SÉMINAIRE DUBREIL. ALGÈBRE ET THÉORIE DES NOMBRES

MICHEL PAUGAM

Condition G_q d'Ischebeck-Auslander et condition S_q de Serre

Séminaire Dubreil. Algèbre et théorie des nombres, tome 26 (1972-1973), exp. nº 14, p. 1-12

http://www.numdam.org/item?id=SD_1972-1973__26__A13_0

© Séminaire Dubreil. Algèbre et théorie des nombres (Secrétariat mathématique, Paris), 1972-1973, tous droits réservés.

L'accès aux archives de la collection « Séminaire Dubreil. Algèbre et théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

21 mai 1973

CONDITION G D'ISCHEBECK-AUSLANDER ET CONDITION S DE SERRE par Michel PAUGAM

Le but de cet exposé est de montrer brièvement que la condition G_q , définie dans [12] et [1] pour les anneaux, peut également être définie pour les schémas localement noethériens et pour les modules. De plus, elle possède les mêmes propriétés que la condition S_q de Serre.

Tous les anneaux considérés sont commutatifs unitaires et noethériens. Tous les modules sont unitaires.

O. Préliminaires.

- 0.1. <u>Définition</u> ([2], § 2). Soient A un anneau, et M un A-module de type fini. Une suite $x = (x_1, x_2, \dots, x_n)$ d'éléments de A est appelée une M-suite si $xM \neq M$ et si x_i n'est pas diviseur de zéro dans $M/(x_0, x_1, \dots, x_{i-1})M$ pour $1 \leq i \leq n$, où $x_0 = 0$.
- 0.2. <u>Définition</u> ([2], 2-10). Soient A un anneau, M et N deux A-modules de type fini, et $\mathfrak A=$ ann M . Supposons $\mathfrak A=$ N . Alors toutes les N-suites maximales contenues dans $\mathfrak A=$ ont le même nombre d'éléments que l'on appelle le N-grade <u>de</u> M , et que l'on note grade M .
- 0.3. <u>Définition</u> [22]. Soit A un anneau local. On dit qu'un A-module de type fini non nul M est un module de Gorenstein si prof $_{A}$ M = dim $_{A}$ M

$$\operatorname{di}_{A} M = \operatorname{prof} A = \operatorname{dim} A$$
.

prof $_{\rm A}$ M désigne la profondeur du A-module M ([9], 16-4), di $_{\rm A}$ M désigne la dimension injective de M .

Pour M = A, on retrouve la définition des annuaux de Gorenstein ([2], 4-1).

0.4. <u>Définition</u> ([2], § 2). - Soient A un anneau et M un A-module ; on appelle <u>résolution</u> injective minimale de M une suite exacte

$$0 \longrightarrow M \longrightarrow E_0(M) \longrightarrow \cdots \longrightarrow E_i(M) \xrightarrow{\text{di}} E_{i+1}(M) \longrightarrow \cdots$$

telle que, pour tout $i \geqslant 0$, $E_i(M)$ est une enveloppe injective de ker di .

Si M est de type fini, on montre que

$$E_{i}(M) = \bigoplus_{p \in Spec(A)} \mu_{i}(p, M) E_{A}(A/p)$$
,

où μE désigne une somme directe de μ copies de E et E (A/p) est l'em l'em

injective de A/p (voir [2], 2-4, 2-6 et 2-7 pour les propriétés des μ_i).

Four les modules de Cohen-Macaulay ([9], 16-5), on connaît la proposition suivante:

0.5. PROFOSITION ([10], 6.3.3, p. 139) et ([13], 1.24). - Soient A et B deux anneaux locaux d'idéaux maximaux respectifs \mathfrak{m} , \mathfrak{n} , Soient k le corps résiduel de A, $\mathfrak{o}: A \to B$ un homomorphisme local tel que B soit A-plat, et M un A-module de type fini non nul; pour que M \mathfrak{D} B soit $\mathfrak{m}: B$ -module de Cohen-Macaulay, il faut et il suffit que M soit un A-module de Cohen-Macaulay et que B \mathfrak{D}_A k soit un anneau de Macaulay.

De plus, si dim K = m et si dim $B \otimes k = n$, alors

$$\mu_{m+n}^{B}(n, M \otimes B) = \mu_{m}^{A}(m, M) \cdot \mu_{n}^{B \otimes k}(n/mB, B \otimes_{A} k)$$
.

1. Résultats.

Nous allons établir un résultat similaire à celui de (0.5) pour les modules de Gorenstein. Démontrons d'abord deux lemmes.

1.1. LLIME. - Soient A et B deux ameaux locaux artiniens : soient b la corps résiduel de A, et φ : A -> b un homomorphisme local tel que B soit un A-module plat. Soit I un A-module de type fini non nul. Si I est un module injectif et si B \otimes A k est un anneau de Gorenstein, alors I \otimes A B est un B-module injectif.

