SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

A. PIETSCH

Absolutely-p-summing operators in \mathcal{L}_r -spaces II

Séminaire Équations aux dérivées partielles (Polytechnique) (1970-1971), exp. nº 31, p. 1-20

http://www.numdam.org/item?id=SEDP_1970-1971_____A31_0

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1970-1971, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

17, RUE DESCARTES - PARIS V Téléphone : MÉDicis 11-77 (633)

SEMINAIRE GOULAOUIC-SCHWARTZ 1970-1971

ABSOLUTELY-p-SUMMING OPERATORS IN r-SPACES II

by A. PIETSCH

 \S 6. THE v_p -NORM (cf. [10], [23], [24]).

In the following let us assume that at least one of the Banach spaces E and F has finite dimension. Then every operator $T \in \mathfrak{L}(E,F)$ can be represented in the form

$$T_i = \sum_{i} \langle x_i | a_i \rangle y_i$$
 for all $x \in E$

with $a_1, \ldots, a_n \in E'$ and $y_1, \ldots, y_n \in F$. Now the v_p -norm is defined by

$$\nabla_{p}(T) := \inf \left[\left\{ \sum_{i} \|a_{i}\|^{p} \right\}^{1/p} \sup_{|b| \leq 1} \left\{ \sum_{i} |\langle y_{i}, b \rangle|^{p'} \right\}^{1/p'} \right],$$

1< ∞ , where the infimum is taken over all possible representations. In the case p=1 and $p=\infty$ we put

$$v_1(T) := \inf \left[\sum_{i} ||a_i|| ||y_i|| \right]$$

and

$$v_{\infty}(T) := \inf \left[\sup_{i} \left\| a_{i} \right\| \sup_{\|b\| \le 1} \Sigma \left| < y_{i}, b > \right| \right].$$

It follows from the well-known relations

$$\pi_{p}(T) = \sup\{|\operatorname{trace}(ST)| : S \in \mathfrak{L}(F, E), \nu_{p}(S) \le 1\} \text{ for all } T \in \mathfrak{L}(E, F)$$

and

$$v_{p'}(S) = \sup\{|\operatorname{trace}(ST)| : T \in \mathcal{L}(E, F), \pi_{p}(T) \le 1\} \text{ for all } S \in \mathcal{L}(F, E)$$

that the inequalities

$$\pi_{D}(T) \leq c \pi_{Q}(T)$$
 for all $T \in \mathcal{I}(E, F)$

and

$$v_{q'}(S) \le c v_{p'}(S)$$
 for all $S \in \mathcal{L}(F, E)$

are equivalent.

We have

$$\pi_{p}(T) \leq \nu_{p}(T)$$
 for all $T \in \mathfrak{L}(E, F)$,

and in the case p = 2,

$$\pi_{2}(T) = \nu_{2}(T)$$
 for all $T \in \mathcal{L}(E, F)$.

If at least one of the Banach spaces E and F has the extension property then also the equation

$$\pi_{p}(T) = v_{p}(T)$$
 for all $T \in \mathcal{L}(E, F)$

is valid. On the other side A. Pe/czyński [21] has shown that there exists no constant c>0 such that for every bounded linear operator T between arbitrary finite dimensional Banach spaces the inequality

$$v_{p}(T) \le c \pi_{p}(T)$$

holds.

<u>Problem</u>: If $1 \le r$, $s \le \infty$ and $1 , does there exists a constant <math>c_{rsp} > 0$ such that

$$v_p(T) \le c_{rsp} \pi_p(T)$$
 for all $T \in \mathfrak{L}(1_r^n, 1_s^n)$?

Now we prove further results by duality.

Theorem 1* : Let $T \in \mathfrak{L}(E, 1_s^n)$. If $2 < s < p \le \infty$ then

$$v_{p}(T) \le c_{s'p}, c_{s'1}^{-1} v_{\infty}(T)$$
.

 \underline{Proof} : If $2 < s < \infty$ and $1 \le p' < s'$ then by theorem 1 we have

$$\pi_1(S) \le c_{s'p}, c_{s'1}^{-1} \pi_{p'}(S)$$
 for all $S \in \mathfrak{L}(1_s^n, E)$.

Consequently, there holds the dual inequality

$$v_p(T) \le c_{s'p'} c_{s'1}^{-1} v_{\infty}(T)$$
 for all $T \in \mathfrak{L}(E, l_s^n)$.

Theorem 2* : Let $T \in \mathfrak{L}(E, l_s^n)$. If s = 1, resp. $1 < s \le 2$, then

$$v_2(T) \le c_{G_{\infty}}(T), \text{ resp. } v_2(T) \le c_{2s}, c_{21}^{-1} v_{\infty}(T)$$
.

Theorem 3* : Let $T \in \mathfrak{L}(1_r^n, F)$ If $1 \le r \le 2$ and 1 then

$$v_{p}(T) \le c_{2p}, c_{21}^{-1} v_{2}(T)$$

Theorem 4* (CONJECTURE) : Let $T \in \mathcal{L}(1_r^n, F)$. If $2 < r < \infty$ and $1 , then, with a constant <math>c_{r,pq} > 0$,

$$v_{\mathbf{p}}(\mathbf{T}) \leq \mathbf{c}_{\mathbf{r},\mathbf{p}\mathbf{q}} v_{\mathbf{q}}(\mathbf{T})$$
.

Finally, we formulate some special cases of theorem 1* and 2*.

