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XXVII.1

§ 0. INTRODUCTION

?The calculus of Fourier integral operators, which can be tra-
ced back to the work of Lax [11], Ludwig [13], Maslov [14] and was
brought into a final form by Hbrmander [ 9 ], has beeii applied in at

p
least thrée different forms.
Firstly we have the idea of Egorov [3] to use Fourier inte-

gral operdtors as similarty transformations : if A is a Fourier inte-

gral operator défined by a canonical transformation * and if P, Q are
pseudo~differential operators with principal symbols p, q respectively,
then p=qey if PA=AQ. In this way the operator P can be transformed
(at least' locally in the cotangent bundle) to an opefator which has

a principal symbol in some standard form. Transforming back the results
for the s%mple operator Q, one can in this way obtaiq results for P.
This procédure has been used by Egorov [4, 6] and Nirenberg-Tréves [15]
in the study of subellipticity and local solvability, for general opera-
tors P wiph complex principal symbol p, and by Duistermaat and H8rman-
der [1] in the special case that p is real or {p,p}=0 when p=0 for
(semi-Yghbbal regularity and existence theorems. See also the review
article of HYrmander [10] for examples of the idea of Egorov. Finally
work of 858strand [17, 18] and Sato C. S. [16] gives hope that the same
procedure will be very fruitful in the study of general overdetermined
systems.

IWhereas some results obtained by Egorov's procedure also can
be proved‘without using Fourier integral operators (see for instance
Duistermaat [2]), this no longer holds when the solution operators
(partly) é{g Fourier integral operators defined by a canonical relation
differnt from the identity in T#(X)\0, making them very much different
from pseudo-differential operators. For instance in the case of the
Cauchy problem for strictly hyperbolic operators a characterization of
the solution operators as certain Fourier integral operators was alrea-
dy given by Lax [11] and Ludwig [13)], and Maslov [14] applied this to
the Schrddinger equation as h- 0, The global parametrices E found by

t
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Duistermaat-HYrmander [271 for more general operators P also contain
such a part. (In fact they used Egorov's idea in the construction of E).

Finally it may happen that Fourier integral operators already

occur in the formulation of the problem at hand, Forfﬁnstance if XO
is a submanifold of X, then the restriction operator : Cm(X)—oCm(Xo)
is a Fourier integral operator defined by the normal '‘bundle of the dia-

gonal By wx c:XOx.X. So interior boundary value problems can be formu-

lated in térms of Fourier integral operators., As an anmple we shall
treat a siﬁple Cauchy-type problem from this point of view, Hopefully
more complicated mixed boundery value problems can be understood better
in this way. One can even imagine that in the future entlrely new in=-
teresting problems will be formulated in terms of Fourler integral

operators,

§ 1. REVIEW OF THE CALCULUS i

"

Before giving a more detailed description of the applications
mentioned above we give a very brief review of the calculus of Fourier

integral operators.

Let u be a distribution in X=R". Accordiﬂg the Pauley-Wiener
theorem we. have xonging suppu if and only if v/}l(g) =,0(|§‘-N) for
|e| =, for all N and for some vEC‘: with v(xo) #0. In other words :

v
(1.1) <u, e ITNET 0 > 2 04T for taw

ty 1

uniformly on |g] =1, for all N, This means that u is #ested by rapidly

- > i
1t<x,g , and the dsymptotic behaviour

oscillating test functions v(x) e
is investigated as the frequency t goes to infinity. Localizing this
with respect to the normal £ on the wave fronts <x,g >= constant, this

leads to the following definition of the wave front set WF(u) of the

distribution u
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For each Sxo.go), §05£0 we have (Xo,go)QIWF(u)a (1.1) is valid for some
Ve C: with’v(xo)# 0 and uniformly for all £ in a neighborhood of goo

“If u is a distribution as a manifold X then' WF(u) c T#(X)\0
can be invariantly defined by (xo,go)¢‘WF(u)cs ;

']
=N !
vix) > = 0(t I\') , for t=w, for all N,

N

(1.2) | <u,e—it¢(x)

[}

Here v € C:(X)y v(xo) £0, dcb(xo)

must be locally uniform in the additional parameters on which ¢ may

€o (¢ is real). Moreover the estimates

depend.

In terms of pseudo-differential operators an equivalent cha-
racterization can be given by : (xo,go) ¢ WF(u) & Aue C* for some
Ae 1%(X) with a principal symbol a(x,E) which is invertible in a conic

neighborhood of (xo,go).

.Because sing supp u=nx(WF(u)) if n is the projection : T*(X) - X,

WF(u) givés more information than sing suppu, and inifact (1.1), (1.2)

can be regarded as a spectral analysis of the singularities of u.

