SÉMINAIRE DUBREIL. ALGÈBRE ET THÉORIE DES NOMBRES

JEAN-FRANÇOIS PERROT

Calcul sur ordinateur de demi-groupes finis de transformations

Séminaire Dubreil. Algèbre et théorie des nombres, tome 25, n° 2 (1971-1972), exp. n° J12, p. J1

http://www.numdam.org/item?id=SD 1971-1972 25 2 A12 0>

© Séminaire Dubreil. Algèbre et théorie des nombres (Secrétariat mathématique, Paris), 1971-1972, tous droits réservés.

L'accès aux archives de la collection « Séminaire Dubreil. Algèbre et théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

30 juin 1972

CALCUL SUR ORDINATEUR DE DEMI-GROUPES FINIS DE TRANSFORMATIONS

par Jean-François PERROT

RÉSUMÉ

Les développements de la théorie des automates finis et des monoïdes syntactiques des langages rationnels [6] rendent actuel le problème de calculer effectivement des demi-groupes d'applications d'un ensemble fini dans lui-même ([1], [3]). Afin de pouvoir traiter des demi-groupes d'assez grande taille (plusieurs milliers d'éléments) et d'obtenir directement les informations nécessaires sur leur structure, nous avons mis au point, en exploitant une idée due à M. P. SCHUTZENBERGER. une technique de calcul fondée sur une approximation des relations de Green. Cette méthode permet, étant donné un système générateur du demi-groupe à calculer Det un élément m∈ D, d'obtenir directement (i. e. sans énumérer tous les éléments en cause) la structure de la Q-classe de m à condition qu'elle soit régulière [4]. Plus précisément, on calcule le diagramme "en boîte à oeufs", les matrices images des générateurs de D dans la représentation de Schützenberger à droite sur la 🛭 🖰 🗕 classe en question (dont les éléments non nuls engendrent le groupe de structure de la Q-classe représenté comme groupe de permutations) et la matrice-sandwich. On peut, à partir de là, lorsque D est régulier, énumérer sans répétition toutes ses O-classes en donnant pour chacune les renseignements ci-dessus. Les programmes correspondants, écrits dans le langage APL [5], sont à la disposition des chercheurs intéressés [2].

BIBLIOGRAPHIE

- [1] CANNON (J.-J.) Computing the ideal structure of finite semigroups, Numerische Math., t. 18, 1971, p. 254-266.
- [2] COUSINEAU (F. G.), PERROT (J.-F.), RIFFLET (J. M.). APL Programs for direct computation of a finite semigroup, APL Congress 1973 (à paraître chez North-Holland).
- [3] McNAUGHTON (R.) and PAPERT (S.). Counter-free automata. New York, MIT Press, 1971.
- [4] PERROT (J.-F.). Contribution à l'étude des monoïdes syntactiques et de certains groupes associés aux automates finis, Thèse Sc. Math., Paris 1972.
- [5] ROBINET (B.). Le langage APL. Paris, Editions Technip, 1971.
- [6] SCHÜTZENBERGER (M. P.). Langages formels et monofides finis, Séminaire Dubreil-Pisot: Algèbre et théorie des nombres, 23e année, 1969/70, fasc. 2: Demi-groupes [1970. Nice], nº 3, 3 p.

Jean-François PERROT 8 rue du Faubourg Poissonnière 75010 PARIS