roe = identity in 
(t

o 0 
’ 

0 1,

,Finally, if
«

has homogeneous principal

symba 1 such that I- ..J ,

I

( 3 .8 the matrix
~

L is non-singular for every

then we can f ind operators Ek sati sfying (3.4), (3.5)~ (3.6).

Proof : If P(x 0 = 0, then the condition that the projection into X

of the bic’haracteristic strip through intersects Xo transversal-
ly means that

. 

This means that the zeros t of restricted to the
line Tx 0 simple. 

~ 

j,

So the zeros are isolated and their number 4 is finite because other-

wise we could find a sequence j) such that p(x 0 j) 0,

;, 1

But this leads to = = 

x 
(X 0 

= 0 contradiction
I 

o 
- 

x 0 
i

o

with the assumption tha,t X o is non-characteristic. From the implicit
function theorem it follows that p is locally constant on and

1: 0

because T*(X0)BO is connected it follows that is constant. (If n = 2
" 

o

we must add the condition that does not depend on the component of

T-)f. (X ) B 0) o’ .: 

,

o 
, 

’

’ 

f 
I

i 

’

All the asertions concerning Co now are readily verified.
According to Lemma 2.4 the equation (3.4) leads to the equation

for the principal symbol ek of E , whereas (3.3) leads in view of
, k k 

° 

.
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-t I

I 
t

Theorem 1.1 to the algebraic equations

I

Here r denotes the principal symbol of p. j

Because of (3.8) these equations can uniquely be solyed and because

is transversal to H- we can treat the solutions
D ~
1.

as. ’ initial values for ek in the equation (3.9)

I 

Taking with this principal symbol we obtain that

Witch a recurrent procedure of the usual type we can find

such that

( 1 " i

so taking 

I 

for E an asymptotic sum of E(1) the proof is ready.

This theorem can be considered as an interpretation of the

results of Lax ~~.2 J and Ludwig [13] for strictly hyperbolic differential

operators. For such operators the usual assumption i,s :

(3.1) for each t, is non-characteristic with
) o u o

transversal bicharacteristique curves.

It I s e as I ly se en that ( 3 , I I) imp lk s the cond I ti on s 

I 

f The o rem 3 , I ,It is. easily seen that (3.11) implies the conditions of Theorem 3.1.

For the operators Q. one can take Di-1 , D =differentiation in a normal
J n n

direction, of X . In this case (3.8) follows from the;study of Vander-
o

monde determinant. These are the usual Cauchy-data. For strictly hyper
,

bolic differential operators we have u=m, but for general pseudo-
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. J

differential operators we cannot expect any relation between m and p,

1

Note that in the case (3.11) the operators 0 Ek are Fourier

integral O,perators (X (X ) defined by the "relationa 0 t
such that (x’, and (x ..0 9) are on the

0 ,,o

same bicháxacteristic strip and1

j

; . ,

In the case of the wave operator, C is the normal bundle of the rela-

tion and the relation !I 
I

o 0 1.

I. t !, i

can be considered as a refined form of the (weak) Huygens principle.

The example of the Tricomi operator
4

shows

‘i

that the conditions of The o rem 3 . I are much we ake r than ( 3 . I 1 ) . The

bicharacteristic curves are sketched below. The dotte,d line is a possi-
ble submanifold Xo satisfying the hypotheses of Theorem 3 .1, but it is

-f o &#x3E;

obvious that (3.11) cannot be satisfied. Every bicharacteristic curve

apart fro y intersects Xo once and transversally. The solutions of

PuE Cco with sing supp Il = y, which exist according to theorem 2. 7, are

precisely those non-smooth for which the Cauc;hy data, on Xo are smooth.

. ; 1
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i

§ 4. Operators with complex principal symbols
,

As already remarked in the introduction, Egorov [3] and

Nirenberg.2Trèves [15] used Fourier integral operators; to simplify their
study of subelliptic and local solvability for operators with essential-
ly non-real principal symbols. See also H8rmander [1], Prop. 3.3.5.

j ;

In this section I want to describe two cases which are in
«, B

some sense opposite to each other, and where the operator can be redu-

ced to a very special one. ~

Case I : ’

.’. ,

(4.2) / H Re p and H Im p are linearly independent and the
° 

cone direction is not contaiend in their span when
. 1:

p = 0 v) B p = 0, 
,

I

:: t’

