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The orderability condition for idempotent semigroups are studied by some authors :

M.-L. DUBREIL-JACOTIN [3] for idempotent semigroups with identity, T. MERLIER [4]
for finite idempotent semigroups, and T. SAITÔ [6] for commutative idempotent semi-
groups. The purpose of this note is to give orderability conditions for general

idempotent semigroups. The detailed version [7J will appear elsewhere.

The terminologies of CLIFFORD and PRESTON [2] are used throughout. Let E be a

semilattice with respect to a partial order  . E is called a tree semilattice,

if, for every a E E , the set ~~ E E ; ~ ~ a~ is a simply ordered set. Let a

be an element of a tree semilattice E . We define a binary relation - on the set

Ua= ~~ c~  ~ by

Then - is an equivalence relation on U . Each --equivalence class is called

a branch at a .

Let S be an idempotent semigroup. Then S is a semilattice of rectangular
bands (D ; cy F S*} , and the decomposition of S into (D ; 03B1 E S*) coinci-

des with the decomposition of S into 0-classes. The semilattice S* is called

the associated semilattice of S .

Let S be an idempotent semigroup such that the associated semilattice S* is a

tree semilattice and let D be a 0-class of S . Let S be a branch of S* at

D E S* . Then, the subset B = x e S ; of S is called the com p onent-
branch at D associated with the branch i8 .

If a ~-class D of an idempotent semigroup S consists of one ~.-class, then
D is called of L-type, while if D consists of one ~-.class, then D is called

of R-type.

By an ordered semigroup S , we mean a semigroup S with a simple order $ sa-

tisfying the condition

for x, y, Z E S, x  y implies xz  yz and zx  zy .

A semigroup S is called orderable if there exists a simple order $ on S

such that the system S(. , $) is an ordered semigroup.

Here we refer to some preliminary lemmas :

LEMMA 1 ( ~ 5 3, theorem 3). - The associated semilattice S* of an ordered idem-



potent semigroup S is a tree semilattice.

LEMMA 2 ([5L theorem l). - In an ordered idempotent semigroup S , each 0-class

consists of either one E-class or one R-class.

LEMMA 3[1]. - Let S be a set with a ternary relation p satisfying the condi-

tions :

(a) (x, y , z)p implies (z , y , x)p ;

(b) (x ~y , x)p implies x=y ;

(c) (x, y , z)p , (y, z , u)~ and y  z imply (x , y , u)T ;

(d) For every x, y , z~S , either (x, y , or (y y z , x)p or

(z , x , y)p ;

(e) (x, y , z)p and (x, z ,u)p imply (y , z , u)p .

Then y there exists a simple order ~ on S such that (x ~ y , z)p if and only

if either x  y  z or z  y  x.

I

THEOREM A. - An idempotent semigroup S is orderable if and only if it satisfies

the following conditions :

(A) The associated semilattice S* of S is a tree semilattice ;

(B) Each D-class of S consists of either one L-class or one A-class ;

(C) If D is a D-class of S and a E S such that DD in the associated

semilattice S* , then either aD or Da consists of at most two elements of S ;

(D) If D is a 0-class of S of L-type [R-type] and if a , b , x~S such

that in the associated semilattice S* and x~D , then ax=bx 

D is a D-class of S of L-type and if a, b , x ~ S such

that a, ab ~ D , x D and ab fl ax then ba=bx [ab=xb];

(F) If D is a D-class of S of L-type [R-type] and if a , b , c~S such

that a , b , c~D ~ abeD ~ ab = ac and bc==ba [ba = ca and cb = ab ] ,
then ca fl cb 

(G) If D is a D-class of S of L-type rR-type] and if a, b , xes such

that a, b~D ~ abeD , xe D and ax=bx [xa = xbJ , then x=ab [x=ba] 

Here we give only a brief survey of the proof of the part by steps.

Let S be an idempotent semigroup satisfying the conditions given in the theorem
and let D be a D-class of S. We denote by (B ; X ~ A3 the set of all com-

ponent-branches at D.



(1) If B, i B then RBis a one-element subset of S .

