Séminaire Équations aux dérivées partielles - École Polytechnique

L. HÖRMANDER
 On the singularities of solutions of partial differential equations with constant coefficients

Séminaire Équations aux dérivées partielles (Polytechnique) (1971-1972), exp. no 25 , p. 1-6
http://www.numdam.org/item?id=SEDP_1971-1972__A25_0
© Séminaire Équations aux dérivées partielles (Polytechnique)
(École Polytechnique), 1971-1972, tous droits réservés.
L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHFMATIQUES

17, RUE DESCARTES - 'ipARIS v Téléphone : MÉDicis 11.77 (633)

 $\underline{\text { EQUATIONS WITH CONSTANT COEFFICIENTS }}$
by L. H8rmander

Let $P(D)$ be a differential operator with constant coefficients in R^{n}, D. $=-i \partial / \partial x$. We shall study the properties of the singular support of a solution of an equation $P(D) u=f \in C^{\infty}(X)$ where, X is an open set in \mathbf{R}^{n}. For applications to existence theorems for the adjoint see [1].

When P is of principal type it is known that a closed set $F \subset X$ is the singular support of a distribution u in X with $P(D) u=f$ if and only if for every $x \in F$ there is a bicharacteristic $B_{\text {B }}$ through x such that the component of $B \cap X$ containing x is in F. The bicharacteristics are of dimension 1 or 2. If p is the principal part of P then by definition

$$
B=\left\{x+\operatorname{Re} z^{\prime}(\xi), z \in \mathbb{C}\right\}
$$

for some $\xi \in \mathbf{R}^{n} \backslash 0$ with $p(\xi)=0$. Thus the space of normals of B is a tangent of $\mathrm{P}^{-1}(0)$ at infinity in the direction ξ.

We shall here give general results which are similar but less precise. To state them we must first give a suitable definition of tangent planes at infinity to the surface $\mathrm{P}^{-1}(0)$. If V is a linear subspace of \mathbb{R}^{n} we introduce

$$
\widetilde{P}_{V}(\xi, t)=\sup \{|P(\xi+\theta)| ; \theta \in V,|\theta|<t\}
$$

with an aribitrary norm. When $V=\mathbf{R}^{n}$ we write $\widetilde{P}(\xi, t)$ instead of $\widetilde{P}_{V}(\xi, t)$ and note that with constants depending only on n and the degree of P we have

$$
\mathrm{C}_{1} \widetilde{\mathrm{P}}(\xi, t) \leq \Sigma\left|\mathrm{P}^{(\alpha)}(\xi)\right| \quad \mathrm{t}^{|\alpha|} \leqq \mathrm{C}_{2} \widetilde{\mathrm{P}}(\dot{\xi}, \mathrm{t}),
$$

so the notation agrees with the usual one. Now set

$$
\sigma_{P}(V)=\inf _{t>1} \underset{\xi \rightarrow \infty}{ } \lim _{\tilde{\xi} \rightarrow \infty} \widetilde{P}_{V}(\varepsilon, t) / \widetilde{P}(\varepsilon, t)
$$

This is a continuous function of V so it vanishes fof a closed set of subspaces; V which is clearly independent of the choide of norm in R^{n}. In view of lemmas 8 and 9 below it is reasonable to consider V as a tangent of $\mathrm{P}^{-1}(0)$ at ∞ in \mathbf{R}^{n} precisely when $\sigma_{\mathrm{P}}(\mathrm{V})=0$.

Theorem 1: Let Γ be a closed convex set in R^{n} and V a linear subspace of \mathbf{R}^{n} with $\Gamma+V=\Gamma$, that is, V belongs to the edge. If $\sigma_{P}\left(V^{\prime}\right)=0$, where V d denotes the orthogonal space, one can for eyery non-negative integer k find $u \in C^{k}\left(\mathbf{R}^{n}\right)$ with $P(D) u=0$, sing supp $u=\Gamma$ and $u \not \ell^{k+1}(N)$ if N is any open set intersecting Γ.

Theorem 2 : : Let Γ be a closed convex set in \mathbb{R}^{n} and let V be the largest vector space with $\Gamma+V=\Gamma$, that is, V is the edge of Γ. If $\sigma_{P}\left(V^{\prime}\right) \neq 0$ it follows that every $u \in \mathcal{D}^{\prime}\left(\mathbf{R}^{n}\right)$ with $P\left({ }^{\prime} D\right) u \in C^{\infty}\left(\mathbf{R}^{n}\right)$ and $\operatorname{sing} \operatorname{supp}!u \subset \Gamma$ is in $C^{\infty}\left(\mathbf{R}^{n}\right)$.
'There is also a local uniqueness theorem :
Theorem 3 : Let $\varphi_{1}, \ldots, \varphi_{k} \in C^{1}(X)$ where X is an open set in \mathbb{R}^{n}, and let x^{0} be a point in X where $d \varphi_{1}\left(x^{0}\right), \ldots, d \varphi_{k}\left(x^{0}\right)$ are linearly independent. Assume that $\sigma_{P}(W) \neq 0$ for the space W spanned by $d \varphi_{1}\left(x^{0}\right), \ldots, d \varphi_{k}\left(x^{0}\right)$. If $u \in D^{\prime}(X), P(D) u \in C^{\infty}(X)$ and $u \in C^{\infty}\left(X_{-}\right)$,