Proposition 4 (S Kwapień [7]) : Let $T \in \mathfrak{L}(1_{\infty}^{n}, 1_{s}^{n})$. If $2 < s < p < \infty$ then $v_{p}(T) \leq c_{s+p} \cdot c_{s+1}^{-1} ||T||.$

<u>Proposition 5</u> (J. Lindenstrauss and A. Pelczyński [8]) : Let $T \in \mathcal{L}(1_{\infty}^n, 1_{s}^n)$. If s = 1, resp. $1 < s \le 2$, then

$$v_2(T) \le c_6 ||T||, \text{ resp} \quad v_2(T) \le c_{2s}, c_{21}^{-1} ||T||.$$

Proof : The results follow from the fact that

$$_{\infty}^{n}(T) = ||T|| \quad \text{for all} \quad T \in \mathfrak{L}(1_{\infty}^{n}, F)$$
.

Remark : It is easy to prove the following stronger form of 1emma 4. Let $T \in \mathfrak{L}(E, 1^n_s)$. Then

$$v_s(T) \le \pi_s(T)$$
.

One can obtain further results by using this inequality.

§ 7. IDENTITY OPERATORS IN 1 r-SPACES.

Let I_n be the identity operator from l_r^n into l_s^n . We define the limit order $\lambda_I(r,s,\pi_p)$ to be the infimum of all real numbers λ for which there exists a constant $c_{rs,p}>0$ such that the inequality

$$\pi_{p}(I_{n}: I_{r}^{n} \rightarrow I_{s}^{n}) \leq c_{rs,p} n^{\lambda}$$

for all $n=1,2,\ldots$ holds. The limit order $\lambda_{\prod}(r,s,\nu_p)$ is defined in the same way.

Historical remark: The π_p - and ν_p -norm of the identity operator from ℓ_r^n into itself was determined or estimated by D.J.H. Garling and Y. Gordon (cf. [16], [17], [18]). In the cases ν_∞ and π_1 the first result was proved by B. Grünbaum [19] and D. Rutovitz [22]. A. Tong [26] has given necessary and sufficient conditions for a diagonal operator from ℓ_r into ℓ_r to be nuclear (cf. also L. Schwartz [25]).

Lemma 5 : If $\alpha + \beta \le 1$,

$$\lambda_{\mathrm{I}}(\mathbf{r}, \mathbf{s}, \pi_{\mathrm{p}}) \leq \alpha \quad \text{and} \quad \lambda_{\mathrm{I}}(\mathbf{s}, \mathbf{r}, \nu_{\mathrm{p}}) \leq \beta$$

then

$$\lambda_{\mathrm{I}}(\mathbf{r}, \mathbf{s}, \pi_{\mathrm{p}}) = \alpha \quad \text{and} \quad \lambda_{\mathrm{I}}(\mathbf{s}, \mathbf{r}, \mathbf{v}_{\mathrm{p}}) = \beta$$
.

Proof : Since

$$n = \operatorname{trace}(I_n) \leq \pi_p(I_n : I_r^n \to I_s^n) \vee_{p'} (I_n : I_s^n \to I_r^n)$$

we have

$$1 \leq \lambda_{\mathrm{I}}(\mathbf{r},\mathbf{s},\pi_{\mathrm{p}}) + \lambda_{\mathrm{I}}(\mathbf{s},\mathbf{r},\vee_{\mathrm{p}},) \leq \alpha + \beta = 1 \ .$$

Consequently, identity holds.

Lemma 6 :
$$\lambda_{I}(r,s,\|.\|) \leq \begin{cases} 1/s - 1/r & \text{if } r \geq s \\ \\ 0 & \text{if } r \leq s \end{cases}.$$

Proof: The result follows from the well-known inequality

$$\|I_n: I_r^n \to I_s^n\| \le \begin{cases} n^{1/s} - 1/r & \text{if } r \ge s \\ \\ 1 & \text{if } r \le s \end{cases}.$$

Lemma 7:

$$\lambda_{\mathrm{I}}(1,\infty,v_{1}) \leq 0$$
.

 $\frac{Proof}{e}$: If $e = (\epsilon_i)$ ranges over the set of all n-dimensional vectors with $\epsilon_i = \frac{1}{2}$ then the identity operator I_n has the representation

$$I_n = 2^{-n} \sum_{e} \langle x, e \rangle e$$
 for all $x \in I_1^n$.

Consequently,

$$v_1(I_n: I_1^n \to I_{\infty}^n) \le 1 \qquad .$$

Lemma 8 : If 1 then

$$\lambda_{\mathrm{I}}(1,2,v_{\mathrm{p}}) \leq 0 \quad .$$

 $\frac{Proof}{}$: We represent the identity operator I_n in the form

$$I_n = 2^{-n} \sum_{e} \langle x, e \rangle e$$
 for all $x \in I_1^n$.

Then

$$\left\{\sum_{\mathbf{e}} \|\mathbf{e}\|_{\infty}^{\mathbf{p}}\right\}^{1/\mathbf{p}} = 2^{\mathbf{n}/\mathbf{p}}.$$

On the other hand, it follows from Littlewood's inequality (cf. [20]) that

$$\sup_{\|b\|_{2} \le 1} \left\{ \sum_{e} \left| < e, b > \right|^{p'} \right\}^{1/p'} \le 2^{n/p'} c_{p'}.$$

Therefore,

$$\nabla_{\mathbf{p}}(\mathbf{I}_{\mathbf{n}}:\mathbf{I}_{\mathbf{1}}^{\mathbf{n}}\to\mathbf{I}_{\mathbf{2}}^{\mathbf{n}})\leq \mathbf{c}_{\mathbf{p}},$$

Lemma 9:

$$\lambda_{\mathbf{I}}(1,2,\pi_1) \leq 0 \quad .$$

Proof: From Littlewood's inequality we have

$$\|\mathbf{x}\|_{2} \le c_{L} 2^{-n} \sum_{\mathbf{e}} |\langle \mathbf{x}, \mathbf{e} \rangle|$$

