SÉMINAIRE ÉQUATIONS AUX DÉRIVÉES PARTIELLES - ÉCOLE POLYTECHNIQUE

K. Zizi

Sur les travaux de Birman-Entina concernant les perturbations des opérateurs auto-adjoints par des opérateurs de classe trace

Séminaire Équations aux dérivées partielles (Polytechnique) (1970-1971), exp. nº 14, p. 1-7

http://www.numdam.org/item?id=SEDP 1970-1971 A14 0>

© Séminaire Équations aux dérivées partielles (Polytechnique) (École Polytechnique), 1970-1971, tous droits réservés.

L'accès aux archives du séminaire Équations aux dérivées partielles (http://sedp.cedram.org) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

ÉCOLE POLYTECHNIQUE

CENTRE DE MATHÉMATIQUES

17, RUE DESCARTES - PARIS V Téléphone : MÉDicis 11-77 (633)

SEMINAIRE GOULAOUIC-SCHWARTZ 1970-1971

SUR_LES_TRAVAUX_DE_BIRMAN_ENTINA_CONCERNANT_LES_PERTURBATIONS
DES_OPERATEURS_AUTO_ADJOINTS_PAR_DES_OPERATEURS_DE_CLASSE_TRACE

par K. ZIZI

Exposé Nº 14 20 Janvier 1971

L'objet initial de ce papier était d'exposer les travaux de Birman ([1], [2], [3], [4]), avec des démonstrations parfois nouvelles mais sans aucun résultat nouveau.

En raison des circonstances, nous avons été amené à renoncer à ce projet dans le cadre du séminaire[6]. Aussi me contenterais-je, dans les pages qui suivent, de signaler comment l'emploi d'un théorème (Asano) permet d'alléger certaines démonstrations de Birman et Entina dans leur travail [1].

On se met dans les conditions posées dans [1].

Données

Soit H un espace de Hilbert.

Soient H, H o deux opérateurs auto-adjoints, de domaines respectifs : $D(H) = D(H_0)$;

 $E(\lambda)$, $E_0(\lambda)$ lears mesures spectrales,

R(z), $R_0(z)$ les résolvantes pour $Im(z) \neq 0$.

On pose

$$V = H - H_{o}$$

$$Q_{z}^{o} = I + V R_{o}(z)$$

$$Q_{z} = I - V R(z)$$

Il est facile de voir, à l'aide des formules des résolvantes et des définitions ci-dessus, que l'on a :

(i)
$$R(z) - R_o(z) = -R_o(z) V R(z) = -R(z) V R_o(z)$$

(ii)
$$R_0(z) = R(z)Q_z^0$$
, $R(z) = R_0(z)Q_z$

(iii)
$$Q_z^*(R_0(z) - R_0(\bar{z})) = (R(z) - R(\bar{z}))Q_z^0$$
.

Objectif:

On sait que dans la théorie de la diffusion, on se pose le problème de prouver l'existence des opérateurs d'ondes W₊ définis par :

$$W_{\pm} = s - \lim_{t \to \pm \infty} e^{itH} e^{-itH}_{0} P_{0}$$
 (1)

où P désigne le projecteur sur le sous-espace absolument continu de H c'est-à-dire :

 $P_{o}\mathcal{K} = \left\{u \in \mathcal{K} : \left\|E_{o}(\lambda)u\right\|^{2} \quad \text{est une mesure absolument continue} \right.$ par rapport à la mesure de Lebesgue $d\lambda$. (P désigne l'équivalent pour H).

Dans un premier temps, on affaiblit (1), c'est-à-dire que l'on cherche la limite faible $\widetilde{\mathbb{W}}_+$ de \mathbb{W}_+

$$(\widetilde{W}_{\underline{+}} f | g) = \lim_{t \to \pm \infty} (e^{itH} e^{-itH} \circ P_{o} f | g)$$

$$= \lim_{t \to \pm \infty} (e^{-itH} \circ f | e^{-itH} g) \quad \text{où } f \in P_{o} \mathcal{K}.$$

On affaiblit une deuxième fois, en remarquant que si : $\lim_{t\to\infty} \psi(t)$ existe, alors :

$$\lim_{\epsilon \to 0} 2\epsilon \int_0^{+\infty} e^{-2\epsilon t} \, \psi(t) \, dt$$

existe et est égale à lim $\psi(t)$. Donc

$$(\widetilde{W}_{\underline{t}}f|g) = \lim_{\epsilon \to 0^{\pm}} \int_{0}^{\pm \infty} 2\epsilon \left(e^{-\epsilon t} e^{-itH} e^{-itH} e^{-itH} g\right) dt$$

or :

$$Y(t) e^{-\varepsilon t} e^{-itA} f = \int_{-\infty}^{+\infty} R(A, z) f e^{i\mu t} d\mu, \text{ avec } z = \mu - i\varepsilon,$$