Preuve. - Comme dim A = dim B = 0 . A et B sont des anneaux de Cohen-Macaulay (D'après (0.5), I \otimes_A B est un B-module de Cohen-Macaulay). Montrons que I \otimes_A B est B-injectif. Soit ℓ le corps résiduel de B . Soit $E_A(k)$ (resp. $E_B(\ell)$) l'enveloppe injective du A-module k (resp. du B-module ℓ). Si m désigne l'idéal maximal de A , on a :

$$\mu_{i}(m, I) = 0$$
 pour $i \neq 0$ ([22], 3.11 (ii)).

et $E_A(I) = I = \mu_0(m$, $I) E_A(k)$. Mais l'on a par ailleurs $E_A(k) \otimes_A B \cong E_B(\ell)$, car B est A-plat ([13], 6.15, page 80). On en déduit :

$$I \otimes_A B \simeq \mu_0^A(m, I) E_A(k) \otimes_A B \simeq \mu_0^A(m, I) E_B(\ell)$$

et I 3 B est un B-module injectif puisque somme directe de P-modules injectifs.

1.2. LEMME. - Soient A un anneau local de profondeur > 1, M un A-module de type fini non nul. Soit x un élément du radical de A, non diviseur de zéro dans M ni dans A. Alors M est de Gorenstein sur A .si, et seulement si, M/xM est un (A/xA)-module de Gorenstein.

<u>Preuve.</u> - Sous les hypothèses faites ci-dessus sur x, on sait que les foncteurs $\operatorname{Ext}_{\Lambda}^{\mathbf{r}}(., \mathbb{M})$ et $\operatorname{Ext}_{\Lambda/\Lambda}^{\mathbf{r}-1}(., \mathbb{M}/\mathfrak{m})$ définis sur le catégorie des $(\Lambda/\Lambda\Lambda)$ -modules de type fini sont isomorphes pour r > 1 [19].

D'autre part, on sant que :

prof A/
$$xA = \text{prof } A - 1$$
 et prof M/ $xM = \text{prof } M - 1$ [9],

et l'on a toujours : prof A \leqslant dim A et prof M \leqslant dim M \leqslant dim A . De plus, si di A M $<+\infty$ (resp. di A/xA M/xM $<+\infty$) alors

$$di_{A} H = prof A (resp. $di_{A/xA} M/xH = prof A/xA)$.$$

1° Si M est un 4-rodule de Gorenstein, on a, puisque dim A \geqslant 1 ,

$$\operatorname{Ext}_{A/xA}^{r-1}(.,M/xM) = 0$$
 pour $r > \dim A$;

par suite

$$di_{A/xA} M/xM \leq dim A - 1$$
.

Or dim A - 1 = prof A - 1 = prof A/xA, done

$$di_{A/xA}$$
 M/xM = dim A/xA = prof A/xA (car dim A/xA \leq dim A - 1).

Ermin,

prof M/xM = prof M - 1 = di _A/xA M/xM et prof M/xM \leq dim M/xM \leq dim A/xA entraînent :

$$prof M/xM = dim M/xM$$
.

2° Inversement, si M/xM est un (A/xA)-module de Gorenstein, alors :

et comme $\dim M/xM \leqslant \dim M \leqslant \dim M/xM + 1 = prof M \leqslant \dim M$, on a

De même, on a : dim A/xA < dim A < dim A/xA + 1 = prof A, et par suite

$$\dim A = \operatorname{prof} A$$
.

Reste à prouver que M est de dimension injective finie sur A . On utilise la suite spectrale ([5], p. 348, Cas 3):

$$\operatorname{Ext}_{A/xA}^p(\operatorname{Tor}_q^A(A/xA , N) , M/xM) \xrightarrow{q} \operatorname{Ext}_A^n(N , M/xM)$$

qui dégénère (puisque la dimension projective de A/xA est 1) et on a la suite exacte :

$$\cdots \longrightarrow \operatorname{Ext}^{\mathbf{r}}_{A/xA}(\frac{\operatorname{N}}{\operatorname{xN}}, \frac{\operatorname{M}}{\operatorname{xM}}) \longrightarrow \operatorname{Ext}^{\mathbf{r}}_{A}(\operatorname{N}, \frac{\operatorname{M}}{\operatorname{xM}}) \longrightarrow \operatorname{Ext}^{\mathbf{r}-1}_{A/xA}(\operatorname{Tor}_{1}^{A}(\frac{\operatorname{A}}{\operatorname{xA}}, \operatorname{N}), \frac{\operatorname{M}}{\operatorname{xM}})$$

$$\longrightarrow \operatorname{Ext}^{\mathbf{r}+1}_{A/xA}(\frac{\operatorname{N}}{\operatorname{xN}}, \frac{\operatorname{M}}{\operatorname{xM}}) \longrightarrow \operatorname{Ext}^{\mathbf{r}+1}_{A}(\operatorname{N}, \frac{\operatorname{M}}{\operatorname{xM}}) \longrightarrow \operatorname{Ext}^{\mathbf{r}}_{A/xA}(\operatorname{Tor}_{1}^{A}(\frac{\operatorname{A}}{\operatorname{xA}}, \operatorname{N}), \frac{\operatorname{M}}{\operatorname{xM}}) \longrightarrow \cdots$$