Consequently, if $x_1, \ldots, x_m \in l_1^n$

$$\sum_{i} \|x_{i}\| \le c_{L} \sup_{a \mid a \le 1} \sum_{i} |\langle x_{i}, a \rangle|,$$

and therefore,

$$\pi_{1}(I_{n}!I_{1}^{n}\rightarrow I_{2}^{n})\leq c_{L}.$$

 $\underline{\mathtt{Remark}}$: Lemma 9 follows also from proposition 2^{G}

Lemma 10:

$$\lambda_{I}(\infty, p, \nu_{p}) \leq 1/p$$

 $\frac{Proof}{1}$: If e_1, \dots, e_n are the usual unit vectors we can represent the identity operator I_n in the form

$$I_n = \sum_{i} \langle x, e_i \rangle$$
 for all $x \in l_{\infty}^n$.

Since

$$\{\sum_{i} \|e_{i}\|_{1}^{p}\}^{1/p} = n^{1/p} \text{ and } \sup_{a\|a\|_{p}} \{\sum_{i} |e_{i}, a>|^{p'}\}^{1/p'} = 1$$

we obtain

$$v_p(I_n: I_\infty^n \to I_p^n) \le n^{\sqrt{p}}$$
.

Lemma 11 : If $1 \le s < 2$ then

$$\lambda_{I}(s',s,\pi_{1}) \leq 1/s$$

<u>Proof</u>: In the case s=1 the result follows from lemma 10. Now we assume 1 < s < 2 Then there exists ϵ with $0 < \epsilon < s-1$. By lemma 3 and 10 we obtain

$$\begin{split} \pi_{1}(I_{n}: 1_{s}^{n}, \rightarrow 1_{s}^{n}) &\leq c_{s s - \varepsilon} c_{s1}^{-1} \pi_{s - \varepsilon} (I_{n}: 1_{s}^{n}, \rightarrow 1_{s}^{n}) \\ &\leq c_{s s - \varepsilon} c_{s1}^{-1} \|I_{n}: 1_{s}^{n}, \rightarrow 1_{\infty}^{n} \|\pi_{s - \varepsilon} (I_{n}: 1_{\infty}^{n} \rightarrow 1_{s - \varepsilon}^{n}) \|I_{n}: 1_{s - \varepsilon}^{n} \rightarrow 1_{s}^{n} \| \\ &\leq c_{s s - \varepsilon} c_{s1}^{-1} n^{1/(s - \varepsilon)} . \end{split}$$

Consequently,

$$\lambda_{T}(s',s,\pi_{1}) \leq 1/(s-\epsilon)$$
.

The result follows since ϵ can be made as small as we please.

 $\frac{\text{Remark}}{\text{of } \pi}: \text{ It should be possible to determine the exact asymptotic behaviour} \\ \text{of } \pi_n(\text{I}_n; \text{I}_s^n, \rightarrow \text{I}_s^n) \text{ as n tends to infinity by using the relation}$

$$\pi_{p}(I_{n}: 1_{s}^{n}, \rightarrow 1_{s}^{n}) = c_{sp}^{-1} \{ \int_{\mathbb{R}^{n}} \|x\|_{s}^{p} d\mu_{s}^{n}(x)^{\frac{1}{p}}, 1 \le p < s .$$

The limit orders $\lambda_{I}(r,s,\|.\|)$ and $\lambda_{I}(s,r,v_{1})$

By lemma 6 we have

(1)
$$\lambda_{I}(r,s,||.||) \leq \begin{cases} 1/s - 1/r & \text{if } r \geq s \\ \\ 0 & \text{if } r \leq s \end{cases} .$$

On the other hand it follows from lemma 6, 7 and 10 that

$$\lambda_{I}(s,r,\nu_{1}) \leq \lambda_{I}(s,1,\|.\|) + \lambda_{I}(1,\infty,\nu_{1}) + \lambda_{I}(\infty,r,\|.\|) \leq 1/s' + 1/r$$
 and
$$\lambda_{I}(s,r,\nu_{1}) \leq \lambda_{I}(s,\infty,\|.\|) + \lambda_{I}(\infty,1,\nu_{1}) + \lambda_{I}(1,r,\|.\|) \leq 1 .$$

In each case, choosing the best result we obtain

$$\lambda_{I}(s,r,v_{1}) \leq \begin{cases} 1/s' + 1/r & \text{if } r \geq s \\ 1 & \text{if } r \leq s \end{cases}$$

Finally, lemma 5 implies that identity holds in (1) and (1*). In what follows we illustrate our results with pairs of diagrams in the unit square with coordinates \sqrt{r} and \sqrt{s} . In the left hand diagram we plot the level curves of $\lambda_{I}(r,s,\pi_{p})$. In the right hand diagrams we indicate the algebraic expression for $\lambda_{I}(r,s,\pi_{p})$.

$$\frac{\lambda_{\mathrm{I}}(\mathbf{r},\mathbf{s},\parallel\parallel)}{2}$$

The limit orders $\lambda_1(r,s,\pi_2)$ and $\lambda_1(s,r,\nu_2)$

By lemmas 6, 9 and 10 we have

$$\lambda_{\mathbf{I}}(\mathbf{r}, \mathbf{s}, \pi_{2}) \leq \lambda_{\mathbf{I}}(\mathbf{r}, \infty, || ||) + \lambda_{\mathbf{I}}(\infty, 2, \pi_{2}) + \lambda_{\mathbf{I}}(2, \mathbf{s}, ||.||)$$

$$\leq 0 + \sqrt{2} + \begin{cases} \sqrt{s} - \sqrt{2} & \text{if } 1 \leq s \leq 2 \\ \\ 0 & \text{if } 2 \leq s \leq \infty \end{cases}$$

and

$$\lambda_{I}(\mathbf{r}, s, \pi_{2}) \leq \lambda_{I}(\mathbf{r}, 1, \|.\|) + \lambda_{I}(1, 2, \pi_{2}) + \lambda_{I}(2, s, \|.\|)$$

$$\leq 1/r' + 0 + \begin{cases} 1/s - 1/2 & \text{if } 1 \leq s \leq 2 \\ 0 & \text{if } 2 \leq s \leq \infty \end{cases}$$