A Fourier integral distribution is a distribution A which 1«

defined by an integral of the form

¢
co

(1.3) <A,v> = “‘ei‘f’(x’e) a(x,0) v(x) dxds , veC,

Here 9==(?1’°°°’9n) are auxiliary wvariables, called fhe frequency varia-

bles, The phase function ¢ is supposed to be a real c® function on

X % (BN\OY, homogeneous of degree 1 in g, Moreover it is assumed that

¢ is regular, that is d(x 8) decp has maximal rank N{if de p=0. This
9

implies that

(1.4) C, = 1(1,0) €Xx (RN \0) : d, 0(x,8) = 0}

in an n-dimensional conic C° submanifold of X x ng\O and that the mapping



XXVII.4 :
(1.5) v Ccpa(x,e)r-o(x,dxq)(x,e))GT*(X)\O

is an immérsion : CQ-‘T*(X)\O. The image is called‘p and is an
n-dimensional conic C® submanifold of T*#(X)\0. It appéars moreover
that A is Lagrangian, that is i#*g=0 if ¢ is the canLnical 2-form on
T#(X) and i denotes the identity : A -=TH(ONO.

Conversely it can be shown that everyconic Lagrangian submanifold A

of T*(X)\d is locally equal to A¢ for some regular phase function ¢.

For the amplitude function a we assume that’' it belongs to

the symbollclass Sﬁ(Xx BN),()<;>s1, that is we have estimates

1

.o L ¥ acxe] soc1s [o)ykmelelr(e) [P

The integral (1.2), which needs not to be asbsolutelx‘convergent, can
be interpreted as the limit of the same integrals with a replaced by
aj y a, r?pidly decreasing for lel-»w for each j, add finally aj-ea
in Sg'(Xx BN5 for all u'>p as j-». An equivalent interpretation can

be given using partial integrations.

ﬁow applying the method of stationnary phase to the integral

I

(1.7 : <p, e O ooy o
one obtainﬁ immediately that

¢ ::
(1.8) WF(A) A, '

t

Moreover, if the graph (x,d¢( )) of dj¢ intersects AW transversally,
then the method of stationnary phase leads to an asymptotlc expansion
for (1.7).. The leading term of this asymptotlc expansion then gives

rise to an.invariantly defined principal symbol of A, being a density

of order 1/2 with values in a complex line bundle on A, called the
Maslov line bunde L . Here "invariant" means that the principal symbol

at (xo,go)E‘A does not depend on the choice of the "test phase function" ¢

1
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with (xo,§¢(x0))==(xo,go) and (x,d¢(x)) intersects A¢ transversally

at (xo,go?. )

' Suppose now that A is an arbitrary closed conic Lagrangian
manifold ,;in T#(X)\0. Then a global Fourier integral A of order n, defi-
ned by AV is a locally finite sum of distribution Aj': as in (1.3) with
(p=cpj y as= aJ. s the A ; forming a locally finite sys‘{tem of open cones
in A and with a, ¢ s‘;‘“‘/‘*‘ Ni/2 | (The number —NJ./&% in the growth
order is necessary to get an order m of A which is if}dependént'of the
number of frequency variables used, and the number n/4 is introduced
in order to obtain additivity of the orders when Fourier integral ope-
rators, to be defined later, are multiplied). The mapping

(1.9) 1‘;‘;()(, A)/I';‘”‘zp(x,/\) - s‘;* n/4

m+ n/4 +1-2p
(A0 /p® D) /S] (A0 @ L)
which assigns to A its principal symbol (defined as 'ibhe locally finite
sum of th;g principal symbols of the A.) is an isomor:phism. This is of
course only useful when p>1/2,

If X and Y are manifolds and K is a distribution in Xx Y, then
11

wl

(1.10) <Av,u> = <K, u®v>, u€C (X, veC (Y)
defines a continuous linear mapping : C:(Y) -+aD'(X) . Conversely

Schwartz's kernel theorem states that every continuous linear mapping
A C::(Y) —oD' (X) can be obtained in this way. The distribution K is
called the distribution kernel KA of the operator A, The formulation is
automatically coordinate invariant if all functions, resp. distributions

are taken to be densities of order 1/2, as we shall do throughout in

this 1le cﬁure .

" From the calculus of wave front sets it follows that if
WF(KA) does not contain points of the form (x,g,y,O),;, E#0 or
(x,0,y,M) T\#O, then A can be extended to a continupus linear mapping
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E1(Y) = c.ﬁ'i'(X) and !
(1.11) . WF(Au)CZWF'(KA) o WF{u)

Here WF! (K ) = {(x,E,y,-T) € T*(X) x T*(Y) ; (x,E,y,T) EWF(K )} We have
1dent1f1ed T#(Xx Y) with T#(X) x T#(Y) and regarded WP;'(K ) as a relation
between T-)f,(X) and T*#(Y), in (1.1) acting on T#(Y). A,can be extended to
a continuous linear mapping : D'(Y) - 9D (X) still satisfying (1.10)

if in addition the projection of supp KA onto X is asiproper mapping.
L

W
Now a Fourier integral operator of order m;idefined by the

closed conic Lagrangian submanifold A of T*(X)\OXT*('Y)\O is an opera-
tor A @ CO(Y) ~D'(X) such that K, € I:(Xx Y,A). That A is Lagrangian

means that c vanishes on A.

