SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

LÉON EHRENPREIS

Analyse de Fourier sur des ensembles non-convexes

Séminaire Équations aux dérivées partielles (Polytechnique) (1970-1971), exp. nº 17, p. 1-3

http://www.numdam.org/item?id=SEDP_1970-1971____A17_0

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1970-1971, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

17, RUE DESCARTES - PARIS V
Téléphone : MÉDicis 11-77
(633)

S E M I N A I R E G O U L A O U I C - S C H W A R T Z 1 9 7 0 - 1 9 7 1

ANALYSE DE FOURIER SUR DES ENSEMBLES NON - CONVEXES

Par Léon EHRENPREIS

Exposé N° 17

Un exposé détaillé sur ce sujet sera publié au volume IX des Symposia Mathematica. On ne trouvera ici qu'un bref résumé.

Avant d'étudier l'analyse de Fourier sur des ensembles nonconvexes, c'est-à-dire la représentation par une intégrale de Fourier de fonctions définies sur des ensembles non-convexes, rappelons quelques résultats dans le cas convexe (Cf. Ehrenpreis [1]).

Soit Ω un ouvert borné convexe de \mathbb{R}^n , $C^\infty(\Omega)$ sera muni de la topologie habituelle, de la convergence uniforme des fonctions et de toutes leurs dérivées ; son dual est ainsi l'espace $\mathcal{E}'(\Omega)$ des distributions à support compact dans Ω . Si $T \in \mathcal{E}'(\Omega)$, on définit sa transformée de Fourier par

$$\hat{T}(z) = \langle T, exp | i \langle x, z \rangle \rangle, z \in \mathbb{C}^n.$$

Soit $\hat{\mathcal{E}}'(\Omega)$ l'espace de ces transformées de Fourier, sur lequel on transporte la topologie de $\hat{\mathcal{E}}'(\Omega)$. Soit \mathbb{X} l'ensemble des fonctions k continues positives sur \mathbf{C}^n telles que, pour tout $\mathbf{F} \in \hat{\mathcal{E}}'(\Omega)$, sup $\frac{|\mathbf{F}(\mathbf{z})|}{k(\mathbf{z})} < +\infty$. Alors la topologie de $\hat{\mathcal{E}}'(\Omega)$ est définie par les semi-normes sup $\frac{|\mathbf{F}(\mathbf{z})|}{k(\mathbf{z})}$. En revenant à l'espace $\mathbf{C}^{\infty}(\Omega)$, on a le résultat suivant : pour tout $\mathbf{f} \in \mathbf{C}^{\infty}(\Omega)$, il existe une mesure bornée μ sur \mathbf{C}^n et une fonction $\mathbf{k} \in \mathbb{X}$ (non uniques) telles que :

$$f(x) = \int \exp i \langle x, z \rangle \cdot \frac{d\mu(z)}{k(z)}$$
.

La "transformée de Fourier" $\frac{d\mu}{k}$ de f \mathbf{E} C $^{\infty}(\Omega)$ est donc caractérisée uniquement par des conditions de croissance. Ce n'est plus aussi simple si Ω n'est pas convexe.

Prenons pour simplifier une fonction d'une variable, C^{∞} à support

dans [-1,1]. Soit 0 < a < 1.

Théorème : f est nulle au voisinage de [-a,a] si et seulement s'il existe $\epsilon > 0$ tel que pour tout (z_0,w_0) voisin de (0,1) dans C^2 , on ait

$$|F(tz_0, tw_0)| = 0 (exp(-t(a+\epsilon)^2))$$
 quand $t \to +\infty$.

Ici F désigne la transformée de Fourier quadratique de f :

$$T(z,w) = \int f(x) \exp (ixz - x^2w) dx$$

F satisfait à l'équation de la chaleur $\frac{\partial F}{\partial w} = \frac{\partial^2 \pi}{\partial z^2}$, avec la condition initiale F(z,0) = f(z).

On peut donner de ce résultat une démonstration banale ou bien considérer (l'idée est due à A. Martineau) que F(z,-iw) est la transformée de Fourier (ordinaire) de f(x) "transportée sur la parabole $y=x^2$ ", ie. de la distribution g(x,y)=f(x) $\delta(y-x^2)$. Alors f est nulle sur [-a,a] si et seulement si le support de g est contenu dans l'ensemble convexe défini par $a^2 \le y \le 1$, $x^2 \le y$. On est alors ramené à appliquer le théorème classique de l'aley-Wiener sur un ensemble convexe. On peut même remplacer cet ensemble par un cône convexe dont le sommet est sur l'axe x=0.

Far les propriétés connues de l'équation de la chaleur, on déduit du théorème précédent que f (mêmes hypothèses) s'annule au voisinage de [-a,a] si et seulement si

$$\frac{1}{\sqrt{tw_0}} \int \hat{\mathbf{f}}(\mathbf{z}) \exp \frac{(tz_0 - \mathbf{z})^2}{tw_0} \cdot d\mathbf{z} = 0 \left(\exp(-t(\mathbf{a} + \varepsilon)^2)\right).$$

quand $t \rightarrow +\infty$.

A partir de ce corollaire on peut démontrer la propriété des lacunes de l'équation des ondes :

$$\frac{\partial^2 \mathbf{u}}{\partial \mathbf{t}^2} = \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}_1^2} + \dots + \frac{\partial^2 \mathbf{u}}{\partial \mathbf{x}_n^2}.$$

La résolution du problème de Cauchy permet d'exprimer u(t,x) au moyen des condition initiales u(o,x) et $\frac{\partial u}{\partial t}$ (o,x). En particulier

$$u(1,0) = \langle S, u(0,x) \rangle + \langle T, \frac{\partial u}{\partial t} (0,x) \rangle,$$

où S et T sont des distributions dans le plan t=0. Dire que l'opérateur des ondes a une lacune, c'est dire que S et T sont nulles au voisinage de l'origine. En appliquant le corollaire à l'étude des zéros de S et T, on obtient le résultat : l'opérateur des ondes n'a pas de lacune si n=1 ou si n est pair.

[1] EHRENTREIS Léon, Fourier Analysis in several complex variables, John Wiley, New-York, 1970.