Consequently,

(2)
$$\lambda_{I}(r,s,\pi_{2}) \leq \begin{cases} \sqrt{r' + \sqrt{s} - \sqrt{2}} & \text{if} & 1 \leq r \leq 2, \ 1 \leq s \leq 2, \\ \sqrt{s} & \text{if} & 2 \leq r \leq \infty, \ 1 \leq s \leq 2, \\ \sqrt{r'} & \text{if} & 1 \leq r \leq 2, \ 2 \leq s \leq \infty, \\ \sqrt{2} & \text{if} & 2 \leq r \leq \infty, \ 2 \leq s \leq \infty \end{cases}$$

Since $\lambda_{I}(s,r,v_{2}) = \lambda_{I}(s,r,\pi_{2})$ it follows from lemma 5 that identity holds in (2).

$$\frac{\lambda_{\mathrm{I}}(\mathbf{r},s,\pi_2)}{}$$

<u>1</u> s	$\frac{1}{r'} + \frac{1}{s} - \frac{1}{2}$
<u>1</u>	1
2	r'

The limit orders $\lambda_{I}(r,s,\pi_{p})$ and $\lambda_{I}(s,r,\nu_{p})$ with $1 \le p < 2$

Since by theorem 2 and 2^* for $1 \le r \le 2$ we have

$$\lambda_{\mathrm{I}}(\mathbf{r}, \mathbf{s}, \pi_{\mathrm{p}}) = \lambda_{\mathrm{I}}(\mathbf{r}, \mathbf{s}, \pi_{2})$$
 and $\lambda_{\mathrm{I}}(\mathbf{s}, \mathbf{r}, \nu_{\mathrm{p}}) = \lambda_{\mathrm{I}}(\mathbf{s}, \mathbf{r}, \nu_{2})$

in the following we need only consider the case $2 < r \le \infty$.

By lemma 6 and 11 we obtain

$$\lambda_{\mathrm{I}}(\mathbf{r},\mathbf{s},\pi_{\mathrm{p}}) \leq \lambda_{\mathrm{I}}(\mathbf{r},\mathbf{s}',\|.\|) + \lambda_{\mathrm{I}}(\mathbf{s}',\mathbf{s},\pi_{\mathrm{p}}) \leq 1/\!\!/\mathrm{s} \qquad \text{if} \quad \mathbf{r} \leq \mathbf{s}' \quad \text{and} \quad 1 \leq \mathbf{s} \leq 2,$$
 and

$$\lambda_{\mathrm{I}}(\mathbf{r}, \mathbf{s}, \pi_{\mathrm{p}}) \leq \lambda_{\mathrm{I}}(\mathbf{r}, \mathbf{r}', \pi_{\mathrm{p}}) + \lambda_{\mathrm{I}}(\mathbf{r}', \mathbf{s}, \|.\|) \leq 1/\mathbf{r}'$$
 if $\mathbf{r}' \leq \mathbf{s}$ and $1 \leq \mathbf{r}' \leq 2$

On the other hand it follows from lemma 6 and 10 that

$$\lambda_{I}(\mathbf{r}, s, \pi_{p}) \leq \lambda_{I}(\mathbf{r}, \infty, \|.\|) + \lambda_{I}(\infty, p, \pi_{p}) + \lambda_{I}(p, s, \|.\|)$$

$$\leq 0 + \sqrt{p} + \begin{cases} \sqrt{s} - \sqrt{p} & \text{if } p \geq s, \\ 0 & \text{if } p \leq s. \end{cases}$$

In each case, choosing the best result we obtain

(3)
$$\lambda_{\mathbf{I}}(\mathbf{r}, \mathbf{s}, \pi_{\mathbf{p}}) \leq \begin{cases} 1/\mathbf{s} & \text{if } \mathbf{p}' \leq \mathbf{r} \leq \infty, \ 1 \leq \mathbf{s} \leq \mathbf{p}, \\ 1/\mathbf{p} & \text{if } \mathbf{p}' \leq \mathbf{r} \leq \infty, \ \mathbf{p} \leq \mathbf{s} \leq \infty, \\ 1/\mathbf{s} & \text{if } 2 \leq \mathbf{r} \leq \mathbf{p}', \ 1 \leq \mathbf{s} \leq \mathbf{r}', \\ 1/\mathbf{r}' & \text{if } 2 \leq \mathbf{r} \leq \mathbf{p}', \ \mathbf{r}' \leq \mathbf{s} \leq \omega \end{cases} .$$

By lemma 6 and 11

$$\lambda_{I}(s,r,\nu_{p'}) \leq \lambda_{I}(s,\infty,\|.\|) + \lambda_{I}(\infty,p',\nu_{p'}) + \lambda_{I}(p',r,\|.\|)$$

$$\leq 0 + 1/p' + \begin{cases} 1/r - 1/p' & \text{if } p' \geq r, \\ 0 & \text{if } p' \leq r. \end{cases}$$

Moreover,

$$\lambda_{I}(s,r,v_{p'}) \le \lambda_{I}(s,r,v_{2}) = 1/s' \text{ if } 1 \le s \le 2.$$

