SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

J. Cl. Tougeron

Idéaux fermés de fonctions C^{∞} (fin)

Séminaire Équations aux dérivées partielles (Polytechnique) (1970-1971), exp. nº 19, p. 1-5

http://www.numdam.org/item?id=SEDP 1970-1971 A19 0>

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1970-1971, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

17, RUE DESCARTES - PARIS V Téléphone : MÉDicis 11-77 (633)

SEMINAIRE GOULAOUIC - SCHWARTZ 1970 - 1971

1DEAUX FERMES DE FONCTIONS C (Fin)

par J. Cl. TOUGERON

Exposé Nº 19 3 Mars 1971

Dans cet exposé, nous donnons quelques applications du théorème fondamental. Nous démontrons d'abord le théorème suivant (B. Malgrange [1]): un idéal de $\mathcal{E}(\Omega)$ engendré par un nombre fini de fonctions analytiques sur Ω , est fermé. Puis nous donnons quelques brèves indications sur une extension de ce théorème (J. Cl. Tougeron et J. Merrien [3]).

§ 1. MODULES DE FRECHET.

<u>Définition 1.1</u>: Un module M sur $\mathcal{E}(\Omega)$ est un module de présentation finie (resp. un module de Fréchet) si $M \simeq \mathcal{E}(\Omega)^q | N$ où N est un sous-module de type fini de $\mathcal{E}(\Omega)^q$ (resp. N est un sous-module fermé de type fini de $\mathcal{E}(\Omega)^q$).

Notons $\widetilde{\mathfrak{F}}(\Omega)$ l'anneau $\prod_{\mathbf{x}\in\Omega}\mathfrak{F}_{\mathbf{x}}$ des champs de séries formelles sur l'ouvert Ω . On a une injection canonique L_{Ω} :

$$\mathcal{E}(\Omega) \ni \mathbf{f} \to (\mathbf{T}_{\mathbf{x}} \mathbf{f})_{\mathbf{x} \in \Omega} \in \mathfrak{F}(\Omega)$$
.

Preuve: Supposons que $M \cong \mathcal{E}(\Omega)^q \mid N$, où N est un sous-module de type fini de $\mathcal{E}(\Omega)^q$. On vérifie que ker $L_M = \widehat{N} \mid N$, où $\widehat{N} = \bigcap_{\mathbf{x} \in \Omega} (N + \underline{m}_{\mathbf{x}}^{\infty} \cdot \mathcal{E}(\Omega)^q) = \{f \in \mathcal{E}(\Omega)^q \mid \forall \mathbf{x} \in \Omega, T_{\mathbf{x}} f \in T_{\mathbf{x}} N\}$. D'après le théorème spectral de Whitney, $\widehat{N} = N$ si et seulement si N est fermé, d'où le résultat.

Soit \mathcal{E}_n l'anneau des germes de fonctions à valeurs réelles, C^∞ à l'origine de \mathbf{R}^n ; \mathfrak{F}_n l'anneau des germes de champs de séries formelles à l'origine.

<u>Définition 1.3</u>: Un sous-module N de \mathcal{E}_n^q sera dit "<u>fermé</u>" s'il est induit par un sous-module fermé de $\mathcal{E}(\Omega)^q$, où Ω est un voisinage ouvert convenable de l'origine de \mathbb{R}^n .

Un module M sur \mathcal{E}_n est un <u>module de Fréchet</u> si $\mathtt{M} \cong \mathcal{E}_n^q \big| \mathtt{N}$ où N est un sous-module fermé de type fini de \mathcal{E}_n^q .

Par localisation, on déduit facilement de la proposition 1.2 le :

§ 2. LE CAS ANALYTIQUE.

Soit \mathcal{O}_n l'anneau des germes de fonctions analytiques réelles à l'origine de \mathbb{R}^n . Le résultat suivant est une formulation du théorème de cohérence d'Oka (Malgrange, [1]) :

Proposition 2.1 : L'anneau \mathfrak{F}_n est un \mathfrak{S}_n -module plat.