We define the ternary relation ~ on ~B ; ~ E A) by :

If D is of L-type [R-type], then ( B , B , B ~ ~ if and only if either

=B or B ~B , 
(2) P satisfies the conditions in lemma 3.

For each B E A , we def ine a subset L. of D as follows :

(i) The case when A contains at least two elements.

(ia) If there exists ~ e A such that B  B. and if D is of L-type [R-

type ] then put

(ib) If there exists v E A such that B03BB  B and if D is of L-type [R-

type ~, then put

(ii) The case when A consists of one and only one element X . We take x~ E D

arbitrarily and fix it. Then put

Further, we define the binary relation y on D by

if and only if X and implies x E Lx .

j y is a reflexive and transitive relation on D . Moreover, for each pair of

elements x and y of D , we have either xyy or yyx.

Hence, if we define

then g is an equivalence relation on D and the quotient set D/8 is a simply

ordered set with respect to the relation $ defined by :

We denote the quotient set D/6 by RD and call an element of RD a component

of D.

(4) Let D be of L-type [R-type].

~~ ~ then K L. [L. B.~] consists of one and only one element ~.
~1 D.

(b) If D~~ then B.(D~L.) [(DB L.)B.~ consists of one and only one

element ~L of D.



The element j~ is called the lower distinguished element of D corresponding

to X and the element u. is called the upper distinguished element of D cor-

responding to X .

(5) (a) if and only if B ,

(b) u if and only if 

(6) ==u , then the component K containing the element ~. consists of

one and only one element.

Hence, by the well-ordering principle, we can take a simple order in such a way

that if K contains a lower distinguished element jf~ , then £ is the greatest

element of K and, if K contains an upper distinguished element u , then u 

is the least element of K. Now, we define the simple order on D as the ordinal

sum of these simply ordered components.

Finally, we define, for x, y e S , X  Y if and only if either one of the

following conditions is satisfied :

(a) D x:y D , x D xy D , y B. A. is the component-branch at D xy containing x ,

B ~ is the component-branch at D xy containing y , and  B ~ ~
(b) D x = D   D , y is the component-branch at D  containing y , and

> Dxy = D , y ~ is the component-branch at D xy containing x, and

u   y in D ;
(d) D =D =D and x  y in D .

x y xy 
" 

xy

(7) The relation  on S defines a simple order which is compatible with the

semigroup operation.

II

Let S be an idempotent semigroup.

We divide the condition (D) into following three conditions :

(Dl) If D is a 0-class of S of L-type [R-type ] and if a, be S , ab=ba=b

and D  then ax = bx [xa = xb] for every x e D ;

(D2) If D is a 0-class of S of L-type and if a b ~ S ,
ax = bx {~xa=xb] for every x~ D ;

(D3) If D is a 0-class of S of L-type [R-type] and if a b ~ S ,
a R b [aEb], and D  then ax = bx [xa = xb] for every 



we have :

(a) S satisfies condition (B) ~===~ S does not contain a subsemigroup isomorphic
to the semigroup S1 :

(b) S satisfies condition S does not contain a subsemigroup isomor-

phic to either one of the two semigroups :

(c) Let S satisfy (B) and (Dl). Then, S satisf ies condition (A) 4==~ S does

not contain a subsemigroup isomorphic to the semigroup S 3’ .

(d) Let S satisfy (B). Then, S satisfies condition (c)~ S does not con-

tain a subsemigroup isomorphic to either one of the two semigroups :

(e) S satisfies condition (D2)~ S does not contain a subsemigroup isomor-
phic to either one of the two semigroups :

(f) S satisties condition (c) ~ ’’ S does not contain a subsemigroup isomorphic
to either one of the two semigroups :



(g) Let S satisfy (G~ . Then, S satisfies condition (F~ ~~; S does not con-

tain a subsemigroup isomorphic to either one of the three semigroups :

(h) S satisfies condition (D3)4==~ S does not contain a subsemigroup isomor-

phic to either one of the two semigroups :

(i) S satisfies condition (E) ~ S does not contain a subsemigroup isomorphis
to either one of the four semigroups :
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THEOREM B. - An idempotent semigroup S is orderable if and only if it does not

contain a subsemigroup isomorphic to either one of semigroups given

above.
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