se présente comme une transformée de Fourier. D'après la formule de Plancherel,

$$\begin{split} (\widetilde{\mathbb{W}}_{\underline{+}} \mathbf{f} \, \big| \, \mathbf{g}) &= \lim_{\varepsilon \to 0} \, \frac{2\varepsilon}{2\pi} \int_{-\infty}^{+\infty} \left(\mathbf{R}_{\mathbf{0}} (\mathbf{z}) \mathbf{f} \, \big| \, \mathbf{R} (\mathbf{z}) \, \mathbf{g} \right) \, \mathrm{d} \mu \quad , \quad \mathbf{z} = \mu \mp \mathrm{i} \, \varepsilon \\ &= \lim_{\varepsilon \to 0} \, \frac{\varepsilon}{\pi} \, \int_{-\infty}^{+\infty} \left(\mathbf{R} (\bar{\mathbf{z}}) \, \mathbf{R}_{\mathbf{0}} (\mathbf{z}) \, \mathbf{f} \, \big| \, \mathbf{g} \right) \, \mathrm{d} \mu \quad , \quad \mathbf{z} = \mu \mp \mathrm{i} \, \varepsilon \end{split}$$

omme $D(H) = D(H_0)$ et tenant compte des relations définissant Q_Z^0 $= \lim_{\epsilon \to 0} \frac{\epsilon}{\pi} \int_{-\infty}^{+\infty} (R(\bar{z}) R(z) (H-z) R_0(z) f | g) d\mu$ $= \lim_{\epsilon \to 0} \frac{\epsilon}{\pi} \int_{-\infty}^{+\infty} (R(\bar{z}) R(z) Q_Z^0 f | g) d\mu , \quad z = \mu \mp i\epsilon .$

Comme : $z - \overline{z} = \pm 2i\varepsilon$ = $\lim_{\epsilon \to 0} \frac{1}{2\pi i} \int_{-\infty}^{+\infty} ((R(z) - R(\overline{z})) Q_z^0 f | g) du$, $z = \mu^+ i\varepsilon$.

D'après un théorème de Fatou (qui sera contenu dans le théorème [5] que nous utiliserons)

$$\lim_{\varepsilon \to 0} \frac{1}{2\pi i} \left((R(z) - R(\bar{z})) f | g \right) = \frac{1}{2\pi i} \frac{d}{d\mu} \left(E(\mu) f | g \right) \quad p. \quad p.$$

$$z = \mu^{\pm} i \varepsilon.$$

Si, d'autre part, $\lim_{\epsilon \to 0} Q_{\mu^{\pm} i \epsilon}^{0} f$ existe, limite que nous noterons par :

$$Q_{\mu \bar{+} i \, 0}^{0} f$$
 , et que la fonction :

$$\left[\frac{\mathbf{d}}{\mathbf{d}\lambda}\left(\mathbf{E}(\lambda)\ \mathbf{Q}_{\mathbf{u}+\mathbf{i}\,\mathbf{o}}^{\mathbf{o}}\ \mathbf{f}\,|\,\mathbf{g}\right)\right]_{\lambda=\mathbf{u}}$$

définit une fonction intégrable, on aura alors (sous réserve que $\lim_{\epsilon \to 0} \int = \int \lim_{\epsilon \to 0}$)

$$\left(\widetilde{W}_{\underline{+}} f \mid g\right) = \int_{-\infty}^{+\infty} \left[\frac{d}{d\lambda} E(\lambda) Q_{\mu \mp i o}^{o} f \mid g\right]_{\lambda = 1} d\mu . \qquad (2)$$

Observons que, partant de (1), on arrive à (2) en supposant que \mathbb{W}_{\pm} existe.

On va maintenant inverser le problème. On définit U par la formule intégrale (2), à laquelle il faudra donner un sens.

On montre alors que $U_{\underline{+}}$ (sous l'hypothèse que V est nucléaire) réalise une isométrie de $P_{\underline{0}}\mathcal{H}$ sur $P\mathcal{H}$, avec l'équivalence :

$$U_{\underline{+}} H_{o} = H U_{\underline{+}}$$
.

On montre aussi que U sont égaux à la limite faible $\widetilde{\mathbb{W}}_{\underline{+}}$; mais alors il est facile de voir que

$$\mathbf{U}_{\underline{+}} = \mathbf{W}_{\underline{+}} .$$

Toute la difficulté est de démontrer les propriétés annoncées sur $U_{\underline{+}}$. Le passage de $U_{\underline{+}}$ à $\widetilde{W}_{\underline{+}}$ n'est cependant pas trivial.