Consequently,

$$\lambda_{\mathbf{I}}(\mathbf{s}, \mathbf{r}, \mathbf{v}_{\mathbf{p}'}) \leq \begin{cases} \sqrt{\mathbf{s}'} & \text{if } \mathbf{p}' \leq \mathbf{r} \leq \infty, \ 1 \leq \mathbf{s} \leq \mathbf{p}, \\ \sqrt{\mathbf{p}'} & \text{if } \mathbf{p}' \leq \mathbf{r} \leq \infty, \ \mathbf{p} \leq \mathbf{s} \leq \infty, \\ \sqrt{\mathbf{s}'} & \text{if } 2 \leq \mathbf{r} \leq \mathbf{p}', \ 1 \leq \mathbf{s} \leq \mathbf{r}', \\ \sqrt{\mathbf{r}} & \text{if } 2 \leq \mathbf{r} \leq \mathbf{p}', \ \mathbf{r}' \leq \mathbf{s} \leq \infty. \end{cases}$$

Finally, lemma 5 implies that identity holds in (3) and (3*).

The limit orders $\lambda_{\rm I}({\bf r}, {\bf s}, \pi_{\rm p})$ and $\lambda_{\rm I}({\bf r}, {\bf s}, \nu_{\rm p})$ with 2

Since by theorem3 and 3* for $1 \le s \le 2$ we have

$$\lambda_{\mathbf{I}}(\mathbf{r}, \mathbf{s}, \pi_{\mathbf{p}}) = \lambda_{\mathbf{I}}(\mathbf{r}, \mathbf{s}, \pi_{2})$$
 and $\lambda_{\mathbf{I}}(\mathbf{s}, \mathbf{r}, \mathbf{v}_{\mathbf{p}}) = \lambda_{\mathbf{I}}(\mathbf{s}, \mathbf{r}, \mathbf{v}_{2})$

in the following we need only consider the case $2 < s \le \infty$. Since

$$\lambda_{\mathrm{I}}(\mathbf{r}, \mathbf{s}, \pi_{\mathrm{p}}) \leq \lambda_{\mathrm{I}}(\mathbf{r}, \mathbf{s}, \nu_{\mathrm{p}})$$

by (3*) we obtain

(4)
$$\lambda_{I}(\mathbf{r}, \mathbf{s}, \pi_{p}) \leq \begin{cases} \sqrt{r'} & \text{if } 1 \leq r \leq p', p \leq s \leq \infty, \\ 1/p & \text{if } p' \leq r \leq \infty, p \leq s \leq \infty, \\ \sqrt{r'} & \text{if } 1 \leq r \leq s', 2 \leq s \leq p, \\ 1/s & \text{if } s' \leq r \leq \infty, 2 \leq s \leq p. \end{cases}$$

It follows from lemma 6 and 10 that

$$\lambda_{\mathbf{I}}(s, \mathbf{r}, \mathbf{v}_{p'}) \leq \lambda_{\mathbf{I}}(s, \infty, \|.\|) + \lambda_{\mathbf{I}}(\infty, p', \mathbf{v}_{p}) + \lambda_{\mathbf{I}}(p', \mathbf{r}, \|.\|)$$

$$\leq 0 + 1/p' + \begin{cases} 1/\mathbf{r} - 1/p' & \text{if } p' \geq \mathbf{r}, \\ \\ 0 & \text{if } p' \leq \mathbf{r}. \end{cases}$$

On the other hand lemma 6 and 8 imply that

$$\lambda_{I}(s,r,v_{p'}) \le \lambda_{I}(s,1,\|.\|) + \lambda_{I}(1,2,v_{p'}) + \lambda_{I}(2,r,\|.\|)$$

$$\le 1/s' + 0 + 0 \quad \text{if} \quad 2 \le r \quad .$$

In each case, choosing the best result we obtain

$$\lambda_{I}(s,r,v_{p'}) \leq \begin{cases} 1/r & \text{if} \quad 1 \leq r \leq p', \ p \leq s \leq \infty, \\ 1/p' & \text{if} \quad p' \leq r \leq \infty, \ p \leq s \leq \infty, \\ 1/r & \text{if} \quad 1 \leq r \leq p', \ 2 \leq s \leq p, \\ 1/s' & \text{if} \quad 2 \leq r \leq \infty, \ 2 \leq s \leq p \end{cases}$$

Because the square

$$Q_{I,p} := \{(1/r, 1.s) : p' < r < 2, 2 < s < p\}$$

does not appear in (4*), we have the open problem wether identity holds for all r and s in (4).

$$\frac{\lambda_{\mathbf{I}}(\mathbf{r},\mathbf{s},\pi_{\mathbf{p}})}{2 < \mathbf{n} < \infty}$$

§ 8. LITTELWOOD OPERATORS IN 1 n-SPACES.

In the following n rangs over the set of all natural numbers $n=2^k$ with $k=1,2,\ldots$. The symmetric Littlewood operators $A_n=(\alpha \binom{n}{ik})$ are defined inductively by (cf. [20])

$$A_2 := \begin{pmatrix} 1, & 1 \\ 1, & -1 \end{pmatrix}$$
 , ..., $A_{2n} := \begin{pmatrix} A_n, & A_n \\ A_n, & -A_n \end{pmatrix}$, ...

Then

$$A_n^2 = n I_n$$
 and $\alpha_{ik}^{(n)} = -1$.

The limit orders $\lambda_A(r,s,\pi_p)$ and $\lambda_A(r,s,\nu_p)$ are introduced in the same way as in the case of identity operators.