Preuve : On a une suite exacte :

$$0 \to \mathcal{E}_n \to \widetilde{\mathfrak{J}}_n \to \widetilde{\mathfrak{J}}_n \mid \mathcal{E}_n \to 0 \qquad ,$$

d'où une suite exacte

$$0 = \operatorname{Tor}_{1}^{\mathcal{O}_{n}}(\mathfrak{M}, \widetilde{\mathfrak{F}}_{n}) \to \operatorname{Tor}_{1}^{\mathcal{O}_{n}}(\mathfrak{M}, \widetilde{\mathfrak{F}}_{n} \mid \mathcal{E}_{n}) \to \mathfrak{M} \otimes_{\mathcal{O}_{n}}^{\mathcal{E}_{n}} \overset{L}{\to} (\mathfrak{M} \otimes_{\mathcal{O}_{n}}^{\mathcal{E}_{n}}) \otimes_{\mathcal{E}_{n}^{\widetilde{\mathfrak{F}}_{n}}}^{\widetilde{\mathfrak{F}}_{n}}.$$

Le module $\mathfrak{M} \otimes_{\overset{\bullet}{\mathcal{O}}} \overset{\epsilon}{n}$ est de présentation finie sur $\overset{\epsilon}{\epsilon}_n$ (car \mathfrak{M} est de présentation finie sur l'anneau noethérien $\overset{\bullet}{\mathcal{O}}_n$); d'après 1.4, $\mathfrak{M} \otimes_{\overset{\bullet}{\mathcal{O}}_n} \overset{\epsilon}{\epsilon}_n$ sera un module de Fréchet si et seulement si L est injective, i.e. $\operatorname{Tor}_1^n(\mathfrak{M}, \widetilde{\mathfrak{F}}_n | \overset{\epsilon}{\epsilon}_n) = 0$.

 $\frac{\text{Th\'eor\`eme 2.3}}{\text{module de Fr\'echet sur \mathcal{E}_n}}: \text{Soit \mathbb{M} un \mathcal{O}_n-module de type fini. Le module $\mathbb{M} \otimes_{\mathbb{N}}^{\mathcal{E}_n}$ est un}$

<u>Preuve</u>: On procède par récurrence sur la dimension de Krull dim(\mathfrak{M}) du module \mathfrak{M} . Si dim(\mathfrak{M}) = 0, le module $\mathfrak{M} \otimes_{\mathcal{O}_{\mathbf{n}}}^{\mathcal{E}}$ est un R-espace vectoriel de dimension finie, et donc un module de Fréchet. Supposons que dim(\mathfrak{M}) = n-k > 0.

On a une suite de sous-modules de $\mathfrak{M}: 0=\mathfrak{M}_0\subset \mathfrak{M}_1\subset \ldots \subset \mathfrak{M}_p=\mathfrak{M}$ telle que pour tout $i=0,\ldots,p-1$, $\mathfrak{M}_{i+1}|\mathfrak{M}_i \cong \mathfrak{S}_n|\mathfrak{p}_i$, où \mathfrak{p}_i est un idéal premier lel que dim $(\mathfrak{S}_n|\mathfrak{p}_i) \leq n-k$, i.e. ht $\mathfrak{p}_i \geq k$. En utilisant la suite exacte des Tor, on voit que $\operatorname{Tor}_1^n(\mathfrak{M}, \widetilde{\mathfrak{F}}_n|\mathfrak{E}_n)=0$ dès que $\operatorname{Tor}_1^n(\mathfrak{S}_n|\mathfrak{p}_i)=0$ pour $i=0,\ldots,p-1$. Pour la démonstration, on peut donc supposer que $\mathfrak{M}=\mathfrak{S}_n|\mathfrak{p}$, où \mathfrak{p} est un idéal premier de hauteur k.

Soient ϕ_1,\ldots,ϕ_s des fonctions, analytiques sur un voisinage ouvert Ω de l'origine de \mathbf{R}^n , et engendrant sur \mathcal{O}_n l'idéal μ . En choisissant les ϕ_i de façon convenable, on peut supposer qu'il existe une fonction analytique γ sur Ω telle que :

$$\delta.\phi_{j} \in (\phi_{1}, \ldots, \phi_{k}) \text{ pour } j = k+1, \ldots, s ; \delta \in J_{k}(\phi_{1}, \ldots, \phi_{k}) ;$$

le germe δ_0 de δ à l'origine n'appartient pas à μ .