Réalisation :

Théorème (Asano) [5] : Soit β un espace de Hilbert α une fonction de R dans β , à variation fortement bornée . On pose :

$$H(\alpha)(z) = \int_{-\infty}^{+\infty} \frac{d\alpha(t)}{t-z}$$
 Im $z \neq 0$

$$\mathfrak{K}(\alpha)(x) = V p \int_{-\infty}^{+\infty} \frac{d\alpha(t)}{t-x} \quad x \in \mathbb{R}$$
.

Alors :

- (i) $\mathcal{H}(\alpha)$ (x) existe p. p. $x \in \mathbb{R}$
- (ii) s-lim $H(\alpha)(z) \equiv H(\alpha)(x \pm i\sigma)$ existe dès que $\Re(\alpha)(x)$, et on a $\varepsilon \rightarrow \sigma (z = x \pm i\varepsilon)$

pour un tel x :

$$H(\alpha)(x \pm i o) = \mathcal{H}(\alpha)(x) \pm i \pi \frac{d\alpha}{dx}$$
.

En particulier :

$$[H(\alpha)(x+io)-H(\alpha)(x-io)]=2i\pi \frac{d\alpha}{dx}.$$

Birman et Entina s'appuient sur les lemmes suivants, après avoir posé :

$$\varphi_{\mu^{\pm}io} = \lim_{z \to \mu^{\pm}io} G_{o} R_{o}(z) f$$

$$\psi_{\mu^{\pm}io} = \lim_{z \to \mu^{\pm}io} G_{o} R(z) g$$
.

Lemme 1

] un ensemble négligeable N(f,g) tel que :

$$\frac{\mathbf{d}}{\mathbf{d}\lambda}$$
 (E(λ) $Q_{\mu^{\pm}io}^{0}$ f $|\mathbf{g}$) existe Ψ λ , $\iota \in \mathbb{N}$

et
$$\left[\frac{d}{d\lambda}(E(\lambda))Q_{\mu+io}^{o}f|g\right]_{\mu=\lambda} = \left[\frac{d}{d\lambda}(f|E^{o}(\lambda))Q(\mu+io)g\right]_{\lambda=\mu}$$

Lemme 2

] un ensemble négligrable N(f,g) tel que :

$$\frac{\mathbf{d}}{\mathbf{d}\lambda} \left(\mathbf{E}_{\lambda} \mathbf{Q}_{\mathbf{u} \pm \mathbf{i} \mathbf{o}}^{\mathbf{o}} \mathbf{f} \left| \mathbf{Q}_{\mathbf{v} \pm \mathbf{i} \mathbf{o}}^{\mathbf{o}} \mathbf{g} \right) \right. \mathbf{existe} \quad \forall \lambda, \mu, \nu \in \mathbf{N}$$

$$\mathrm{et} \qquad \left[\frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\mathrm{E}_{\lambda} \; \mathrm{Q}_{\mu^{\pm} i \, \mathbf{o}}^{\, \mathbf{o}} \; \mathbf{f} \; \big| \, \mathrm{Q}_{\mu^{\pm} i \, \mathbf{o}}^{\, \mathbf{o}} \; \mathbf{g} \right) \, \right]_{\mu = \lambda} \; = \; \frac{\mathrm{d}}{\mathrm{d}\lambda} \left(\mathrm{E}^{\, \mathbf{o}} (\lambda) \; \mathbf{f} \; \big| \, \mathbf{g} \right) \; .$$

Preuve du lemme 1 : Pour établir l'existence, il suffit d'abord de remarquer que le théorème d'Asano permet de conclure à l'existence p. p. de $\phi_{\mu \pm io}$ et $\phi_{\mu \pm io}$, en utilisant $\beta = \Re$ et $\alpha(\lambda) = G_o E(\lambda) f$ ou $\alpha(\lambda) = G_o E^o(\lambda) f$. Il est clair que α est alors à variation fortement bornée. D'autre part :

$$(E_{\lambda} Q_{\mu \pm i o}^{o} f | g) = (E_{\lambda} f | g) + (\varphi_{\mu \pm i o} | G * E(\lambda) g).$$

Le premier terme ne pose pas de problème. Et le deuxième non plus, car $\frac{d}{d\lambda}G^*$ $E(\lambda)g$ existe p. p. dans $\mathcal K$ (dérivée forte). D'où l'indépendance de l'ensemble négligeable par rapport à μ .

Pour avoir l'égalité, il faut partir de

$$([R(z)-R(\bar{z})]Q_z^0 f|g) = ((R_0(z)-R_0(\bar{z})) f|Q_z g)$$

et montrer avec le théorème d'Asano que, si $z \rightarrow \mu^{\pm}$ io, chacun des membres tend vers le terme correspondant du lemme 1.