(4,I) is the necessary local condition,Condition (4.1) is the necessary local solvability condition

for both P and tP of H8rmander [1], , ch. 6 (see H8rmander [8] for the
L

case of pseudo-differential operators) . Because of (4.2) also d Re p

and d Im p are linearly independent at p = 0, ~ so p = 0 def ines a conic C~

submanifold N of of codimension 2. Because of 
~ 
(4.1), H Re p and

H Im p are tangent to N and span an integrable tangent system, so they
define a 2-dimensional foliation of N. In analogy with the real case

the leafs of this foliation are called the bicharacteristic stri s for

the operator P. 
’

} . ’

, .
1 .

Again we reduce first to the case m = 1 by multiplying with

an elliptic factor of degree 1-m. We now can try to find a homogeneous

canonical ,transformation X transforming Re p , 
and Imp to F- n

It turns out that this is possible if and only if we have instead of
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The necessity of (4.3) is obvious : we have 1§_i 11 l = 0 and becausen- , ri
Poisson brackets are preserved by canonical transformations we must

have Imp)==0. f
The follo‘wing lemma shows that (4.3) can be obtained if we multiply
with a suitable elliptic factor :

1

Lemma 4.1 : : Suppose that and that (4.1) , (4.2) are valid in a

conic neighborhood of (x ’0160 ). Then we can find a homogeneous C
, 

o o 
- 

:

function /I of degree 0, such that a/0 and (q?q)=0 on a canonic neigh-
borhood o) (x ,§ ) if q = ap, I)o o }

 t

I? ,I t

, Using this we can ultimately transf orm P by Fourier integral

operators to the Cauchy-Riemann operator ’ locally in 
This leads to analogue s of al l the theorems wich we have in the real

case. (But with important differences ! I See [1J, ch. 7).

I

Case II :

h

Here the situation is geometrically completely different.

It follows from (4.4) that lI and 11 are linearly independent,
11 e p im p ’?

so again p==0 is a submanifold N of condimension 2. But this time the

plane spanned by H Re p and HI mp is transversal to the tangent space
of p= 0. Because p= 0 is conic this also implies that the cone direc-

tion is not contained in the span of IIRe p and HIm p 
. 

at p = o.

Now we have the following analogue of Lemma 4.1.

i 
.

Lemma 4.2 : Suppose that (4.4) is valid and that m 1. Then there is

a conic neighborhood U of N and a homogeneous COO function a of degree 0,

such that’a/0 and (q, (q, -q)) = 0 on U, if q=ap.

! An important difference with Lemma 4.1 is that here the cons-

tructioniis global on a neighborhood of N (in Lemma ,4.1 the construction
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can only made global if certain geometric conditions, on the bicharac-

teristic foliation of N are satisfied). 6 The reason is that the vector

field H 
p 
’occuring in the proof is transversal to N. ;P , ;

. Now write P= p iP2 with p,, P2 real. Then the condition

(p?(p?p))=0 implies that

By a local homogeneous canonical transformation we can make

Pl -= 0160 l’ s2 !I-’ -~2 , r2 = x,’ ° So we can transform P locally in the cotangent

bundle to an operator with principal symbol equal to
I

! 

(Compare this procedure with 
¡

Such operators are extensively studied and SjBst.rand (17J, [18J, exten-

ding work. of Egorov and Kondratev F5] on the obliquederivative problem,
has given explicit parametrices .

for matrices of operators

His results are valid for general operators P satisfying (4.4) and the

additional assumption that the projection of N into X has constant rank.i
I
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Writing and rzo tor the projection N± in X,
then the operators R ~ resp. R are variants of the restriction ope-
rator : :, 

"

/

resp. the adjoint of the restriction operator
I

)j8strand’s constructions together with Lemma 4.2 lead in

the general case (that is without the rank condition);fto global opera-
tors E, F j F such that -;

..I

however, we are still working on this to get the best, possible H(s)
continuity’ properties for E, F , F . We also think F ~ F should

be Fourier integral operators, eventually of a somewhat more general
type than those described in section 1. " 

¡

Note that (4.8) implies the sequence ~

is exact.

,It is hoped that in the future results of similar form can

also be obtained for more general overdetermined sysipms. In the cate-

gory of hyperfunctions Sato and his pupils seem to have far-reaching
results in this direction (see [16]). !

, 

,

,i r
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