Si $di_{A/xA} M/xM = p$, on en déduit que

$$\operatorname{Ext}^{\mathbb{F}}_{\Lambda}(\mathbb{N}, \mathbb{M}/\mathbb{x}\mathbb{M}) = 0$$

pour r > p + 1 et pour tout A-module de type fini N . De la suite exacte

$$0 \longrightarrow M \xrightarrow{\mathbf{X}} M \longrightarrow M/xM \longrightarrow 0$$

on obtient alors une suite exacte

$$\operatorname{Ext}_{A}^{r-1}(\mathbf{N}, \frac{\mathbf{M}}{\mathbf{x}\mathbf{M}}) \longrightarrow \operatorname{Ext}_{A}^{r}(\mathbf{N}, \mathbf{M}) \xrightarrow{\mathbf{x}} \operatorname{Ext}_{A}^{r}(\mathbf{N}, \mathbf{M}) \longrightarrow \operatorname{Ext}_{A}^{r}(\mathbf{N}, \frac{\mathbf{M}}{\mathbf{x}\mathbf{M}})$$

qui montre que $\operatorname{Ext}^{\mathbf{r}}_{A}(\mathbb{N}, \mathbb{M}) = 0$ pour r assez grand et pour tout A-module de type fini \mathbb{N} , donc $\operatorname{di}_{A}\mathbb{M} < +\infty$, et $\operatorname{di}_{A}\mathbb{M} = \operatorname{prof} A$.

- 1.3. THEORÈME. Soient A et B deux anneaux locaux, k le corps résiduel de A, φ : A -> B un homomorphisme local tel que B soit un A-module plat. Soit M un A-module de type fini non nul.
- (i) Si M est de Gorenstein et si B \otimes_A k est un anneau de Gorenstein, alors M \otimes_A B est un B-module de Gorenstein, et l'on a

$$di_B M \otimes B = di_A M + di_{B \otimes k} B \otimes k$$
.

(ii) Si M⊗B est un B-module de Gorenstein, M est un A-module de Gorenstein.

Démonstration.

(i) M étant un A-module de Gorenstein, A est un anneau de Macaulay d'après (0.3). En vertu de (0.5) on peut donc supposer que A et B sont des anneaux de Macaulay et que $\mathbb{M} \otimes_{\widehat{A}} \mathbb{B}$ est un B-module de Macaulay. Soit $\widehat{\mathbb{X}}$ une A-suite et une M-suite maximale. Comme \mathbb{B} est A-plat, $\widehat{\mathbb{X}}$ est aussi une \mathbb{B} -suite. Posons

$$A' = A/xA$$
, $B' = B/xB$, $M' = M/xM$.

Soit \underline{y} une $(B' \otimes_{\underline{A}}, k)$ -suite maximale, alors \underline{y} est aussi une B'-suite ([13], 1.23), et si l'on pose $B'' = B'/\underline{y}B'$, B'' est A'-plat ([13], 1.23), et l'on a : $B'' \otimes_{\underline{A}}, k = \frac{B' \otimes_{\underline{A}}, k}{\underline{y}(B' \otimes_{\underline{A}}, k)}.$

Il en résulte que y est une B'-suite maximale puisque

dim B" = dim A' + dim B"
$$\otimes_{A'}$$
 k = 0 ([10], 6.1.2).

Mais alors $B'' \otimes_{A'} k$ est un anneau de Gorenstein de dimension nulle (puisque $B' \otimes_{A'} k = B \otimes_A k$ est un anneau de Gorenstein).

Par ailleurs, M' est un A'-module de Macaulay injectif d'après [22], 3.9 ou 1.2. Le lemme (1.1) indique que M'8_A, B" est un B"-module de Cohen-Macaulay injectif.

Si
$$y = (y_1, \dots, y_r)$$
, on a la suite exacte de A'-modules $0 \longrightarrow B' \xrightarrow{y_1} B' \longrightarrow B'/y_1 B' \longrightarrow 0$.

Comme B'/y, B' est A'-plat, on en déduit la suite exacte

$$0 \longrightarrow \texttt{M'} \otimes_{\texttt{A'}} \texttt{B'} \longrightarrow \texttt{M'} \otimes_{\texttt{A'}} \texttt{B'} \longrightarrow \texttt{M'} \otimes_{\texttt{A'}} (\texttt{B'}/\texttt{y}_1 \texttt{B'}) \longrightarrow 0$$

et on en conclut l'isomorphisme

$$M' \otimes_{\Lambda^{\dagger}} (B'/y_1 B') \simeq (M' \otimes_{\Lambda^{\dagger}} B')/(y_1 \cdot (M' \otimes_{\Lambda^{\dagger}} B'))$$

et en outre que y_1 est $(M' \gg_A, B')$ -régulier.

Par récurrence sur r , on a l'isomorphisme

$$M' \otimes_{A}, B'' \simeq (M' \otimes_{A}, B')/(y(M' \otimes_{A}, B'))$$

et le lemme (1.2) implique que $M' \otimes_A$, B' est un B'-module de Gorenstein. Mais on a aussi $M' \otimes_A$, $B' = (M \otimes_A B)/(\underline{x}(M \otimes_A B))$ et puisque \underline{x} est une A-suite et une M-suite, c'est aussi une B-suite et une $(M \otimes B)$ -suite, et (1.2) indique que $M \otimes_A B$ est un B-module de Gorenstein.