T (XxY) = 97w () @ T (1)

Because of (1.11) and (1.8) we prefer to work with the relation C=A",

and we get; that ¢ vanishes on C., If C is the graph of a

T#(X) ~ T*(Y)
mapping & # T#(Y) - T#(X) then this condition means that

¥ I () 59T
T3 (Y) — T# (X) .

Because C is conic, & is homogeneous of degree 1.

that 1s ¢ is a canonical transformation

For a general conic Lagrangian manifold A, the relation C therefore

will be called a homogeneous canonical relation from:lT*(Y) to T*(X).
The operator A will be called a Fourier integral operjator of order m

defined by the canonical relation C, notation A€ I:(Xj,Y; Cc).

Theorem 1.1 : Let 01 and 02 be homogeneous canonical relations from

T#(Y) to T#(X) and from T*(Z) te T*(Y) respectively. Assume that

C1 X 02 intersects the diagonal in T#(X) x T#(Y) x T#(Y) x T#(Z) transver-

sally and that the projection from the intersection to T#(X) x T#(Z)

is proper,'thus giving a homogeneous canonical relation C1 ° (32 from

T%(Z) to T#(X). ?

g
4
'

m m .
If Ale IDI(X,Y; Cl)' A2€I 2(Y Z3;C ), and ,the projection to

XxZ of the intersection of suppkK

A x supp K

1 A2

V\lth th'e diagonal in

H

A
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‘ m,+m

xXYxYxZ is proper, then A1 ° Aze I 1 2(X,Z 3 C1 ° 02) and the princi-
pal symbol of A1°A2 is equal to the product of the principal symbols
A1 and A2.

Here the last sentence means that if ay= (x‘,‘g,y,'ﬂ) € 01 )
a2==(y,n,z,C)E302 , then there is a bilinear mapping édl,dz)k»61X62 )
o4 € the fiber at a; of the line bundle {21/2®L over (f , 1i=1, 2,

0y %X dg € the fiber at a-(x,g,z,g)ec °C of 01/2®L overC oC2

1
This b111near mapping is canonically deflned in termsof C1 and C

Then the principal symbol of A1 °A2 at (x,8,2z,{) is equal to the finite
sum 7689 x 6l | where o gl d

3 1 2 1 2
Al and A2 at the finitely many points (x,g,yj,'nj) and (yj,’nj,z,C) such
that ‘

and are the principal symbols of

t

it

! (X,§,yj,'ﬂj)€Cl ’ (yj,'ﬂj,z,C)Gcz

If C=identity from T#(X)\0 to T*(X)\0, then ID(X yX;C) = L
space of pseudo differential operators of order m or X There is a
standard trivialisation of the line bundle 01/2®L ov?r the identity,
leading to an identification of the principal symbol with the classical
principal part of the symbol of a pseudo—differentialioperator. If
Ag¢ L:(X) and Be Im(X,Y; C) then the principal symbol of A B at
(x,€,y,M) €C is equal to the ordinary product of the principal symbol
of A at (x,8) (a complex number) and the principal symbol of B at

(x,E,y,M) .

§ 2. OPERATORS WITH REAL PRINCIPAL SYMBOL

In this section we give a sketch of the results obtained in
(1] for operators Pe¢ LI;(X), with a real principal symbol p(x,E), being

a homogeneous C> function of degree m on T#(X)\0. We hAssume that the

. . _ - 8p _ dp -
Hamilton field Hp(x,g) =73 Bg (x,€) ax T ix (x,8) g is not tangent

to the cone axis when p(x,E) =0, that is not dE p(x,€) =0 and dx p(x,§)
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is a multiple of g. In particular dp#0 when p=0, so p=0 defines
a C° conic submanifold N of T#(X)\0, of codimension 1, The vector field
H is tanéent to N and its solution curves in N are calles the bicharac-

teristic strips for the operator P. "

Because we only shall consider results whiéh are invariant
under multiplication by an elliptic pseudo—differential operator, we
may changé to q=ap where a# 0 is some homogeneous C“Z function. Because
p=0eq=0 and Hq—aH on p=0 we see that the same ’§assmnptions are

satisfied by q. Taking a homogeneous of degree 1-m wé= therefore see
i

'
il

that we may assume m= 1,
f‘
‘The condition that Hp is not tangent to the cone axis at
(xo,go) ig necessary and sufficient for the existence‘ (in a conic neigh-
borhood o:t:" (x09§0)) of a canonical transformation

Y

X H (Xy E) [ oad (Xl(xsg)g . nQXn(xpg)’ -::1(X9€) 9 5. .g:E;l(ng))

from T#(X) to T#*(R") such that ¥ is homogeneous of degree 1 and
:-%'l(x’§> = p;,(x'l E) .