Lemma 12 : If $\alpha + \beta \le 2$,

$$\lambda_{A}(r,s,\pi_{p}) \leq \alpha \quad \text{and} \quad \lambda_{A}(s,r,\nu_{p}) \leq \beta$$

then

$$\lambda_{\Lambda}(\mathbf{r}, \mathbf{s}, \pi_{\mathbf{p}}) = \alpha \quad \text{and} \quad \lambda_{\Lambda}(\mathbf{s}, \mathbf{r}, \mathbf{v}_{\mathbf{p}}) = \beta$$
.

Proof : Since

$$n^2 = trace(n I_n) \leq \pi_n(\Lambda_n: 1_r^n \rightarrow 1_s^n) \vee_{n'} (\Lambda_n: 1_s^n \rightarrow 1_r^n)$$

we have

$$2 \leq \lambda_{\text{A}}(\mathbf{r},\mathbf{s},\pi_{\text{p}}) + \lambda_{\text{A}}(\mathbf{s},\mathbf{r},\nu_{\text{p}},) \leq \alpha + \beta \leq 2 \ .$$

Consequently, identity holds.

Lemma 13 : If $2 \le s \le \infty$ then

$$\lambda_{A}(r,s,\|.\|) \leq 1/s.$$

 $\frac{\text{Proof}}{\text{Proof}}$: Since the operator $n^{-1/2}A_n$ is unitary we have

$$\|A_n: 1_2^n \to 1_2^n\| \le n^{1/2}$$
.

On the other hand, because $|\alpha_{ik}^{(n)}|=1$, it follows that

$$\left\|A_n: 1_1^n \to 1_\infty^n\right\| \le 1 ...$$

Finally, if $2 \le s \le \infty$, the M. Riesz' connexity theorem implies

$$\|A_n: 1_s^n, \to 1_s^n\| \le n^{1/s}$$

Lemma 14

$$\lambda_{A}(1,2,v_{1}) \leq 1/2$$
.

Proof: The result follows from

$$\begin{split} v_{1}(A_{n}: 1_{1}^{n} \to 1_{\infty}^{n}) &= \pi_{1}(A_{n}: 1_{1}^{n} \to 1_{\infty}^{n}) \\ &= \pi_{1}(I_{n}: 1_{1}^{n} \to 1_{2}^{n}) \|A_{n}: 1_{2}^{n} \to 1_{2}^{n} \| \|I_{n}: 1_{2}^{n} \to 1_{\infty}^{n} \| \\ &\leq c_{L} n^{1/2} ... \end{split}$$

The limit orders $\lambda_{A}(r,s,\|.\|)$ and $\lambda_{A}(s,r,v_{1})$

By lemma 6 and 13 we have

$$\begin{split} \lambda_{\mathbf{A}}(\mathbf{r},\mathbf{s},\|.\|) &\leq \lambda_{\mathbf{I}}(\mathbf{r},2,\|.\|) + \lambda_{\mathbf{A}}(2,2,\|.\|) + \lambda_{\mathbf{I}}(2,\mathbf{s},\|.\|) \\ &\leq \begin{cases} (1/2 - 1/\mathbf{r}) + 1/2 + (1/\mathbf{s} - 1/2) & \text{if } \mathbf{r} \geq 2, \ 2 \geq \mathbf{s}, \\ 0 &+ 1/2 + (1/\mathbf{s} - 1/2) & \text{if } \mathbf{r} \leq 2, \ 2 \geq \mathbf{s}, \\ (1/2 - 1/\mathbf{r}) + 1/2 + 0 & \text{if } \mathbf{r} \geq 2, \ 2 \leq \mathbf{s} \end{cases}. \end{split}$$

On the other hand we obtain

$$\lambda_{A}(r,s,\|.\|) \le \lambda_{I}(r,s',\|.\|) + \lambda_{A}(s',s,\|.\|)$$

$$\le 0 + 1/s \quad \text{if} \quad r \le s' \quad \text{and} \quad 2 \le s,$$

and

$$\begin{split} \lambda_{A}(\mathbf{r}, \mathbf{s}, \|.\|) &\leq \lambda_{A}(\mathbf{r}, \mathbf{r}', \|.\|) + \lambda_{I}(\mathbf{r}', \mathbf{s}, \|.\|) \\ &\leq 1/\!\! r' + 0 \quad \text{if} \quad \mathbf{r} \leq 2 \quad \text{and} \quad \mathbf{r}' \leq \mathbf{s} \ . \end{split}$$

Summarizing the results we have

(5)
$$\lambda_{A}(\mathbf{r}, \mathbf{s}, ||.||) \leq \begin{cases} 1/\mathbf{r}' + 1/\mathbf{s} - 1/2 & \text{if } 2 \leq \mathbf{r} \leq \infty, 1 \leq \mathbf{s} \leq 2, \\ 1/\mathbf{s} & \text{if } 1 \leq \mathbf{r} \leq 2, 1 \leq \mathbf{s} \leq \mathbf{r}', \\ 1/\mathbf{r}' & \text{if } \mathbf{s}' \leq \mathbf{r} \leq \infty, 2 \leq \mathbf{s} \leq \infty. \end{cases}$$

With the known values of $\lambda_{T}(s,r,v_{1})$ we obtain

$$\lambda_{\Lambda}(s,r,v_{1}) \leq \lambda_{T}(s,1,v_{1}) + \lambda_{\Lambda}(1,r,||.|| \leq 1 + 1/r,$$

and

$$\lambda_{\Lambda}'(s,r,v_1) \leq \lambda_{\Lambda}(s,\infty,\|.\|) + \lambda_{T}(\infty,r,v_1) \leq 1/s'+1 .$$