D'autre part, $\dim_{B}(M \otimes B) = \dim_{A} M + \dim B \otimes k$ ([10], 6.1.2). La derrière assertion de (i) découle alors de (0.3).

(ii) Supposons M \cap_A B de Gorenstein. Posons $\dim_B(\mathbb{M} \otimes \mathbb{B}) = p$. Pour tout A-module de type fini N , on a

 $\operatorname{Ext}_{A}^{\mathbf{i}}(\mathbb{N}, \mathbb{M}) \otimes_{A} \mathbb{B} = \operatorname{Ext}_{B}^{\mathbf{i}}(\mathbb{N} \otimes_{A} \mathbb{B}, \mathbb{M} \otimes_{A} \mathbb{B}) = 0$ pour $\mathbf{i} > \mathbf{p}$ ([20], prop. 18, IV, 31). Comme \mathbb{B} est fidèlement plat, on a

$$\operatorname{Ext}_{A}^{\mathbf{i}}(N, M) = 0 \text{ pour } i > p$$

et par suite,

$$di_A M \leqslant p$$
.

En outre, dim $M \otimes B = \dim B$ implique dim $M = \dim A$ et dim $M = \dim M = \dim M$. Par ailleurs, on sait que M est de Cohen-Macaulay (0.5), d'où

$$prof M = dim M = di M$$
.

1.4. DÉFINITION. Soit (A, m) un anneau local de Cohen-Macaulay de dimension n. On appelle rang d'un A-module de Gorenstein M le nombre $\mu_n^A(m, M)$.

Cette terminologie est utilisée par REITEN [18] qui a étudié l'existence des modules de Gorenstein de rang 1 (ou modules canoniques de [13]; voir aussi [23]).

1.5. THEOREME. - Soient A et B deux anneaux locaux de Cohen-Macaulay, k le corps résiduel de A, et φ : A -> B un homomorphisme local tel que B soit A-plat. Soit M un A-module de type fini non nul. Alors pour que M \otimes_A B soit un B-module de Gorenstein de rang 1, il faut et il suffit que M soit un A-module de Gorenstein de rang 1 et que B \otimes_A k soit un anneau de Gorenstein.

<u>Démonstration</u>. - Si M est un A-module de Gorenstein, et si $B \otimes_A k$ est un anneau de Gorenstein, alors $M \otimes_A B$ est un B-module de Gorenstein d'après (1.3), et de rang 1 d'après la dernière assertion de (0.5). Établissons la réciproque.

1° Si dim $A = \dim B = 0$ et si $M \otimes_A B$ est un B-module de Gorenstein de rang 1, alors M est un Amedule de Gorenstein en vertu de (1.3, ii) et de rang 1 (0.5). En outre, $B \otimes k$ est un anneau de Gorenstein d'artès le théorème de Dieudonné ([2], 2.8, p. 12).

2° Si dim A > 0 , on sait (1.3 (ii)) que M est un A-module de Gorenstein ; soit x une A-suite et une M-suite maximale ; x est aussi une B-suite. Posons

$$A' = \Lambda/xA$$
; $B' = B/xB$ et $M' = M/xM$

Scit y une (B' \otimes_A , k)-suite maximale; on sait que y est sussi une B'-suite et, comme dans la preuve de (1.3) si l'on pose B'' = B'/yB', $M' \otimes_A$, B'' est un B''-module de Gorenstein de rang 1, car si dim $M \otimes B = p$,

$$\mu_{p}^{B}(M \otimes_{A} B) = \mu_{0}^{B''}(M' \otimes_{A'} B'')$$
 ([2], 2.6).

D'après le premier cas, $B''\otimes_{A'}$ k est un anneau de Gorenstein, et comme on a l'isomorphisme $B''\otimes_{A'}$ k = $(B'\otimes_{A'}$ k)/ $(y(B'\otimes_{A'}$ k)), $B'\otimes_{A'}$ k = $B \otimes k$ est un enneau de Gorenstein (1.2).

1.6. THEOREME. - Soient A et B deux anneaux locaux, m l'idéal maximal de A, ϕ : A -> B un homomorphisme local tel que B soit A-plat. Alors B est un anneau de Gorenstein si, et seulement si, A et B/mB sont des anneaux de Gorenstein.

Preuve. - Prendre M = A dans (1.5).

Le théorème (1.3) généralise donc un résultat de HARTSHORNE ([11], prop. 96, page 297), WATANABE ([26], I, th. 1) et KUNZ-HERZOG ([13], 6.14).

Terminons ce paragraphe par un lemme utile pour la suite.

1.7. LEMME. - Soient A un anneau, M un A-module de type fini et $0 \longrightarrow \mathbb{M} \longrightarrow \mathbb{E}_{n} \longrightarrow \cdots \longrightarrow \mathbb{E}_{i} \longrightarrow \cdots$

une résolution injective minimale de M . Alors

- (a) $p \in Ass(E_i) \Rightarrow \mu_i(p, M) > 0$,
- (b) Si $p \in Supp M$ et si $dim M_p = i$, alors $\mu_i(p, M) > 0$.

Preuve.