i

This follows from classical Jacobi theory + the conditions
f X, =0, E,,2 1= =. =%.. . X. and ® h eneous
or x are J,Xk} , {""J,‘_k} 0, { J,Xk} ik ; aﬁn = homogeneo
of degree 0 and 1 respectively. ({f,g}:Hfg denotes the classical
Poisson br‘ackets). These first order differential equations can re-
currently be solved by solving a suitable Cauchy problem. In order to
obtain the desired homogeneity we need that the initial manifold is
conic and ‘because H must be transversal to the initial manifold say
for the equatlons {... ) k'} nk {':-“.__he?k'1=0, we see how the transversa-

lity condition is used. g

So if Aec 1°(X, R" 5%) with invertible principal symbol near

((xo,igo),)c(xo,ao)) then ((xoggo),x(xo,go)) g’WF'(PA-A)Q), where

Qe L (R™) _has principal symbol equal to §n= principa§l symbol of
H

Dn=% -5—3- (This is the 1dea of Egorov). By recurrer‘ftly solving

n . |§
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equations "of the form

' 3
2.1 ' Db.-b,r=258,¢e8 9
( ) : nJ J JE
for the px‘incipal symbols of Bje L J(R") we obtain an elliptic opera-
tor B=B +B1+ ... € L°(R" such that QB-B_ D =[Q,B] - B(Q-D ) =0
(= means equallty modulo an integral operator w1th C® kernel).

Here r¢€ s® is the principal symbol of R=Q - Dn . It follows that
(PA- AQ)Bk: PAB- ABD , so

(2.2) ((x58,) X(xﬂ,g))g{WFv(Pc-CDn) f

if C =AB. The formula (2.2) expresses that not only the principal part,
but the whole operator can be transformed to the simple operator D

(Locally m T#(X)\0 and modulo integral operators w1th C* kernel of cour-

se) .

For the operator D we have the forward ancllg backward solution
E;: i, 6(x"=y") . H(x 0 Yn ) and E = =-i6(x"'-y"). H(y -X ) Here H is the
Heaviside function, H(t) =1 for t>0 and H(t) =0 for t<0. We have
used the ﬁotation X = (x',xn), y = (v'gy ) for points in R" . It is
easy to show that 1f ve &' (WY , vEH( ) before (x,g)‘ on a bicharacte-
ristic strip of Dn , then EnvEH(S) before (x,€) onizthe bicharacteris-
tiec strip. Similarly with "before" replaced by "aftei‘" for F . Here for
any distribution u, u€ H(S) at (x,£) € T#(X)\0 means that u=u, 5
with uleH(s) and (x,E) Q’WF(uz). From this property E;x we obtain the

following regularity theorem.

+u

Theorem 2:1 : Let P¢ L (X) have a real and homogeneous principal

symbol. If ue D' (X) and Pu_f then .

(1) if feH

(s) at (x,8), (x,E) éN, then ueH( at (x,E).

s+m)
(1i) if feH(s) in the open cone TcT*(X)\0 and u¢ H(t)at (x,€) e NN T,
t < s+m-1, :,then ucf€ H(t) on the whole interval of the bicharacteristic

strip through (x,E) which is contained inT.
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; 1.
Prooef : (i) follows from the usual elliptic theory!
For (ii) note that we may assume that m=1. Cut off u to some
u' =Au, A€ L°(X) such that WF(u') CFO, TO a conic negghborhood in T of
(x,E) where the transformation to Dn can be carmned 01:1‘1;, let v be the
distribution in R" corresponding to u'. Suppose tha?; v(t) is the bi-
characteristic strip with y(0) = (x,g) and let A be such that

:yy(l‘) ¢ WF(A) for t<0
f_y(r) éWF(A-— I) for 0<t<e, ¢ small.

The Pu!' Eﬁ(t) for all 1 <e, Transforming to v, applying E; and then
transforming back this implies u' EH(t) for all 1 <e¢, . In this way we
see that ﬁeH(t) after (x,€) on the bicharacteristic strip through
(x,8). For the other side apply E:l !
. |
‘Note that we may allow in theorem 2.1 that:Hp is tangent
to the cone axis because on conic bicharacteristic strips (ii) is

trivial. ‘

L

Corollary 2.2 : Same assumptions as in Th, 2.1 but assume in addition

that no complete bicharacteristic curve (= projection into X if a bicha-

racteristic strip) is contained in a compact subset K of X. Then

(i) ue&"(K), Puc H =»ucH

_ (S) (s+m-1)

(ii) the space N(K) = {ue€'(X) ; Pu=0} is a finiterdimensional sub-
space of C::(K) orthogonal to tp @1 (%), N