On the other hand it follows from lemma 14 that

$$\lambda_{A}(s,r,v_{1}) \leq \lambda_{I}(s,1,\|.\|) + \lambda_{A}(1,\infty,v_{1}) + \lambda_{I}(\infty,r,\|.\|)$$

$$\leq 1/s' + 1/2 + 1/r .$$

In each case, choosing the best result we obtain,

$$\lambda_{A}(s,r,v_{1}) \leq \begin{cases} 1/r + 1/s' + 1/2 & \text{if } 2 \leq r \leq \infty, 1 \leq s \leq 2, \\ 1/s' + 1 & \text{if } 1 \leq r \leq 2, 1 \leq s \leq r', \\ 1/r + 1 & \text{if } s' \leq r \leq \infty, 2 \leq s \leq \infty. \end{cases}$$

Finally, lemma 12 implies that identity holds in (5) and (5*).

$$\lambda_{\underline{\mathbf{A}}}(\mathbf{r},\mathbf{s},\|.\|)$$

The limit orders $\lambda_A(r,s,\pi_2)$ and $\lambda_A(s,r,\nu_2)$

Since

$$\lambda_{A}(\mathbf{r}, \mathbf{s}, \pi_{2}) \leq \lambda_{I}(\mathbf{r}, 2, \pi_{2}) + \lambda_{A}(2, \mathbf{s}, \|.\|)$$

we obtain, using the known values of $\lambda_{\tilde{I}}(r,2,\pi_1)$ and $\lambda_{\tilde{A}}(2,s,\|.\|)$,

(6)
$$\lambda_{A}(\mathbf{r}, \mathbf{s}, \pi_{2}) \leq \begin{cases} \sqrt{r' + 1/s} & \text{if } 1 \leq r \leq 2, \quad 1 \leq s \leq 2, \\ 1/2 + 1/s & \text{if } 2 \leq r \leq \infty, \quad 1 \leq s \leq 2, \\ 1/r' + 1/2 & \text{if } 1 \leq r \leq 2, \quad 2 \leq s \leq \omega, \\ 1/2 + 1/2 & \text{if } 2 \leq r \leq \infty, \quad 2 \leq s \leq \infty. \end{cases}$$

Finally, it follows from lemma 12 and $\lambda_A(s,r,\nu_2)=\lambda_A(s,r,\pi_2)$ that identity holds in (6)

$$\frac{\lambda_{\mathbf{A}}(\mathbf{r},\mathbf{s},\pi_2)}{2}$$

$\frac{1}{2} + \frac{1}{s}$	$\frac{1}{r}$ '+ $\frac{1}{s}$
1	$\frac{1}{r}$, $\frac{1}{2}$

The limit orders $\lambda_A(r,s,\pi_p)$ and $\lambda_A(s,r,\nu_p)$ with $1 \le p \le 2$

Since by theorem 2 and 2* for $1 \le r \le 2$, we have

$$\lambda_{A}(\mathbf{r}, \mathbf{s}, \pi_{p}) = \lambda_{A}(\mathbf{r}, \mathbf{s}, \pi_{2})$$
 and $\lambda_{A}(\mathbf{s}, \mathbf{r}, \nu_{p'}) = \lambda_{A}(\mathbf{s}, \mathbf{r}, \nu_{2})$

in the following we need only consider the case $2 \le r \le \infty.$ Since

$$\lambda_{A}(r,s,\pi_{p}) \leq \lambda_{I}(r,p,\pi_{p}) + \lambda_{A}(p,s,\|.\|)$$

we obtain, using the known values of $\lambda_{I}(r,p,\pi_{p})$ and $\lambda_{A}(p,s,\|.\|)$,

$$\lambda_{A}(r,s,\pi_{p}) \le 1/p + \begin{cases} 1/p' & \text{if } s \ge p', \\ 1/s & \text{if } s \le p'. \end{cases}$$

On the other hand it follows from

$$\lambda_{A}(r,s,\pi_{p}) \leq \lambda_{I}(r,r',\pi_{p}) + \lambda_{A}(r',s,\|.\|)$$

that

$$\lambda_{A}(r,s,\pi_{p}) \leq 1/r' + \begin{cases} 1/r & \text{if } s \geq r, \\ 1/s & \text{if } s \leq r. \end{cases}$$

In each case, choosing the best result we obtain

(7)
$$\lambda_{\Lambda}(\mathbf{r}, \mathbf{s}, \pi_{p}) \leq \begin{cases} 1 & \text{if } p' \leq \mathbf{r} \leq \infty, & p' \leq \mathbf{s} \leq \infty, \\ 1/p + 1/s & \text{if } p' \leq \mathbf{r} \leq \infty, & 1 \leq \mathbf{s} \leq p', \\ 1 & \text{if } 2 \leq \mathbf{r} \leq p', & \mathbf{r} \leq \mathbf{s} \leq \infty, \\ 1/\mathbf{r}' + 1/s & \text{if } 2 \leq \mathbf{r} \leq p', & 1 \leq \mathbf{s} \leq \mathbf{r}. \end{cases}$$

Moreover,

$$\lambda_{A}(s,r,\nu_{p'}) \leq \lambda_{A}(s,\infty,\|.\|) + \lambda_{I}(\infty,r,\nu_{p'})$$

$$\leq 1/s + \begin{cases} 1/r & \text{if } r \leq p', \\ 1/p' & \text{if } r \geq p', \end{cases}$$

and

$$\begin{array}{l} \lambda_{A}(s,r,\nu_{p},) \leq \lambda_{A}(s,2,\nu_{p},) + \lambda_{I}(2,r,\|.\|) \\ \\ \leq \lambda_{A}(s,2,\nu_{p}) \leq 1 \quad \text{if} \quad 2 \leq s \leq \infty. \end{array}$$

