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’Let P(D) be a differential operator with constant coefficients

in D ,= - x e We shall study the properties of the singular support
of a solution of an equation P(D)u = where ’ 

I 

X is an open set
I n 

i- 
. , , 

.

in R . applications to existence theorems for the adjoint see [1].

When P is of principal type it is known that a closed set F C X

is the singular support of a distribution u in X with P(D)u = f if and

only if for every x E F there is a bicharacteristic I through x such
’i

that the component of B n X containing x is in F. The bicharacteristics

are of dimension 1 or 2. If p is the principal part of P then by defini-

tion : ,

1, 
I

Ii

for with p(§) = 0. Thus the space of normals of B is a

tangent of p-1(O) at infinity in the direction ~. -

We shall here give general results which are similar but less precise.
To state them we must first give a suitable definition of tangent planes

at infinity to the surface « If V is a linear ubspace of R we
introduce ;

I,

with an arbitrary norm. When V = R n we write (,t)-instead of 
and note that with constants depending only on n and the degree of P we

have

so the notation agrees with the usual one. Now set
I
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~

This is a continuous function of V so it vanishes fo , a closed set of

subspacesiv which is clearly independent of the choice of norm in Rn.
In view of lemmas 8 and 9 below it is reasonable to consider V as a tan-

gent of P’ (0) at 00 in R n precisely when Gp (V) = 0. 
;

.

Theorem 1,. : : Let r be a closed convex set in R n and V a linear subspace
of with r + V = r, that is, V belongs to the edge. If = 0,

where V, denotes the orthogonal space, one can for every non-negative

integer k find u E C(R ) with P(D)u = 0, sing supp-!u = r and u ,£ 
if N is any open set intersecting r. ’/
Theorem 2 ’ : : Let r be a closed convex set in R 

n 
and let V be the

largest vector space with r + V = r, that is, V is the edge of r. If

p (V 0 it follows that every u E with P(D)u E Coo( R n and

sing supp !u c: r is in C (R n) . 
’ ’ 

1§

There is also a local uniqueness theorem :

Theorem 3 i;: : Let (P 1...... (P k E C1(X) where X is an open set in R n, and

let x point in X where are linearly independent.

Assume 0 for the space W spanned by dT,(,x 0 
If f u E li5"(X) , P(D)u 6 and u E 

’

then u E in a neighborhood of x 0 I’ 
I

I I ’I 1
The case k = 1 is an analogue of llolmgren s- uniqueness theorem

with supports replaced by singular supports and the principal part p

replaced by OpeN) where N denotes the one dimensional space containing
N E It iq therefore possible to use theorem 3 and theorem 1 to

r j r
’? 1
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;1

give the following analogue of theorem 5.3.3 in [2] ;J. 

,j
i

° 

j 

’ 
’ 

).
; 

Theorem 4 : Let X1 be open convex sets in R . Then an open set
x c X. has the property 

~:

j
if and only if for every hyperplaneH with = 0 the set Xi intersects
every affime hyperplane parallel to H which meets X. ,

j

Theorem 3 also implies the following result :
 ,

’, ;

Theorem 5, Let V be a linear subspace of R n such that
but for every linear subspace , strictly contained

.in V. If E(D)u E COO and sing supp u C V it follows t4at either sing suppu=
co 

:

V or u E C. .. j/

~ 

On the other hand we know from theorem 1 that one can find u

with P(D)~ = 0 and sing supp u = V. Minimal linear subspaces V with
= Q. therefore play to a large extent the same role as the

bicharacteristies for operators of principal type. However, examples

show that the singular support of a distribution with P(D)u = 0 is not

always a union of such spaces as in the case of operators of principal

type. j 
I

Theorem 6 : If P1 and P 2 are equally strong then (V) = 0 is equiva-
lent to (V) = 0. /, i ~

This follows easily from the definition. ~’

We shall now give a brief sketch of the proofs of theorems 1

and 3. First of all one must reformulate the condition 0 p(V) = 0 or

p(V) 0 ’using the Tarski-Seidenberg theorem.
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Lemma 7 :~ If = 0 it follows that there are positive constants b,

p 9 1j,’ p such that for any t&#x3E; 1 andr &#x3E; r 1 tP one cdn find C E R
with ICI ( ~’r and !

If 0 on the o ther harld on e can find b, r,, P ’,such that~’ 
1

To prove theorem 1 the next step is to express the smallness
el-I I 

of in terms of the zeros of P. In doing so we assume that

V is defined by x’ = 0 where x = (x’ ,x"), x, =s and
I 

I ’ V

x" = (X V+ i!o ixn) is a splitting of the coordinates in two groups.

I 
I 

n 

. :
Lemma 8 : For suitable positive constants C, y depending only on
n and the degree m of P) the inequality e  c 0
implies that there exists an analytic map e C(8) from the ball

n = (8 E a~, jej I  yt ) to Cnsuch that ’

This gives a precise sense to the statement that = 0

means that’ VI is a tangent to at m &#x3E;

L ;

For any positive integer N one can find a function 0N(e) with
support in the real part of 0 and integral 1 such that the derivatives

of order ~) ~ N can be estimated by (CN/t)’’. With ’such functions we
form a solution of the equation P(D)u = 0 by taking the average



XXV.5

For a suitable choice of the parameters t, N one can make u very smaii 1

outside V: although u(O) = 1, and the proof of theorem 1 follows easily.
" 

/i 

We shall only sketch the proof of theorem 3 in the case k = 1

in order to simplify the notations. The first step is again to express
If

a lower bound for as a property of ttie zeros of P when W

is a line, 
" 
in R n generated by the unit vector 0 

&#x3E;

Lemma 9 : Let 5, c be fixed positive constants, b / 1. Then there

exists positive constants el, y depending only on 5, c, n and the degree

such that &#x3E; c implies that for some r with 0  r  £ ’ 

we have "

, I

’The converse is also true and the proof is’ elementary.
~ 

t

To construct a fundamental solution of P q;ne usually 

f he integral t

by taking it over some cycle which avoids the zeros of ~ and is close to

Rn. Sometimes the cycle is taken close to the cycle defined by

instead, where T) is a unit vector in is large. The modulus &#x3E;I’

the exponential is then so the fundamental solution becomes

roughly ?’ times differentiable at x (thus a distribution of 

-;~X,~ 0 &#x3E; when  0). The conclusion is that if P(D)u E COO and if

the singular support of u has a compact intersection with a half spaco

lx;x,~ 0 &#x3E; &#x3E; a), then the intersection is in fact empty.
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P

li

If ~,,~°~, ) ~ 0 it follows from lemma 7 that ’outside a compact
set we have on this cycle a lower bound for when t I

- 

N 
. 

. 0We can therefore replace the Dirac measure at § + i by a mean value

over the z,ero free region given by lemma 1. More precisely we use the

measure
. B

where ITI in supp W and the derivatives ~of order k S N can
be estimated by We choose N to be the integral part of Et, This

gives a fundamental solution which for any v is in C"’ for large X in the

set defined by (I
,I

..

The proof of theorem 3 is then a routine matter. 
’

For the details of proof and additional statements we refer

to a paper;w.th the same title to be published in connection with the

symposium on linear and partial differential equation,s in Jerusalem June

1972. e 
, ,

_______ 

li
/

? ,
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