(iii) if geH(G) (X), resp. g€ c®(X) and g is orthogohal to N(K) then
one can find ve¢ H(d+m~1)(X)’ resp. v¢ ¢®(X) such that th:g in a

neighborhood of K,

Proof : (i) follows directly from Theorem 2.1 and (ii), (iii) follow
from (i) by standard functional analysis. Note that the bicharacteris-
tic strips for tP are the antipodals of the bicharacteristic strips
for P, so we obtain a semi-global existence theorem for P under the

same conditions.
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. + o .
y The E; alsoe can be used to consiruct parametrics for P. Note

that E;-—E;::i . d(x"=y') which is a lourier integral operator with

phase function <x'-y',g >, ee‘m”'i' and amplitude (QK)—(H-l)i. It
follows that
+ - ~1/2, n n
(2.3) , En-vEne I (R, R ’Cn)’
whe re .
(2,4-) Cn = {(x,,,g,y‘,‘n) ;xv = y'" g‘ - ’n\” §n¢= ﬂn = 0'}

is the bicharacteristic relation for D, that is (x,E,y,M) €C = (x,E)

and (y,T) are on the same bicharacteristic strip for;Dn, It follows

that WP'(Eﬁ) is the union of the diagonal A% in T*(mﬂ)\0><T*(mP)\o

and the part of € where x Zy , and Xlﬁte I_l/z(lflimy; c ) if
n n - "n n n

¥ € c®(R" ¥ R") vanishes near the diagonal,

Cutting off the Ei in a suitable way, transforming the back
to the manifold X, adding these "local parametrices” for P along the
diagonal ¢N<:T%(X)\O><T*(X) of Nx N and finally also adding the local
parametrices obtained outside N by the classical elliptic theory, we

; o
obtain operators V§ such that

(2.5) PE* = 1 +RY,
Y v
- + = 1/2-m

2.6 TP = pe g oF , FroiT« X,X; €
(2.6) WP ey CF s Tl e (K500

. " -1 2. E &
(2,7 BF ¢ 177 T(X, X € ), WFT(RY)
(2.7 i K X5 €0, WITRY <€

Hex €, denotes the relation in T#(X)\0 x T*(X)\0 defined by

(x,8) and (y,M are on the same bicharacteristic strip, sufficiently
close to each other. 1t follows that this "local bicbaracteristic rela-

tion" i1s automatically a homogeneous canonical relation. v denotes an
+

. v, loc
and (x.3) is after (y,T) on the bicharacteristic strip on (v,T) € N\v

open and closed subset of N, C the part of C100 where (y,T) € v

and (x,€) is before (y,T) on the bicharacteristic strip. C;iloc is the
complement of C: loe 1P Cloc
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If we want to get genuine parametrices for P we must get

)\

rid of the term R? For this we need two lemmas.

Lemma 2.3 : Let C denote the bicharacteristic relation defined by
(xyE) a,di (y,M) are on the same bicharacteristic strip. Then the

s
following! conditions are equivalent

N

a) Therei are no periodic bicharacteristic strips and C is a closed
c® suimanifold of (T#(X) x T#(X))\O.

b») 1) No complete bicharacteristic curve is contalned in a compact

subset of X and v

‘

2) For every compact KcX there exists a compact K' X such that

every interval on a bicharacteristic strip with, énd points in K is

contalned in K' h
L}
H

¢) There:exists a conic manifold No’ an open neighborhood N1 of Nox{O]
in NOX R which is convex in the R-direction, and a diffeomorphism
N_.No, homogeneous of degree 1, which carries Hq.into the operator

2
ot °

homogéneous of degree 1-m.

Here points in Nox R are denoted by (yo,t), q=ap, a;éO

The manifSld X will be called pseudo-convex with respect to the opera-

tor P if b) is satisfied. v

Lemma 2,4 : Let C be a homogeneous canonical relat%on from T#(Y)\0
to T#(X)\0, such that p vanishes on the projection of C into T#(X)\O.
If Ac I‘;(x,Y; C) with principal symbol a, then PA¢ 1‘.:‘““()(,3(; C) with
principal' symbol equal to

(2.8) ' i %ka+?a.
P

Here P, T are the pull-backs to T#(X)\0 x T#(Y)\O of p, C by the projec-

m- 1

tion on the first factor, Cc S (T*(X)\0) is the so-called subprinci-

pal symbol of P and finally £ denotes Lie-derivative.
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it
Theorem 2.5 : Let X be pseudo-convex for P, Then one can find E: such
that '

(2.9) | PEtE I
(2.10) WFv(Ej) CA*UC'\'L;
(2.11) , E: - E; € 11/2“m(x,x; C) '

The Et are automatically also left parametfices and any right
or left parametrix satisfying (2.10) must be equal to Ei mod C”. The

parametrices Et are called the distinguished parametrices, because

there exist many other parametrices for P, For these qﬁ%stions and many
i .
other details, see [1], 6.5, 6.6,

Finally we mention as another application of Lemma 2.4 the

following converse of the regularity Theorem 2.1,

Theorem 2.5 : Let Ic R be an open interval and let vy : I - T#(X)\O0

be an interval on a bicharacteristic strip which doed not return to the
same cone axis. Denote by T the closed conic hull of v(I) and by

I'" the limit points = N{closed conic hull of Y(I\Io); I0 compact in T}.