Consequently,

$$(7*) \qquad \lambda_{A}(s,r,\nu_{p'}) \leq \begin{cases} 1 & \text{if } p' \leq r \leq \infty, & p' \leq s \leq \infty, \\ 1/p' + 1/s' & \text{if } p' \leq r \leq \infty, & 1 \leq s \leq p', \\ 1 & \text{if } 2 \leq r \leq p', & r \leq s \leq \infty, \\ 1/r + 1/s' & \text{if } 2 \leq r \leq p', & 1 \leq s \leq r. \end{cases}$$

Finally, lemma 12 implies that identity holds in (7) and (7*).

$$\frac{\lambda_{A}(r,s,\pi_{1})}{1}$$

$$\frac{\lambda_{A}(\mathbf{r},s,\pi_{p})}{1 \leq p \leq 2}$$

The limit orders $\lambda_A(\mathbf{r}, \mathbf{s}, \pi_p)$ and $\lambda_A(\mathbf{s}, \mathbf{r}, \nu_{p'})$ with $2 \le p \le \infty$

Since by theorem 3 and 3* for $1 \le s \le 2$ we have

$$\lambda_{A}(\mathbf{r}, \mathbf{s}, \pi_{p}) = \lambda_{A}(\mathbf{r}, \mathbf{s}, \pi_{2})$$
 and $\lambda_{A}(\mathbf{s}, \mathbf{r}, \nu_{p},) = \lambda_{A}(\mathbf{s}, \mathbf{r}, \nu_{2})$

in the following we need only consider the case $2 \le s \le \infty$.

From (7*) and

$$\lambda_{A}(\mathbf{r}, \mathbf{s}, \pi_{p}) \leq \lambda_{A}(\mathbf{r}, \mathbf{s}, \mathbf{v}_{p})$$

On the other hand, we have

$$\lambda_{A}(s,r,v_{p'}) \leq \lambda_{I}(s,p',v_{p'}) + \lambda_{A}(p',r,||.||)$$

$$\leq 1/p' + \begin{cases} 1/p & \text{if } p \leq r, \\ 1/r & \text{if } p \geq r, \end{cases}$$

and

$$\begin{split} \lambda_{A}(s,r,\nu_{p},) &\leq \lambda_{I}(s,2,\|.\|) + \lambda_{A}(2,2,\nu_{p},) + \lambda_{I}(2,r,\|.\|) \\ &\leq (1/2 - 1/s) + 1 + (1/r - 1/2) \quad \text{if} \quad 1 \leq r \leq 2 \text{ and } 2 \leq s \leq \infty \ . \end{split}$$

In each case, choosing the best result we obtain

$$\lambda_{\mathbf{A}}(s,r,\nu_{p'}) \le \begin{cases} \sqrt{r} + \sqrt{s'} & \text{if } 1 \le r \le 2, \ 2 \le s \le p, \\ 1 & \text{if } p \le r \le \infty, \ 2 \le s \le p, \\ \sqrt{r} + \sqrt{p'} & \text{if } 1 \le r \le p, \ p \le s \le \infty, \\ 1 & \text{if } p \le r \le \infty, \ p \le s \le \infty. \end{cases}$$

Because the square

$$Q_{A,p} := \{ (1/r), 1/s \}: 2 < r < p, 2 < s < p \}$$

does not appear in (8*), we have the open problem wether identity holds for all \dot{r} and s in (8).

$$\frac{\lambda_{A}(r,s,\pi_{p})}{2$$

Final remark (Cf. end of part I)

Let L_r and L_s be infinite dimensional. Then $P_p(L_r, L_s)$ is strictly increasing

- 1) if $2 \le r \le \infty$, $1 \le s \le 2$, and $r' \le p \le 2$ since $\lambda_A(r,s,\pi_p) = 1/p + 1/s$, 2) if $1 \le r \le 2$, $2 \le s \le \infty$, and $2 \le p \le s$ since $\lambda_A(r,s,\pi_p) = 1/p + 1/r'$, 3) if $2 \le r \le \infty$, $2 \le s \le \infty$, and $r' \le p \le s$ since $\lambda_I(r,s,\pi_p) = 1/p$.

BIBLIOGRAPHIE

- [16] D.J.H. Garling and Y. Gordon: Relations between some constants associated with finite dimensional Banach spaces, Israel J. Math. 9 (1971) 346-361.
- [17] Y. Gordon: On the projection and Macphail constants of 1_n^p -spaces, Israel J. Math. 6 (1968) 295-302.
- [18] Y. Gordon: On p-absolutely summing constants of Banach spaces, Israel J. Math. 7 (1969) 151-163.
- [19] B. Grunbaum : Projections constants, Trans. Amer. Math. Soc. 95 (1960) 451-465.
- [20] J.E. Littlewood: On bounded bilinear forms in an infinite numbers of variables, Quart. J. Math. (Oxford) 1 (1930) 164-174.
- A. Pelczyński: p-integral operators commuting with group represen-[21] tations and examples of quasi-p-integral operators which are not p-integral, Studia Math. 33 (1969) 19-62.
- [22] D. Rutowitz: Some parameters associated with finite dimensional Banach spaces, J. London Math. Soc. 40 (1965) 241-255.
- P. Saphar : C. R. Acad. Sc. Paris 266 A (1968) 526-528, 809-811; [23]268 A (1969) 528-531.
- [24] P. Saphar : Produits tensoriels d'espaces de Banach et classes d'applications linéaires, Studia Math. 38 (1970) 71-100.
- [25] L. Schwartz : Measure cylindriques et applications radonifiantes dans les espaces de suites, Proc. Int. Conf. Funct. Analysis and Rel. Topics, Tokyo 1969.
- A. Tong : Diagonal nuclear operators in $l_{\rm p}$ spaces, Trans. Amer. Math. Soc. 143 (1969) 235-247. [26]