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1 0 INTRODUCTION.

This exposition describes a coerciveness inequality for a class

of nonelliptic operators due to J. It. Schulenberger and C. 11. Wilcox [3],

iF5), its proof and some of its applications.

The nonelliptic operators considered here occur in the study of

symmetric hyperbolic systems of the form

where

an III . (column) matrix over t, the coefficients E(x) , A ; are
’ ’ 

1 2 n

m .1 m Hermitian matrices over 0152, E(x) is positive definite and A1, A TiI n

are constant. This class of equation provides a unified description of

the wave equations of classical physics. Examples include the elastic

waves in a variety of inhomogeneous anjsotropic media [7].

The systems (0.1) can be written in the Schr8dinger form

where

is formally selfadjoint with respect to the inner product

(llere denotes the Hermitian ar1tjoint of u . It will be assumed that

E(x) is l,c-,besgue measurab]e. bounded and ianifomly positive definite on IR n

It follows that

(i), -)) [u: u(x) is Ij measurable, 
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is a Hilbert space and if

then A : is selfadjoint [7l. This implies that

is a solution operator for the Cauchy problem for (0.1).

For the study of the properties of U(t) it is important to know

whether A is coercive on It is well known that if ~I is coercive on

D(A) then A must be elliptic ; cf. ~r3~. This means that if

denotes the symbol of A then

Unfortunately, the operators A that arise in classical physics are not

elliptic [31. However, most of them have the weaker property

where k is an integer [3]. Such operators will be said to have constant

deficit k. This property repleaces ellipticity in the coerciveness theorem

described below.
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~ ~ THE COERCIVENESS THEOREM.

Theorem 1.1 : : that

(1.1) E(x) and D . E~x~ are continuous an.d bounded on nD.
J

Then A is coercive on ’! the orthogonal complement in K of the

nullspace N(A). This means that

and there exists a constan.t c &#x3E;0 such that

Theorem ~.. ~ : If the hypotheses of theorem 1.1 hold and

(1.6) DCtE(x) is continuous and bounded on :nD for 

then

and there exists a constant c &#x3E;0 such that
q

The proofs of these results are given in [3] and [5]. The idea

of these proofs are sketched below.
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9 2. A PROOF OF THE COERCIVENESS THEOREM.

The idea of the proof in [3j is to construct an augmental opera-
tor

whe re

is chosen so that

and

Condition (2.3) implies that A" is coercive on its domain. ; that is

and

Moreover, (2.4) implies

A1 so whence Thus

Combining (2.5), (2.6) and (2.8) gives the coerciveness of A on N(A)i ;
i.e. (1.4), (1.5)

The difficulty with the progra.m outlined above is that, in genial,
there is n.o first order differential operator A’ which satisfies (2.3) and

(2.4). In [5] A’ is constructed as follows.
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where r is a circle about ~= 0 which contains n.o n.on.zero eigen.value of

A The possibility of doing this follows from the constant deficit

condition (1.3) ; see [5]. Then

Define

Fourier transform ,

so that

Define

with symbol

In general, A’ is not a differential operator. However, ran.k A’ (p,x) =
for and rank for xEm.n. Moreover,

0 
A 0 = 0. The proof of theorem 1.1 in [3] is based on. these

two properties and follows the general plan of the usual proof of G&#x26;rding’s

in.equality.

The proof of theorem 1.2 is based on theorem 1.1 and an induction

of q. The details are given in [3,§6].

. Sarason [2] has recently given an.other proof of theorem 1.1

which is shorter and technically easier than the one outlined above. An

outline of his proof is given below.
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§ 3. A S PROOF DUE TO L. SARASON.

Notation : u : -. Rn _,cmrepresents an m x 1 matrix-valued function.

It follows that A.: is selfadjoint.

It is evident that

It follows from these relations and the equivalen.ce of the n.orms Ilull and
that theorem 1.1 is equivalent to

Theorem 3.1 : : Under thehypotheses of theorem 1.1

an.d there exists a constant c &#x3E; 0 suche that
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Sarason’s proof of theorem 3.1 is based o~, the following three

lemmas.

Lemma 3.2 : : ran.k A(p~ = m ~ k f or all pEmD- (0 ) # A is coercive on 

that is

and there exists a constant c&#x3E;0 such that

This result can be proved easily by Fourier analysis ; see for

example [3 ].

Then there exists a constant C, depending on max
x ERn

such that

This result expresses the main idea of Sarason’ s proof. Let

be a mollifier in the sense of Friedrichs and

Lemma 3.4 : a If UED(A) n (E an.d

then and
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Proof of theorem 3.1 : Under the hypotheses of lemma 3.3, =A u and

Ilul 110 ::; Ilu II 0 . Thus lemma 3.2 implies

Combining this with (3.17) gives

that is, (3.13) for n(EN(A))B It follows from lemma 3.4 that if

then 

The proof of theorem 3.1 is completed by making E -0 and using (3.21.

9 4. APPLICATIONS (1F THE COERCIVENESS THEOREM.

I° $egg)£j,ity theory for the Cauch problem

is the solution of the Cauchy problem

Problem : : Find conditions on f and A which guarantee that

exist (in some sense).

Now

reduces A .
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Moreover

Thus

where

Application of theorem 1.2 implies that the derivatives (4.3) exist for
t E IRIand a1+ ... + a . In fact, we can provet~IR and a I n facty we can prove

Theorem 4. . : Under the hypotheses of theorem 1.2, if then.

: q[n/2]+l+ 1 then-- ..- - y -. -..- , 
’

This follows from (4.8) and the Sobolev imbedding theorems.

20) Other applications

The coerciveness theorem has been used to study the point spectrum and

continuous spectrum of A [4 J an.d to prove the existen.ce and completeness

of the wave operators in scattering theory for A [1,6].
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