For any s R one can then find ué€ o@'(X) such that

(i) ueHz(t)(X) for all t<s '

(ii) WF(Puw) T
(iii) WF(w)\y'=WF  (W\F" = T\I'".

Here WF (u) is defined by (x,§&) Q’WF(S)(u) s uc€ H(S) at (x,8)

(s)
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8§ 3. A CAUCHY-TYPE PROBLEM

.:If X0 is a submanifold of X of codimension k, then the res-
triction operator 0 : C®(X) = C (X ) is a Fourier inteéral operator of
class * k/n (X X3 R ), where ,

o

(3.1 ©OBy = {(xo’go’x’g) PX, =% 8, = C"T (71( )}
Lk} ;:
To see th:i!s it suffices to consider the case X= R ,‘: X =R and

then we ha;'ve
(3.2) Gw(x) = (2m) " [fe ° u(y) dydn .

::From the calculus of wave front sets it follows that p can
be continuﬁously extended to the distributions u with.
(3.3) ‘ (xo,g) ¢ WF(u) whenever x, €X, gITx (x) = 0

° ‘

So in particular, if X has codimension 1 and P has homogeneous
real prlnclpal symbol p(x,E), then p can be contlnuously extended to
all distribution solutions u of Pu= feC (xX), if X 1s non-characteris-

tic with respect to P, that is if p(x »E) =0, E£0 1mp11es
ST (x y 0.

m.
If QjeL ’](X), j=1,...u, are given we wanf{ to construct

operators Ek : 3‘(X0) D' (X), k=1,...,1 such that

1t}
o

(3.4) ‘ PEk |

(3.5) ij Ek = 6jk , where I = identity operator on Xo

in this case we have for any choice of f.ea'(X ), j=1,...,u
that Pu= 0, ij'U.’:E fj for all j=1,...,u 1f we take u= E Kk k So the

operators ‘Ek solve a Cauchy-type problem modulo c®, We try

\
i
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-m, -1/4
(3.6) E €l (X,XO; Co)

for a suiégble homogeneous canonical relation Co from T*(XO)\O to
T#(X)\0. (Also the order should be filled in later).,

:In view of (3.4) we demand that the projecﬁion of Co on the
first factor T#(X)\0 is contained in the set N of zeros of p. Note
that this implies that C is invariant under HS s §=ipu11—back of p to
T*(X)\O)(T*(X O\O.
In view of (3.5) we need thatiR X C intersects the ¢1agona1 in
T*(X ) x T#(X) x T*(X) x T*(X ) transversally and that R ° C = diagonal
in T*(XO)\O><T*(X0)\0. (See Theorem 1.1). The last pyoperty means that
(x,g,xo,so.) eCo, ngoax—_-xo and ng (Xo) =€ and that every (xO,EO)

0
occurs in ‘this way.
g

‘'This leads to the definition of C0 as the set of all
(y,n,xo,go) where (y,T) is the bicharacteristic strip through a point
(xo,g) with

(3.7 p(xo,g) = 0 and gl = §0 .
(X)) !
0o ©
Theorem 3.1 : let X be a connected submanifold of’X of codimension 1,

n=3. Suppose that X is non-characteristic for P and that every bi-
characteristic curve intersects X0 at most once and transcersally,

Assume finally that

(i) no bicharacteristic curve starting on Xo stays is a compact

subset oftX and

(ii) for"every compact Koc:Xo, KcX there is a compact K' «X such that
if v is an interval on a bicharacteristic curve with one end point in

K and the other in K, then ycK'.

Then the number p of solutions Q::gk(x ,go) of (3.7) is
i
finite and does not depend on (x o’%o € T*(X )\0 the' relation C0 defined

above is a homogeneous canonical rel,t1on from T¥(Xd)\0 to T#(X)\O0,
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R xC_ 1ntersects the diagonal in T*(X )><T*(X\><T*(X)><T*(X ) trans-
versally and R ° Co identity in T*(Xo)\O. !

: m, :

« Finally, if Qje L J(X), j=1,...,4 has homogeneous principal
symbol qj{x,g) such that ‘
, ;

(3.8) the matrix q (x ,gk(xo,goﬁ, Jok=1,...,n is non-éingular for every
(x ,g ) € T*(X SN0, "
it

then we can find operators E, satisfying (3.4), (3.5), (3.6).

k

Proof ’If p(xo,g)==0, then the condition that the projection into X
of the biqharacteristic strip through (xo,g) intersects X0 transversal-

1 hat d T (X ’ d 0.
y means 2 at d, P(xo’g) ¢ X, o) 0 O°F g p(xo’g)lT( ;(X N #
0

This means that the zeros £ of p(x +€)y E restr1cted to the
line g]T ‘(X )..g sy are simple,
v
So the zeros are isolated and their number p is finite because other-

wise we could find a sequence g (3 such that p(x ,§(J))-O,

(
P SR A L ELE U VALR R B for e

0 ﬁ

But this leads to p(x_,g) =0, lel =1, §lp (x ) =0 in contradiction
V X o i

0
with the assumption that X is non-characteristic. From the implicit
function theorem it follows that p is locally constant on T*(X )\0 and
because T*(X )\0 is connected it follows that p is constant. (If n=2
we must add the condition that p does not depend on the component of
T*(XO)\O).:

i
‘All the asertions concerning Co now are readily verified.