$$
\dot{X}_{-}^{\prime}=\left\{x \in X ; \varphi_{j}(x)<\varphi_{j}\left(x^{0}\right) \text { for some } j=1, \ldots, k\right\}
$$

then $u \in C^{\infty}$ in a neighborhood of x^{0}.
The case $k=1$ is an analogue of llolmgren's uniqueness theorem with supports replaced by singular supports and the principal part p replaced by $\sigma_{P}(N)$ where N denotes the one dimensional space containing $N \in \mathbb{R}^{n} \backslash 0$. It is therefore possible to use theorem 3 and theorem 1 to
give the following analogue of theorem 5.3.3 in [2] Theorem $4^{i}: ~ L e t X_{1} \subset X_{2}$ be open convex sets in $\mathbb{R}^{n}{ }^{n}$ Then an open set $\mathrm{X} \subset \mathrm{X}_{2}$ has the property

$$
\mathbf{u} \in D^{\prime}\left(X_{2}\right), p u \in C^{\infty}\left(X_{2}\right), u \in C^{\infty}\left(X_{1}\right) \Rightarrow u \in C^{0}(X)
$$

if and only if for every hyperplane H with $\sigma_{P}\left(I I^{\prime}\right)=0$ the set X_{1} intersects every affine hyperplane parallel to H which meets X.

Theorem 3 also implies the following result :

Theorem 5 ; Let V be a linear subspace of \mathbb{R}^{n} such that $\sigma_{P}\left(V^{\prime}\right)=0$ but $\sigma_{P}\left(W^{\prime}\right) \neq 0$ for every linear subspace $\neq \hat{\phi}$ strictly contained in V. If $P_{1}(D) u \in C^{\infty}$ and sing supp $u \subset V$ it follows that either sing supp $u=$ V or $u \in C^{\infty}$.

On the other hand we know from theorem 1 that one can find u with $P(D) y=0$ and sing supp $u=V$. Minimal linear subspaces V with ${ }^{*} p\left(V^{\prime}\right)=0$ therefore $p l a y$ to a large extent the same role as the bicharacteristics for operators of principal type. However, examples show that the singular support of a distribution with $P(D) u=0$ is not always a union of such spaces as in the case of operators of principal type.

Theorem 6 : If P_{1} and P_{2} are equally strong then $\sigma_{P_{1}}(V)=0$ is equivalent to $\sigma_{P_{2}}(V)=0$.

This follows easily from the definition.

We shall now give a brief sketch of the proofs of theorems 1 and 3. First of all one must reformulate the condition $\sigma_{P}(V)=0$ or $\sigma_{p}(V) \neq 0$ using the Tarski-Seidenberg theorem.

Lemma 7 If $\sigma_{p}(V)=0$ it follows that there are positive constants b, β, r_{1}, ρ such that for any $t>1$ and $r>r_{1} t^{\rho}$ one can find $\xi \in \mathbf{R}^{n}$ with $|\xi| \underset{\square}{\rho} r$ and

$$
\tilde{\mathrm{P}}_{\mathrm{V}}(\xi, t) / \widetilde{\mathrm{P}}(\xi, t)<\mathrm{b} t^{-\beta} .
$$

If $\sigma_{p}(V) \nRightarrow 0$ on the other hand one can find b, r_{1}, ρ such that

$$
\tilde{P}_{\mathrm{V}}(\xi, t) / \widetilde{P}(\varepsilon, t)>b>0 \text { if } t>1 \text { and }|\xi|>r_{1} t^{\rho}
$$

To prove theorem 1 the next step is to express the smallness of $\widetilde{P}_{V}(\xi, t)^{\prime} / \widetilde{P}(\xi, t)$ in terms of the zeros of P. In doing so we assume that V is defined by $x^{\prime}=0$ where $x=\left(x^{\prime}, x^{\prime \prime}\right), x^{\prime}=\left(x_{1}, \ldots, x_{v}\right)$ and $x^{\prime \prime}=\left(x_{v+1}, \ldots, x_{n}\right)$ is a splitting of the coordinates in two groups.

Lemma 8 : For suitable positive constants $\varepsilon_{0}, C, \gamma$ (depending only on n and the degree m of P) the inequality $\widetilde{P}_{V}(\xi, t) / \widetilde{P}(\xi, t) \leq \varepsilon<\varepsilon_{0}$ implies that there exists an analytic map $\theta \rightarrow \zeta(\theta)$ from the ball $\Omega=\left\{\theta \in \mathbb{C}^{\nu},|\theta|<\gamma t\right\}$ to $\mathbb{a}^{\mathbf{n}}$ such that
(i) $\zeta^{\prime}(\theta)=\xi_{0}^{\prime}+\theta$ where $\xi_{0}^{\prime} \in \mathbf{R}^{\nu}$ and $\left|\xi_{0}^{\prime}-\xi^{\prime}\right| \leq t$
(ii) $\left|\zeta^{\prime \prime}\left(\theta_{i}\right)-\xi^{\prime \prime}\right|<\operatorname{ct} \varepsilon^{1 / m}, \theta \in \Omega$,
(iii) $P(\zeta(\theta))=0$.