(a) Soit $p \in Ass E_i$, alors il existe une suite execte $0 \longrightarrow A/p \longrightarrow E_i$, et par suite

$$\operatorname{Hom}_{A_{\mathfrak{p}}}(k(\mathfrak{p}), E_{i_{\mathfrak{p}}}) \neq 0$$
, où $k(\mathfrak{p}) = A_{\mathfrak{p}}/pA_{\mathfrak{p}}$.

Mais comme

$$\operatorname{Ext}_{A_{p}}^{i}(k(p), M_{p}) \simeq \operatorname{Hom}_{A_{p}}(k(p), E_{i_{p}})$$
 ([2], preuve de 2.7).

on a

$$\mu_0(p, E_i) = \mu_i(p, M) \neq 0$$
 d'après ([2], 2.7).

(b) Soit $p \in Supp M$ tel que dim $M_p = i$.

Soit $\mathfrak{p}_{\mathbf{i}} \subset \ldots \subset \mathfrak{p}_{\mathbf{1}} \subset \mathfrak{p}_{\mathbf{0}} = \mathfrak{p}$ une chaîne saturée maximale de Supp M . Alors $\mathfrak{p}_{\mathbf{i}}$

est minimal dans Supp M , donc $p_i \in Ass M$ et $\mu_0(p_i$, M) > 0 d'après (a) ; mais on en déduit que $\mu_i(p$, M) > 0 par ([2], 3.1).

2. La condition Gq .

Soient A un anneau, M un A-module de type fini, et q un entier. On dit que M vérifie la condition S_q de Serre si

prof
$$M_{\mathfrak{p}} \geqslant \min(q, \dim M_{\mathfrak{p}})$$

pour tout idéal premier p de A.

Dans tout ce qui suit, q désigne un entier non nul.

- 2.1. PROPOSITION. Soit A un anneau. Les assertions suivantes sont équivalentes pour un A-module M de type fini non nul.
- (i) Pour tout idéal premier p de A tel que prof M q < q , M p est un A p module de Gorenstein.
- (ii) M vérifie la condition S_q de Serre, et pour tout idéal p du support de M , tel que dim $M_p < q$, M_p est un A_p -module de Gorenstein.
 - (iii) Pour tout A-module de type fini L , grade $_{M}$ Ext $_{A}^{\mathbf{r}}(L$, M) \geqslant min(q , r) .

<u>Démonstration</u>. - L'équivalence de (i) et (ii) est immédiate. Montrons que (ii) entraîne (iii). Posons $E = \operatorname{Ext}^{\mathbf{r}}(L, M)$. Si $\operatorname{grade}_{M} E$ est infini, il n'y a rien à prouver ; sinon, soit $\mathfrak{p} \in \operatorname{Supp} E$. Il suffit, d'après [1], 4.3, de prouver que $\operatorname{grade}_{M} A/\mathfrak{p} \geqslant \min(q, r)$. Soit

$$0 \longrightarrow M \longrightarrow I_0 \longrightarrow I_1 \longrightarrow \cdots \longrightarrow I_r \stackrel{d}{\longrightarrow} I_{r+1} \longrightarrow \cdots$$

une résolution injective minimale de M . Considérons le complexe

$$0 \longrightarrow \operatorname{Hom}(\mathtt{L}, \mathtt{M}) \longrightarrow \operatorname{Hom}(\mathtt{L}, \mathtt{I}_{0}) \longrightarrow \ldots \longrightarrow \operatorname{Hom}(\mathtt{L}, \mathtt{I}_{r}) \stackrel{\alpha}{\longrightarrow} \operatorname{Hom}(\mathtt{L}, \mathtt{I}_{r+1}) \longrightarrow \ldots$$

et, pour $r \geqslant 1$, la suite exacte

$$0 \longrightarrow \operatorname{im} \, \overline{\operatorname{d}}_{r-1} \longrightarrow \operatorname{ker} \, \overline{\operatorname{d}}_r \longrightarrow \operatorname{Ext}^r \, \left(\operatorname{L} \, , \, \operatorname{M} \right) \longrightarrow 0 \, .$$

D'après [3] (chap. II, prop. 16, p. 133) on a

Supp $\operatorname{Ext}^{\mathbf{r}}(L, M) \subset \operatorname{Supp ker} \overline{\operatorname{d}}_{\mathbf{r}} \subset \operatorname{Supp Hom}(L, I_{\mathbf{r}})$ pour $r \geqslant 1$.

Il est d'autre part clair que Supp $\operatorname{Ext}^0(L$, M) \subset Supp $\operatorname{Hom}(L$, $\operatorname{I}_0)$. Comme

$$p \in \text{Supp } F$$
 , $p \in \text{Supp } L \cap \text{Supp } I_{\mathbf{r}}$ pour $\mathbf{r} \geqslant 0$;

d'après [4] (prop. 7, p. 136), $\exists q \in Ass I_r \text{ tel que } q \subset p$.

Mais $q \in Ass\ I_r$ implique $\mu_r(q, M) > 0$ d'après (1.7.a); de plus $M \neq 0$ en vertu de [2], 2.7, et aussi $q \cdot M \neq M$ (NAKAYAMA). De même, on a $M \neq 0$ et $pM \neq M$.