Preuve du lemme 2 : Pour établir l'existence, il suffit de remarquer :

$$(E_{\lambda}Q_{\mu \pm i o}^{o} f | Q_{\nu \pm i o}^{o} g) = (E_{\lambda}Q_{\mu \pm i o}^{o} f | g) + (G * E(\lambda) f | \psi_{\nu \pm i o})$$
$$+ ((G * E(\lambda) G) \phi_{\mu \pm i o} | \psi_{\nu \pm i o}) .$$

Les deux premiers termes du membre de droite ont une dérivée dans les conditions voulues d'après le lemme 1.

Si on prend $f = \mathfrak{L}_2(\mathfrak{R}) = \text{espace de Hilbert form\'e par les op\'erateurs}$ de Hilbert-Schmidt, avec la norme : $\|A\|^2 = \text{trace }(A*A)$, et $\alpha(\lambda) = G*E(\lambda)G$; alors α est à variation fortement bornée, par suite $\frac{d}{d\lambda}G*E(\lambda)G$ existe fortement (p. p.) dans $\mathfrak{L}_2(\mathfrak{R})$.

L'ensemble négligeable où cette dérivée n'existe pas ne dépend ni de μ , ni de ν . On achève la démonstration à l'aide du théorème d'Asano, en partant de l'égalité :

$$((R(z)-R(\bar{z}))Q_z^0 f | Q_z^0 g) = ((R_0(z)-R_0(\bar{z}))f | g)$$

et en faisant : $z \rightarrow \mu^{\pm}io$.

On pose alors:

$$(U_{\underline{+}}f \mid g) = \int_{-\infty}^{+\infty} \left[\frac{d}{d\lambda} \left(E_{\lambda} Q_{\mu^{\pm}io}^{o} f \mid g \right) \right]_{\mu=\lambda} d\lambda$$

$$(U_{\underline{+}}^{o}f \mid g) = \int_{-\infty}^{+\infty} \frac{d}{d\lambda} \left(E_{\lambda}^{o} Q_{\mu^{\pm}io} f \mid g \right) \right]_{\mu=\lambda} d\lambda .$$

On a alors le

Théorème : U_{\pm} est une isométrie de $P_0\mathcal{K}$ sur $P\mathcal{K}$, l'adjoint de U_{\pm} est U_{\pm}^0 et: U_{\pm} $H^0 = HU_{\pm}$.

<u>Preuve</u> : Il est facile de montrer, à partir de l'inégalité :

$$\left| \left[\frac{d}{d\lambda} \left(E(\lambda) Q_{\mu^{\pm}io}^{o} f | g \right) \right]_{\mu=\lambda} \right|^{2} \leq \frac{d}{d\lambda} \left(E_{\lambda}^{o} f | f \right) \frac{d}{d\lambda} \left(E_{\lambda} g | g \right)$$

que l'on a ;

$$|(U_{+} f |g)| \le ||P_{0} f|| ||Pg||$$
.

D'après le lemme 1, on montre aussi que

$$\mathbf{U}_{\underline{+}}^{*} = \mathbf{U}_{\underline{+}}^{\mathbf{o}}$$

et aussi que :

$$E(\lambda) U_{\pm} = U_{\pm} E^{o}(\lambda)$$
.

Mais à partir du lemme 2, on peut montrer :

$$(\mathbf{U}_{\pm}\mathbf{f} | \mathbf{U}_{\pm}\mathbf{f}) = \int_{-\infty}^{+\infty} \frac{\mathrm{d}}{\mathrm{d}\lambda} (\mathbf{E}^{\mathbf{o}}(\lambda)\mathbf{f} | \mathbf{f}) = ||\mathbf{P}^{\mathbf{o}}\mathbf{f}||^2$$
.

Ce qui établit l'isométrie de U sur ${\tt P_o}^{\mathcal{H}}$. On montre aussi que

BIBLIOGRAPHIE

- [1] Birman-Entina: The stationary method in the abstract theory of scattering, Math. U.S.S.R. IZVESTIJA vol. 1 (1967) no 2.
- [2] Birman: A local criterion for the existence of wave operators, Math. U.S.S.R. IZVESTIJA vol. 2 (1968) nº 4.
- [3] A. L. Belopol(skii et Birman : The existence of wave operators in scattering theory for pairs of spaces,
 Math. U.S.S.R. IZVESTIJA vol. 2 (1968) n°5.
- [4] Birman : Scattering problems for differential operators with constant coefficients, (Translated from Funkisional' nyi Analiz i Ego Prilizheniya, vol. 3 nº 3).
- [5] Asano: Notes on Hilbert transforms of vector valued functions in the complex plane and their boundary values, Proc. Japan Acad. (1967) 572-577.
- [6] Le projet initial sera néanmoins publié dans la série des publications de Centre de Mathématiques de l'Ecole Polytechnique, N° M55.0271.