This gives a precise sense to the statement that $\sigma_{p}\left(V^{\prime}\right)=0$ means that V^{\prime} is a tangent to $\mathrm{P}^{-1}(0)$ at ∞

For any positive integer N one can find a function $\Phi^{N}(\theta)$ with support in the real part of Ω and integral 1 such that the derivatives of order $|\alpha| \leq N$ can be estimated by $(C N / t)|\alpha|$. With such functions we form a solution of the equation $P(D) u=0$ by taking the average

$$
u(x)=\int e^{i<x, \zeta(\theta)\rangle_{\Phi}(\theta) d \theta .}
$$

For a suitable choice of the parameters $\bar{\xi}$, t, N one can make u very small outside V although $u(0)=1$, and the proof of theorem 1 follows easily.

We shall only sketch the proof of theorem in the case $k=1$ in order to simplify the notations. The first step is again to express a lower bound for $\widetilde{P}_{W}(\xi, t) / \widetilde{P}(\xi, t)$ as a property of the zeros of P when W is a line, in \mathbb{R}^{n} generated by the unit vector η^{0}.

Lemma 7 Let δ, c be fixed positive constants, $\delta<1$. Then there exists positive onstants c_{1}, γ depending only on δ, c, n and the degree of D such that $\tilde{\mathrm{P}}_{\mathrm{W}}(\xi, \mathrm{t}) / \tilde{p}(\xi, \mathrm{t})>\mathrm{c}$ implies that for some r with $0<r<S_{1}$ we have

$$
\left|P\left(F+(i t+z) \eta^{0}+\zeta\right)\right| \geq c_{1} \widetilde{?}(\xi, t) \text { if } z \in \mathbb{C},|z|=r,|\zeta|<\gamma t .
$$

The converse is also true and the proof is elementary.

To construct a fundamental solution of P que usually interpretthe integral

$$
(? \pi)^{-n} \int e^{i<x, \zeta>p(\zeta)^{-1}} d \zeta
$$

by taking; it over some cycle which avoids the zeros of ? and is close to \mathbb{R}^{n}. Sometimes the cycle js taken close to the cycle defined by

$$
\xi \rightarrow \xi+i \lambda(\log |\xi|) \eta^{0}
$$

instead, where η^{n} is a unit vector in \mathbb{R}^{n} and λ is large. The modulus ot the exponential is then $|\xi|^{-\lambda<x, \eta>}$ so the fundamental solution become: roughly $\lambda<x, \eta_{1}^{0}>$ times differentiable at x (thus a distribution of order $-\lambda<x, \eta^{0}>$ when $\left.<x, \eta^{()}><0\right)$. The conclusion is that if $P(D) u \in C^{\infty}$ and if the singular support of u has a compact intersection with a half space $\left\{x ;\left\langle x, n^{0}\right\rangle>a\right\}$, then the intersection is in fact empty.

If $\sigma_{p}\left(\eta^{0}\right) \neq 0$ it follows from lemma 7 that outside a compact set we have on this cycle a lower bound for $\widetilde{\mathbb{P}}_{W}(\xi, t) / \widetilde{P}(\xi, t)$ when $t=\lambda \log |\xi|$ We can therefore replace the Dirac measure at $\xi+i t \cdot \eta^{0}$ by a mean value over the zero free region given by lemma 3. More precisely we use the measure

$$
\int u(\zeta), d \mu \stackrel{N}{\xi, t}(\zeta)=(2 \pi)^{-1} \int_{0}^{2 \pi} d \psi \int u\left(\xi+\left(i t+r e^{i \psi}\right)_{1,} \eta^{0}+\tau\right) \Phi^{N}(\tau) d \tau
$$

where $|\tau|<\gamma t / 2$ in supp Φ^{N} and the derivatives of Φ^{N} of order $k \leq N$ can be estimated by $(\mathrm{CN} / \mathrm{t})^{k}$. We choose N to be the integrial part of ε t. This gives a fundamental solution which for any v is in C^{ν} ' for large λ in the set defined by

$$
(1-\delta)<x, \eta^{0} \gg-\gamma|x| / 20,3 \varepsilon \mathrm{e} / \gamma<|\mathbf{x}|<\underset{,}{6} \varepsilon \mathrm{e} / \gamma
$$

The proof of theorem 3 is then a routine matter.

For the details of proof and additional statements we refer to a paper with the same title to be published in connection with the symposium on linear and partial differential equations in Jerusalem June 1972.

BIBLIO GRAPIIE

[1] L. Hdrmander : 0n the existence and the regularity of solutions of linear pseudo-differential equations. L'enseignement Math. 17 (1971), 99-163.
[2] L. IIdrmander : Linear partial differential operators. Springer Verlag, Berlin-G8ttingen-Heidelberg 1963.