Par (0.2), on sait que $\operatorname{grade}_{M} A/q$ et $\operatorname{grade}_{M} A/p$ sont finis. Comme

$$grade_{M} A/q = inf \{prof M_{h}, b \in V(q)\}$$
 ([1], 4.5)

on a grade M A/q \leqslant grade M A/p puisque V(p) $_{c}$ V(q) . Il suffit donc de montrer que grade M A/q \geqslant min(q , r) .

Si r=0 , il n'y a rien à prouver. Supposons $r\geqslant 1$, et soit $\mathfrak{b}\in V(\mathfrak{q})$; on sait que $\mathfrak{b}\in Supp\ \mathbb{M}$.

Si dim $M_b < \min(q, r)$, alors M_q est un A_q -module de Gorenstein, donc $\mu_i(q, M) = 0$ pour $i \neq \dim M_q$ ([22], 3.6)

et en particulier dim M < r implique $\mu_{\mathbf{r}}(q,M)=0$, or $q\in Ass\ I_{\mathbf{r}}\Rightarrow \mu_{\mathbf{r}}(q,M)>0$ (1.7); on a donc nécessairement dim M $\geqslant \min(q,r)$ et, d'après (ii), on en déduit

et finalement

$$grade_{M} A/q \gg min(q, r)$$
.

Réciproquement, prouvons que (iii) implique (ii). Montrons d'abord que

prof $M_{\mathfrak{p}} \geqslant \min(q, \dim M_{\mathfrak{p}})$ pour tout $\mathfrak{p} \in \operatorname{Spec} A$.

Si $M_{p} = 0$, il n'y a rien à prouver, car prof $M_{p} = +\infty$ ([9], 16.4.5.).

Soit $p \in Supp M$, et posons dim $M_p = r$. D'après (iii), avec L = A/p, on a grade $E \geqslant min(q$, r). Par ailleurs,

dim $M_p = r \Rightarrow \mu_r(p, M) > 0 \Rightarrow E_p = Ext^r(\Lambda/P, M)_r \neq 0$ ([2], 2.7)

donc p = Ann E, et $p.M \neq M$ indique que grade_M E est fini (0.2). On déduit de [1], 4.5 que prof $M_p \geqslant \operatorname{grade}_M E \geqslant \min(q, \dim M_p)$.

Soit maintenant $p \in \text{Supp M}$ tel que $\dim M_p < q$; M_p est un A_p -module de Cohen-Macaulay puisque M vérifie S_q . D'après [22], 3.3, il suffit de montrer que $\mu^i(p,M)=0$ pour $i>\dim M_p$. Or s'il existe $i>\dim M_p$ tel que $\mu^i(p,M)\neq 0$, on en déduit comme ci-dessus que $\operatorname{grade}_M \operatorname{Ext}^i(A/p^n,M)$ est fini, et de [1], 4.3, on déduit que

$$\dim M_{p} = \operatorname{prof} M_{p} \geqslant \min(q, i)$$

ce qui est contradictoire.

2.2. DÉFINITION. - Soient A un anneau, et M un A-module de type fini non nul. On dit que M vérifie la condition G (ou que M est un G-module) s'il possède les trois propriétés équivalentes de la proposition (2.1).

Remarques. - Pour M = A, on retrouve la définition des G_q -anneaux de [12]. D'autres caractérisations des G_q -modules sont données dans [17] (Voir [21]).

2.3. PROPOSITION. - Soient A un anneau, M un A-module de type fini non nul, et (a) une A-suite et une M-suite. Soit $q \geqslant 2$. Si M est un G_q -module, M/aM est un G_{q-1} -module sur A/aA.

Il suffit d'utiliser le fait que, dans la catégorie des (A/aA)-modules de type fini, on a les isomorphismes de foncteurs [19]

$$\operatorname{Ext}_{A}^{r}(.,M) \simeq \operatorname{Ext}_{A/aA}^{r-1}(.,M/aM)$$
 pour $r \geqslant 1$

et ensuite la propriété (iii) de (2.1).

Si $\mathfrak p$ est un idéal premier de A , on désigne par $k(\mathfrak p)$ le corps résiduel de A $\mathfrak p$.

- 2.4. PROPOSITION. Soit φ : A \rightarrow B un homomorphisme d'anneaux tel que B soit A-plat, et soit M un A-module de type fini non nul, alors
- (i) Si φ est fidèlement plat et si $\mathbb{N} \otimes_{\mathbb{A}} \mathbb{B}$ est un \mathbb{G}_q -module, \mathbb{M} est un \mathbb{G}_q -module,
- (ii) Si M est un G_q -module et si pour tout idéal premier $\mathfrak p$ de A , B \otimes_A k($\mathfrak p$) est un G_q -anneau, alors M \otimes_A B est un G_q -module s'il est non nul.

Démonstration.

