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INVERSE AND PARTIALLY ORDERED SEMIGROUPS

by Liam O’CARROLL

Séminaire DUBREIL 
25e annee, 1971/72, n° J10, 3 p.
Journees d’Algèbre [1972. Paris’]
Demi-groupes. Demi-groupes ordonnés
(M.-L. DUBREIL-JACOTIN)

30 juin 1972

(Dedicated to the memory of Mme Marie-Louise DUBREIL-JACOTIN)

We follow the notation and terminology of CLIFFORD and PRESTON [2].

Let S be an inverse semigroup with semilattice of idempotents E , and let p

denote the minimum group congruence j[5] on S . Then S is said to be reduced if

Ep = E (SAITO [7J used the term proper), and a congruence T on S is called re-

duced if S/T is reduced.

THEOREM 1. - Let S be an inverse semigroup. Then the congruence generated by

p n ~ is the minimum reduced congruence on S .

COROLLARY ~7 ~. - If S is a reduced inverse semigroup, then p is the iden-

tity congruence on S .

The next result gives the structure of an arbitrary reduced inverse semigroup.
The main idea behind the theorem is that each p-class of a reduced inverse semi-

group is V-completed so as to build up an F-inverse semigroup ; the structure of
the latter is known ~q.’, and the structure of the reduced inverse semigroup is then
recovered. First, we introduce some notation.

Let E be a semilattice ; then M(E) denotes the semilattice

under the operation of set multiplication. The mapping j : e -..~ Ee embeds E

isomorphically in M(E) . Further, given a group G, a family $(&#x26;)=($ ) ~ ~ G)
of endomorphisms of M(E) is called compatible if it satisfies conditions (i),
(ii) and (iii) of [4], theorem 4 for the semilattice M(E) , together with the fur-
ther condition :

Thus the family is specified by its action on Ej .

THEOREM 2. - Let E be a semi lattice, G a group, and $(G) a compatible fa-
mily of endomorphisms of M(E) . Denote by [E ; G ; $] the set

under the operation



Then [E ; G ; 03A6] is a reduced ’inverse semigroup, with semilattice of idempo-

tents isomorphic to E , and maximal group homomorphic image G.

Conversely, giv en a reduced inv erse semigroup S with semilattice of idempotents

E , S ~ [E ; S/p ; 03A6] where for each H E and a E S, equals the

set product . 

ap

COROLLARY. - An inverse semigroup S with semilattice of idempotents E is iso-

morphic to a semidirect product of a semilattice and a group if and only if

E = x ~ ap)

for each a E S and S is reduced ; equivalently, if and only if E = 

for each a E S .

The theory has interesting specialisations to the semilattice of groups and bi-

simple inverse cases..

The V-completion of the p-classes is accomplished by applying a theorem in the

theory of partially ordered semigroups ([6J, theorem 3 with S a reduced inverse

semigroup under the natural order, (y = p~ and D = S/p under the trivial order).
For partially ordered semigroups, the following weaker result is obtained, genera-

lising the main result of [3] :

THEOREM 3. - Let S be a partially ordered semigroup. Then S is a strict A-

nomal quasi residuated semigroup whose maximal elements form the group of units of

S if and only if S is a semidirect product of E by G, where E is a quasi
residuated semigroup with maximum element which is its identity element, and G is

a trivially ordered group.

In theorem 3, p is taken to be the zig-zag congruence ~ 1 ~ (see ~8~~, and S

being strict means that each p-class has a maximum element and that S has an

identity 1 which is the maximum element in lp. In the semidirect product, the
Cartesian ordering is employed, and the structural anti-homomorphism maps the G

into the group of multiplicative, and order, automorphisms of E .
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