Puisque δ n'est pas diviseur de zéro dans $\mathcal{O}_n \mid \mu$, δ n'est pas diviseur de zéro dans $\widetilde{\mathfrak{F}}_n \mid \mu$. $\widetilde{\mathfrak{F}}_n$ (en effet, d'après 2.1, $\widetilde{\mathfrak{F}}_n$ est plat sur \mathcal{O}_n ; donc, si la multiplication par δ est une injection de $\mathcal{O}_n \mid \mu$ dans $\mathcal{O}_n \mid \mu$, c'est aussi une injection de $\widetilde{\mathfrak{F}}_n \mid \mu$. $\widetilde{\mathfrak{F}}_n$; cela signifie, en diminuant Ω si nécessaire, que : $\forall x \in V(1)$, $\delta_x = T_x \delta$ n'est pas diviseur de zéro dans $\mathfrak{F}_x \mid T_x I$, où I est l'idéal de $\mathcal{E}(\Omega)$ engendré par ϕ_1, \dots, ϕ_s .

Posons I' = I + δ . $\mathcal{E}(\Omega)$: si Ω est assez petit, I' est fermé (en effet l'idéal μ + δ . \mathcal{O}_n est de hauteur > k, et l'on applique l'hypothèse de récurrence). D'après le théorème fondamental, l'idéal I est fermé. L'idéal β . \mathcal{E}_n induit par I à l'origine est donc fermé. Il en résulte que $\mathfrak{M} \otimes_{\mathcal{O}_n} \mathcal{E}_n = \mathcal{E}_n | \mu$. \mathcal{E}_n est un module de Fréchet.

 $\left| \begin{array}{c} \underline{\text{Corollaire 2.5}} \end{array} \right| : \quad \text{Les anneaux $\widetilde{\mathfrak{J}}_n$, $\widetilde{\mathfrak{J}}_n$} \left| \mathcal{E}_n^{}, \; \mathcal{E}_n^{} \; \text{sont des \mathcal{O}_n-modules plats.} \right|$

 $[\]frac{\text{une suite exacte}}{(\bullet)} \ \underset{\text{dans } \widetilde{\mathfrak{J}}_n}{\text{dans }} | \mathbf{k} \cdot \widetilde{\mathfrak{J}}_n)$

$$0 = \operatorname{Tor}_{2}^{\mathfrak{S}_{n}}(\mathfrak{M}, \widetilde{\mathfrak{F}}_{n} | \mathcal{E}_{n}) \rightarrow \operatorname{Tor}_{1}^{\mathfrak{S}_{n}}(\mathfrak{M}, \mathcal{E}_{n}) \rightarrow \operatorname{Tor}_{1}^{\mathfrak{S}_{n}}(\mathfrak{M}, \widetilde{\mathfrak{F}}_{n}) = 0.$$

Ainsi, $\operatorname{Tor}_{1}^{\mathcal{O}_{n}}(\mathfrak{M}, \mathcal{E}_{n}) = 0$, et donc \mathcal{E}_{n} est un \mathcal{O}_{n} -module plat.

Enfin, soient Ω un ouvert de \mathbb{R}^n ; $\mathcal{O}(\Omega)$ l'anneau des fonctions à valeurs réelles, analytiques sur Ω ; \mathbb{R} un sous-module de type fini de $\mathcal{O}(\Omega)^q$. D'après 2.4, $\mathbb{V} \times \in \Omega$, le module $\mathbb{R}.\mathcal{E}_{\mathbb{X}}$ engendré par \mathbb{R} dans $\mathcal{E}_{\mathbb{X}}^q$ ($\mathcal{E}_{\mathbb{X}}$: anneau des germes de fonctions à valeurs réelles, \mathbb{C}^∞ en \mathbb{X}) est fermé. Il en résulte, par une partition de l'unité, que $\mathbb{R}.\mathcal{E}(\Omega)$ est un sous-module fermé de $\mathcal{E}(\Omega)^q$ et donc (en posant $\mathbb{M}=\mathcal{O}(\Omega)^q \mid \mathbb{R}$) que $\mathbb{M}\otimes_{\mathcal{O}(\Omega)} \mathcal{E}(\Omega)$ est un module de Fréchet sur $\mathcal{E}(\Omega)$. Ainsi :

 $Corollaire\ 2.6$: Soit $\mathfrak M$ un module de présentation finie sur $\mathcal O(\Omega)$. Le module $\mathfrak M\otimes_{\mathcal O(\Omega)}\mathcal E(\Omega)$ est un module de Fréchet sur $\mathcal E(\Omega)$.

Corollaire 2.7 : Le sous-module de $\mathcal{E}(\Omega)^q$ engendré sur $\mathcal{E}(\Omega)$ par des fonctions f_1, \ldots, f_p appartenant à $\mathcal{O}(\Omega)^q$ est fermé.