(i) Soit $p \in \text{Supp M}$, et soit q un idéal premier minimal au-dessus de p ([14], 5.D, th. 4, page 33).

$$\mathfrak{p} = \mathfrak{q}^{-1}(\mathfrak{q}) \Rightarrow \mathfrak{q} \in {}^{a}\mathfrak{p}^{-1}(\operatorname{Supp} M) = \operatorname{Supp}(M \otimes B) \qquad ([3], \text{ chap II, } \S 4, \text{ n° 4, prop. 19})$$
 et

$$(\mathbb{M} \otimes_{\mathbb{A}} \mathbb{B}) \otimes_{\mathbb{B}} \mathbb{B}_{q} = (\mathbb{M} \otimes_{\mathbb{A}} \mathbb{A}_{p}) \otimes_{\mathbb{A}_{p}} \mathbb{B}_{q} = \mathbb{M}_{p} \otimes_{\mathbb{A}_{p}} \mathbb{B}_{q}$$
.

Comme

$$\dim(B_q \otimes_{A_p} k(p)) = \operatorname{prof}(B_q \otimes_{A_p} k(p)) = 0,$$

on a en vertu de [10], 6.3.1,

$$\operatorname{prof}(M_{\mathfrak{p}} \otimes_{\mathbb{A}_{\mathfrak{p}}} B_{\mathfrak{q}}) = \operatorname{prof} M_{\mathfrak{p}}$$

car $A_{\mathfrak{p}} \longrightarrow B_{\mathfrak{q}}$ est un morphisme plat et local. Si prof $M_{\mathfrak{p}} < q$, alors

$$\operatorname{prof}(\mathbb{M}_{\mathfrak{p}}\otimes_{\mathbb{A}_{\mathfrak{p}}}\mathbb{B}_{\mathfrak{q}})<\mathfrak{q}$$
 ,

donc $M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} B_{\mathfrak{q}}$ est de Gorenstein, et $M_{\mathfrak{p}}$ est un $A_{\mathfrak{p}}$ -module de Gorenstein d'après (1.3 (ii)).

(ii) Soit $q \in \text{Supp}(M \otimes B)$ tel que $\text{prof}(M \otimes B)_q < q$ et soit $p = \phi^{-1}(q)$.

On a $\mathfrak{p}\in \text{Supp M}$ d'après la formule ci-dessus. L'homomorphisme $\mathbb{A}_{\mathfrak{p}}\longrightarrow \mathbb{B}_{\mathfrak{q}}$ est plat et local, et en outre

$$\operatorname{prof}(M_{\mathfrak{p}} \otimes_{A_{\mathfrak{p}}} B_{\mathfrak{q}}) = \operatorname{prof} M_{\mathfrak{p}} + \operatorname{prof}(B_{\mathfrak{q}} \otimes k(\mathfrak{p})) < q$$
 ([10], 6.3.1).

Or prof M < q entraı̂ne que M est un A module de Gorenstein et de même prof(B \otimes k(p)) < q implique que B \otimes k(p) est un anneau de Gorenstein (hypothèse). Le théorème (1.3) indique que (M \otimes B) est un B module de Gorenstein.

- 2.5. THEOREME. Soit φ : A -> B un homomorphisme d'anneaux tel que B soit A-plat.
- (i) Si ϕ est fidèlement plat et si B est un q-anneau, alors A est un q-anneau.
- (ii) Si A est un G_q -anneau et si B $\otimes_A k(\mathfrak{p})$ est un G_q -anneau pour tout idéal premier \mathfrak{p} de A , alors B est un G_q -anneau.
- 2.6. COROLLAIRE. Si A est un G_q -anneau, l'anneau des polynômes à une indéterminée A[X] est un G_q -anneau.
- 2.7. COROLLAIRE. Soit G un groupe abélien fini ; si A est un G_q -anneau, alors A[G] est un G_q -anneau.

Preuve. - Avec les notations ci-dessus, on a les isomorphismes d'anneaux

$$A[X] \otimes_A k(p) \simeq k(p)[X] \text{ et } A[G] \otimes_A k(p) \simeq k(p)[G]$$

or k(p)[X] est un anneau régulier ([9], 17.3.7), donc de Gorenstein, et

$$di k(p)[G] = 0$$

d'après [6] (§ 4, Cor 9', page 7). Le théorème (2.5) permet de conclure.

2.8. COROLLAIRE. - Soient k un corps commutatif, A une k-algèbre, k' une extension de k de degré fini, et soit A' = $A \otimes_k k'$. Alors A' est un G_q -anneau si, et seulement si, A est un G_q -anneau.

En effet, on sait que le morphisme canonique p: Spec A' \longrightarrow Spec A est fidèlement plat ([10], 2.2.13), et A' $\otimes_A k(p) \simeq k(p) \otimes_k k'$ est un anneau de Gorenstein d'après [26] (cor. 2, p. 416).

- 2.9. THÉORÈME (FOSSUM et REITEN [7], prop. 3). Soient A un anneau local, et x un élément A-régulier. Si A/xA est un G-anneau, alors A est un G-anneau.
- 2.10. COROLLAIRE [7]. Si A est un G_q -anneau, l'anneau des séries formelles à une indéterminée A[[X]] est un G_q -anneau.

Signalons à cette occasion que la démonstration du corollaire 1 de [16] est erronée. Le résultat énoncé est celui du corollaire (2.10), prouvé par les deux auteurs ci-dessus, qui ont aussi établit indépendamment (2.4).