According to Lemma 2.4 the equation (3.4) leads to the equation
(3.9 k i g, e, +c.e_ =0 B

for the principal symbol e, of Ek , whereas (3.3) leads in view of
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Theorem 1.1 to the algebraic equations

3
(3.10) 151 qj(xo,gl(xo,gob.Iw(xo,go),(xo,gl(go,go») X

X e (x 81 (x 8Ny (xEY = 6

Here r denotes the principal symbol of p.
Because of (3.8) these equations can uniquely be solved and because
C rwn'l(xo><xo) is transversal to H; we can treat the solutions

ek((xo,gl(xo,go)‘,(xo,go)) as initial values for e, in the equation (3.9)

k

" Taking Eio) with this principal symbol we obtain that
pE D) ¢ Imumk—w_l(x X ,C) Q.2 W s 1ervhx)
k : T S PR3 %k jk Lol
With a recurrent procedure of the usual type we can find
El({l), 1=:0’1,2,.-.. such that ,
-m, -14-1-1
(0 (m, e
P(E " +...+E )€l (x,go,co\ ,
(0) (D -1-1, "
ij<Ek +...-+Ek 3—-6jkﬁ[e L (Xd)’

(n

K the proof‘is ready.

so taking for E, an asymptotic sum of E

k
This theorem can be considered as an interpretation of the
results of Lax [11] and Ludwig [137] for strictly hyperbolic differential

operators., For such operators the usual assumption is

t=X0>< (t) is non-characteristic with

transversal bicharacteristique curves,

(3.11) X;Xox R, for each t, X

It is easily seen that (3.11) implies the conditions ;f Theorem 3.1,

For the operators Qj one can take Dg-l , Dn==differentiation in a normal
direction. of Xo' In this case (3.8) follows from the.study of Vander-
monde detgrminant. These are the usual Cauchy-data. For strictly hyper

bolic differential operators we have u=m, but for general pseudo-
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i

differential operators we cannot expect any relation between m and p.

Note that in the case (3.11) the operators :px oEk are Fourier
I t

integral qperators : 6'(Xo) -oe'(Xt) defined by the 'relation
v o
((x;,g;),('xo,§o)) €CeJ E, €' such that (x('),g') and (xo,g) are on the
same blchegtracterlstic strip and §!Tx <XO) =§o , E7 IT;C?,(Xt) = g(’) .
o .0

i

[]
i t

In the cas:e of the wave operator, C is the normal bundle of the rela-

t
[

P

W

tion Ixo -'x(‘)l = ct, and the relation

(3.12) WF(pX °Ekfj)CWF(C) °WF(fJ.) d
t

<
P

can be considered as a refined form of the (weak) Hu}'rgens principle,

2 2
‘The example of the Tricomi operator P=X2 :-a——z + —a-—§- shows
o axl axz

that the conditions of Theorem 3.1 are much weaker tt:;an (3.11) ., The
bicharacteristic curves are sketched below. The dotted line is a possi~-
ble submanifold Xo satisfying the hypotheses of Theo¥em 3.1, but it is
obvious that (3.11) cannot be satisfied. Every bicharacteristic curve
apart fron} v intersects Xo once and transversally. The solutions of
Puec C° with sing supp 4 =+v, which exist according to Theorem 2.7, are

precisely"those non-smooth for which the Cauchy data’on Xo are smooth.

1
i
K]

P elliptic

P hyperbolic
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§ 4. Opefators with complex principal symbols

i
B

‘As already remarked in the introduction, Egorov [3] and
NirenbergJTréves [15] used Fourier integral operators: to simplify their
study of subelliptic and local solvability for operators with essential-

ly non-real principal symbols. See also Hfrmander [1@], Prop. 3.3.5.

b i
}‘

In this section I want to describe two cases which are in

some sense opposite to each other, and where the operator can be redu-

B
1

ced to a very special one,
Case I A

(4.1) {psp} = 0 when p=0

(4.2) ‘ H and H are linearly independent and the
! Re p Imp '
cone direction is not contaiend %n their span when
p=0.

iCondition (4.1) is the necessary local sol&ability condition
for both P and UP of Hrmander [1], ch. 6 (see H8rmander [8] for the
case of pseudo-differential operators). Because of (412) also d Re p
and d Tm p are linearly independent at p=0, so p=20 défines a conic C°

submanifold N of T#(X)\0 of codimension 2. Because of (4.1), HRe[)and

HImp areitangent to N and span an integrable tangent system, so they

define a 2~dimensional foliation of N. In analogy with the real case

the leafs of this foliation are called the bicharacteristic strips for

the operator P.