§ 3. EXTENSION DU THEOREME.

Notons $C^{\infty}(n,p)$ l'ensemble des germes $\Phi = (\Phi_1, \dots, \Phi_p)$ d'applications C^{∞} de \mathbb{R}^n dans \mathbb{R}^n telles que $\Phi(0) = 0$; $\mathfrak{F}(n,p)$ l'ensemble des $\Psi = (\Psi_1, \dots, \Psi_p)$ où les Ψ_i appartiennent à l'idéal maximal \underline{m} de $\mathbb{R}[[x_1, \dots, x_n]]$; enfin, posons, si q est un entier ≥ 0 , $\mathfrak{F}^q(n,p) = \mathfrak{F}(n,p) / \underline{m}^{q+1} \cdot \mathfrak{F}(n,p)$.

Soit π_q la projection canonique : $\mathfrak{F}(n,p) \to \mathfrak{F}^q(n,p)$; si $q' \ge q$, notons $\pi_{q,q'}$ la projection canonique : $\mathfrak{F}^{q'}(n,p) \to \mathfrak{F}^q(n,p)$. Donnons-nous dans chaque $\mathfrak{F}^q(n,p)$ une variété algébrique (au sens ensembliste) V_q , de telle sorte que \forall q: $\pi_{q,q+1}(V_{q+1}) \subset V_q$. Posons $V = \varprojlim_{q \ge 0} V_q = \bigcap_{q \ge 0} \pi_q^{-1}(V_q)$. La suite q = codim $\mathfrak{F}^q(n,p) = 0$ $\mathfrak{F}^q(n,p) =$

algébrique de codimension égale à $\lim_{q\to\infty} dq$.

Définition 3.1 : Une propriété (P) relative aux éléments de $C^{\infty}(n,p)$ est générale, s'il existe dans $\mathfrak{F}(n,p)$ une provariété algébrique de codimension infinie V, telle que tout $\Phi \in C^{\infty}(n,p) \setminus T^{-1}(V)$ satisfasse à (P).

 $\label{eq:propriete} \begin{array}{l} \text{Visiblement, si la propriété (P) est générale, à tout jet d'ordre} \\ q: \xi \in \mathfrak{F}^q(n,p), \text{ on peut associer un entier } q' > q \text{ et un point } \xi' \in \pi_{q,q}^{-1}(\xi), \\ \text{tels que tout } \phi \in T^{-1}(\pi_{q'}^{-1}(\xi')) \text{ satisfasse à (P).} \end{array}$

Soit \mathcal{O}_p l'anneau des germes de fonctions analytiques réelles à l'origine de \mathbb{R}^p . Un germe d'application $\Phi \in C^\infty(n,p)$ définit un holomorphisme de \mathbb{R} -algèbres $\Phi^*: \mathcal{O}_p \ni f \to f$ of $\Phi \in \mathcal{E}_n$, et munit donc \mathcal{E}_n d'une structure de \mathcal{O}_p -module. Ceci dit, le théorème 2.3 se généralise comme suit :

Théorème 3.2 : Soit M un module de type fini sur \mathcal{O}_p . En général, si Φ décrit $C^\infty(n,p)$, le module $\mathfrak{M}\otimes_{\overline{\Phi}} \mathcal{E}_n$ est un module de Fréchet sur \mathcal{E}_n et $Tor_1^{\overline{\Phi}}(\mathfrak{M},\mathcal{E}_n)$ est un \mathbb{R} -espace vectoriel de dimension finie.

En fait, on a un résultat plus précis : on associe au module \mathbb{R} un nombre fini de "strates" analytiques au voisinage de \mathbb{R}^p et l'on montre que \mathbb{R}^p est un module de Fréchet si Φ est transverse sur chacune de ces strates. La transversalité de Φ sur une strate étant une propriété générale (Tougeron, [2]), on en déduit le théorème 3.2. Pour les démonstrations, nous renvoyons à Tougeron et Merrien, [3].

BIBLIOGRAPHIE.

- [1] B. Malgrange: Ideals of differentiable functions, Oxford Univ. Press, 1966.
- [2] J. Cl. Tougeron : Idéaux de fonctions différentiables, 1, Ann. Inst. Fourier 18.1, 1968.
- [3] J. Cl. Tougeron et J. Merrien : Idéaux de fonctions différentiables, 2, Ann. Inst. Fourier 20.1, 1970.