Comme dans [10], 5.7.2, on peut définir la condition G_q pour les schémas localement noethériens (voir [16]) et compte tenu de (2.4), elle vérifie les mêmes propriétés que la condition S_q .

Les G_q anneaux ont été utilisés pour l'étude de la q-torsion des modules ([12] et [15]) et d'autres caractérisations ont été données dans [7].

BIBLIOGRAPHIE

- [1] AUSLANDER (M.) et BRIDGER (M.). Stable module theory. Providence, American mathematical Society, 1969 (Memoirs of the American mathematical Society, 94).
- [2] BASS (H.). On the ubiquity of Gorenstein rings, Math. Z., t. 82, 1963, p. 8-28.
- [3] BOURBART (N.). Algèbre commutative, chap. 1 et 2. Paris, Hermann, 1961 (Act. scient. et ind., 1290; Bourbaki, 27).
- [4] BOURBAKI (N.). Algèbre commutative, chap. 3 et 4. Paris, Hermann, 1967 (Act. scient. et ind., 1293; Bourbaki, 28).
- [5] CARTAN (H.) and EILENBERG (S.). Homological algebra. Princeton, Princeton University Press, 1956 (Princeton mathematical Series, 19).
- [6] EILENBERG (S.) and NAKAYAMA (T.). On the dimension of modules and algebras, II., Nagoya J. Math., t. 9, 1955, p. 1-16.
- [7] FOSSUM (R.) and REITEN (I.). Commutative n-Gorenstein rings, Math. Scand., t. 31, 1972, p. 33-48.
- [8] GRECO (S.) and SALMON (P.). Topics in m-adic topologies. Berlin, Sprin-ger-Verlag, 1971 (Ergebnisse der Mathematik, 58).
- [9] GROTHENDIECK (A.) et DIEUDONNÉ (J.). Eléments de géométrie algébrique, chapitre 4, première partie. Paris, Presses universitaires de France, 1964 (Institut des Hautes Etudes Scientifiques. Publications mathématiques, 20).
- [10] GROTHENDIECK (A.) et DIEUDONNÉ (J.). Eléments de géométrie algébrique, chapitre 4, seconde partie. Paris, Presses universitaires de France, 1965 (Institut des Hautes Etudes Scientifiques. Publications mathématiques, 24).
- [11] HARTSHORNE (R.). Residues and duality. Berlin, Springer-Verlag, 1966 (Lecture Notes in Mathematics, 20).
- [12] ISCHEBECK (F.). Eine Dualität zwischen den Funktoren Ext. und Tor., J. of Algebra, t. 11, 1969, p. 510-531.
- [13] KUNZ (E.) und HERZOG (J.). Vorträge in "Der kanonische Modul eines Cohen-Macaulay-Rings", p. 17-32. Berlin, Springer-Verlag, 1971 (Lecture Notes in Mathematics, 238).
- [14] MATSUMURA (H.). Commutative algebra. New York, W. A. BENJAMIN, 1970.
- [15] PAUGAM (M.). G-enneaux et condition (a) de Samuel, C. R. Acad. Sc. Paris, t. 274, 1972, Série A, p. 821-823.
- [16] PAUGAM (M.). La condition G de Ischebeck, C. R. Acad. Sc. Paris, t. 276, 1973, Série A, p. 109-112.
- [17] PAUGAM (M.). La condition G de Ischebeck pour les modules, C. R. Acad. Sc. Paris, t. 276, 1973, Série A, p. 1031-1033.
- [18] REITEN (I.). The converse to a theorem of Sharp on Gorenstein modules, Proc. Amer. math. Soc., t. 32, 1972, p. 417-420.
- [19] Séminaire Samuel : Algèbre commutative, 1966/1967 : Anneaux de Gorenstein et torsion en algèbre commutative. Paris, Secrétariat mathématique, 1967.
- [20] SERRE (J.-P.). Algèbre locale, multiplicités. Berlin, Springer-Verlag, (Lecture Notes in Mathematics, 11).
- [21] SHARP (R. Y.). The Cousin Complex for a module over a commutative noetherian ring, Math. Z., t. 112, 1969, p. 340-356.
- [22] SHARP (R. Y.). Gorenstein modules, Math. Z., t. 115, 1970, p. 117-139.

- [23] SHARP (R. Y.). On Gorenstein modules over a complete Cohen-Macaulay local ring, Quart. J. Math., Oxford Series 2, t. 22, 1971, p. 425-434.
- [24] SHARP (R. Y.). Cousin Complex characterizations of two classes of commutative noetherian rings, J. London. math. Soc., Series 2, **. 3, 1971, p. 621-624.
- [25] SHARP (R. Y.). The Euler characteristic of a finitely generated module of finite injective dimension, Math. Z., t. 130, 1973, p. 79-93.
- [26] WATANABE (K.), ISHIKAWA (T.), TACHIBANA (S.) and OTSUKA (K.). On tensor products Gorenstein rings, J. Math. Kyoto Univ., t 9, 1969, p. 413-423.

(Texte recu le 22 mai 1973)

Michel PAUGAM Université de Caen Mathématiques Esplanade de la Paix 14032 CAEN CEDEX