!Again we reduce first to the case m=1 by mﬁltiplying with
an elliptic factor of degree 1-m., We now can try to find a homogeneous
‘ _y and Imp to 6n
It turns out that this is possible if and only if we have instead of
(4.1
4.3) {psP} = 0 on a conic neighborhood of (xo,go)

canonical transformation y transforming Re p to &n

"
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The necessity of (4.3) is obvious : we have {gn_l,kgn]==0 and because
Poisson brackets are preserved by canonical transfofmations, we must
have {Rep, Imp}=0. f
The foll@wing lemma shows that (4.3) can be obtained if we multiply
with a suitable elliptic factor :

:
Lemma 4. 1“ : Suppose that m=1 and that (4.1), (4.2) are valid in a
conic nelghborhood of (x o’ %o ). Then we can find a hoﬁogeneous c”
function ‘a of degree 0, such that a# 0 and {q,q}=0 on a canonic neigh-
borhood of (x o' %o ) if q = ap. Q
. ,:

,Using this we can ultimately transform P by Fourier integral

operators to the Cauchy-Riemann operator Dn_1-+iDn ;’locally in T#(X)\O0.
This leads to analogues of all the theorems wich we have in the real

case. (But with important differences ! See [1], ch.{7).

Case II
(4.4) . {p,p} # when p=0. '

‘ it

_Here the situation is geometrically completely different.
It folloﬁs from (4.4) that HRe D and HImp are llneayly independent,

so again p=0 is a submanifold N of condimension 2. But this time the

plane spahned by HRep and HImp is transversal to the tangent space
of p=0. Because p=0 is conic this also implies th@t the cone direc-

tion is not contained in the span of HRep and HIm;; at p=0.

Now we have the following analogue of Lemﬁg 4.1,
:
Lemma 4.2 : Suppose that (4.4) is valid and that m=1. Then there is
a conic neighborhood U of N and a homogeneous c” function a of degree 0,
such that'a#0 and {q,{q,q}}=0 on U, if q= ap.

v An important difference with Lemma 4.1 is 'that here the cons-
truction \is global on a neighborhood of N (in Lemma 4.1 bthe construction

¢ }
'
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can only made global if certain geometric conditions' on the bicharac-
terisiic ¥oliaticen of N are satisfied). The reason is that the vector

field Hp occuring in the proof is transversal to N, ,

i

' Now write p= Py ip2 with Pyr Py real. Tﬁgn the condition
{P3{p:§}l=-0 implies that

(4.5) {pl,rz} =1 {pl’sz} = 0 {rg,sg} =0,
if we write iy

(4.6) p2=r232, 32={p17p2}$ thus r2(= Pg/{pifpg} .

1 . )
By a local homogeneous canonical transformation we can make

Py= §1, sz==§2, ro =Xy, So we can transform P locally in the cotangent

bundle totan operator with principal symbol equal to

(1.7 f ;- 1%, 8y, near g, = x; =0, gy %‘0
‘(Compare this procedure with Sato [16]). ;
Such operators are extensively studed and Sj8strand [17], [18], exten-

ding work, of Egorov and Kondratev [5] on the oblique-derivative problem,

i
has given explicit parametrices
‘ y

E E*
€ =
E 0
fur matrices of operators
P R '
. g = ‘
T 0

His results are valid for general operators P satisfying (4.4) and the

additional assumption that the projection of N into X has constant rank.
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Writing Nt - {(x,8) € N;%{p,E}EO} and v° for the projection NY in X,
then the oberators R+, resp. R are variants of the restriction ope-
rator : '

¢

C®(x) - €% (2 resp. the adjoint of the resiriction operator
C¥(X) - C7(ENY.

.
R

Sj&strand's constructions together with Lemma 4.2 lead in
the general case (that is without the rank condition)‘'to global opera-
e ”
tors E, F+; F  such that

;b
L

(4.8) EP+F ' =1, PE+F =1, PF' =0, FP =0

(4.9) WE(B) < b (x)0\0 x T*(O\O

' WF' (F) = N¥xN*
however, we are still working on this to get the besﬂ:possible H(s)
continuity properties for E, F+, F . We also think that F+, F~ should
be Fourier integral operators, eventually of a somewhat more general

i

type than those described in section 1.
Note that (4.8) implies the sequence y
® Ft © P © F- P o
D' (X) /CT(X) = D' (X) /CT(X) =P (X) /CT(X) =D (X) /CZ(X)

is exact,

It is hoped that in the future results of similar form can
also be obtained for more general overdetermined systpms In the cate-
gory of hyperfunctlons Sato and his pupils seem to haVe far-reaching

results in this direction (see [167).
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