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LATTICE-ORDERED DEMIGROUPS

by Garrett BIRKHOFF

Seminaire DUBREIL-PISOT

(Algèbre et Theorie des nombres)
14e année, 1960/61, n° 19 ~.7 avril 1961

(texte revu et corrige
le 23 juin 1961)

The following discussion is essentially a preliminary draft of the third edition

of my book, "Lattice theory. which should appear in print around 1965. Repeated

references will be made to :

DUBREIL-JACOTIN (M.-L.), LESIEUR (L.) and CROISOT sur la
thcorie des treillis, des structures algébriques ordonnées et des treil-
lis géométriques. - Paris, Gauthier-Villars, 1953 (Cahiers scientifi-
ques, 21).

[LT2] BIRKHOFF (Garrett). - lattice theory, revised edition. - New York, American
mathematical Society, 1948 math. Soc. Coll. Publ. ~ 25).

References such as to : "Ch. V, y 3", refer to the mimeographed "Notes on lattice

theory" rrade by my students in 1.960/61.

1. Multiplicative posets.

Lattice-ordered demigroups and their generalizations play a central role in such

diverse subjects as algebraic number theory, algebraic geometry, the Wedderburn

theory of semisimple algebras, the algebra of binary relations, Brouwerian Logic,

and general topology. The theory of lattice-ordered semi-groups attempts to give

a synthesis of certain aspects of these subjects, by suitably gencralizing the

concept of lattice-ordered group.

The logical starting point for the theory of lattice-ordered demigroups consists

in the following definition.

DEFINITION. - A multiplicative poset or m-poset ( ) is a poset M with a

binary multiplication which satisfies the isotonicity condition

for all a ~ When multiplication is commutative or associative ~ M

is called a commutative or associative m-poset, respectively. An m-demigroup is

an associative poset.

, ( ) "Groupoide ordonné" in the terminology of ~DLC ~ ~



EXAMPLE 1. - Any po-group is an m-poset which is a group under multiplication.

Conversely, any m-poset which is a group under multiplication is a po-group.

EXAMPLE 2. - Let B bc any binary system, that is, any set with a binary

multiplication (or "groupoïde"). Then the subsets of B form an m-poset 

if ST is the set of all products st with te T .

Clearly, M(B) is a Boolcan algebra ; and if B is commutative or associative

then so is lJi(B) .

There are important concepts which are applicable to m-posets generally.

Among these are the following.

DEFINITION. - A zero of an m-poset M is an element 0 of such that

(2) 0 ~ x and x0 = Ox = 0 for all .

A unity of is an element ’ 1 such that

(3) lx = xl = x for all x EM.

. 

An element a of an m-poset M with unity is inte gra l if and only if a  ~ .
If all elements of ~~ are integral elements, then M is called an integral

m-poset. 
’

An m-poset can have at most one unity. For if 1 and 1’ sa tisfy (3), ’then
1 == 11; ~ 1’ . Likewise, a poset can havc at most one zero. Any po-group has a

unity, the group identity. If a po-group has a 0 , it can have no other element.

EXAMPLE 3. - Any distributive lattice L is a commutative and associative

m-poset if ab is defined a s a n b . If L has an I ~ then I is a unity

for this m-poset, which is an integral m-poset.

DEFINITION. - In an m-poset M ~ an element a is called subidempotcnt if

aa ~ a ; it is called a left-ideal element if a for all x E and a

right-ideal element if ax  ^ for all x E ~~Z . An element which is both a left

and a right-ideal element is ca lled an ideal element.

In example 2, the subidempotent elements of correspond to the subalgebras
of B . In example 3 i and in integral n-posets generally, every element is an

ideal element. Clearly any left or right-ideal element is subidempotent. The

concept of an ideal element is suggested by the following extension of example 2.



EXAMPLE 4. - Let R be any ring, and let be defined as in example 2, from

the multiplication in R . Then is an m-posct. The modules (nonvoid additive

subgroups) of R form a subset M~ (R) of which is closed under intersection.

If ST is defined as the set of all finite sums 1 s. ti’ s . E S and ti E T ,
then Mi (R) is also an D-poset, which is a modular lattice as a poset though

not a Boolcan algebra unless the additive group of R is cyclic of prime order.

. In example 4, the 0 of R is a zero of TI 1 (R~ . Moreover the subidempotent
elements of r (R) correspond to the subrings of R ; and tho right, left, and

two-sided ideal elements of I~i (R) to the corresponding ideals in R . If R has

a unity, then R itself is a unity for the lattice of all two-sided ideals

of R. is an inte gra l m-poset.

EXAMPLE 4’. - Let D be any demigroup, and form as in example 2. Then the

subidempotent elements of M(D) correspond to the subdemigroups of D ; and the

right, left, and two-sided ideal elements of M(D) to the corresponding sets of

ideals in D . If D has a unity, then the two-sided ideals of D form an integral

as bef ore.

2. Lattice-ordered demigroups.

One of the most important questions in the theory of ordered demigroups is the-

following. Can one develop a unified theory of ideal elements in m-posets which

will yield the theory of ideals in rings and demigroups as special cases ? Such

a unified theory should also, of course, have other interesting applications.

To lay the f oundations for such a unified theory, we first define some further 
’

properties of m-posets of ideals.

DEFINITION, .- A multiplicative semilattice, or ( ) is c binary

system M which is a semilattice under u , and satisfies

(4) a(b u c) = ab u ac and (a u b) c = ac u be ,

for all a ~ b ~ c E M * If r~~ is a lattice under u ~ then it is called a

multiplicative lattice or If the multiplication in is associative

and with a 1 , then M is called an l-demigroup.

(2) Callod a "gcrbier" in [DLC], where an is called a "groupoide re-
ticulé".



One shows trivially that any is an n-poset. One verifies easily

that the subsets of any binary systen B (cxanple 2) f orn a complemented,

distributive o Also, any distributive lattice (example 3) is an

m-lattice if xy = x n y . Again, the nodules of any ring f orm a complemented,

modular m-lattice (example 4). Finally, any po-group which is a lattice satisfies

(4) and its dual

(4~) a (b n c) = ab n ac and (a n b) c = ac n be .

EXAMPLE 50 - The j oin-endomorphisms 03B1 , 03B2 , 03B3 , ... of any semilattice S

form an m-semilattice, under the definitions

(5) a(ap) = (aa) P and a(a u p) = aa u ap .

Observe that the class of m-lattices is equationally definable in the sense of

chapter V. Hence the general algebraic concepts of subalgebra, homomorphic image,

and direct union apply to in-lattices. In particular, any m-sublattice, homomorphic

image, or direct union of m-lattices is itself an m-lattice. A similar remark

applies to t-semilattices and to t-demigroups, but not to t-semigroups since

the cancellation law is not preserved under all homomorphisms.

The preceding remark permits one to construct various interesting semilattices

of real functions, under addition and 1. u. b. The upper-semicontinuous functions

and subharmonic functions of n variables form commutative l-semigroups.

THEOREM In any m-lattice 

(6) . (a n b) (a u b) ~ ba n ab for all a ~ b .

If M is an integral ~-lattice ~ then

(7) a u b = 1 implies a n b = ba u ab ,

and

(8) a u b = a u c = 1 implies .

If hI has an element satisfying zx = xz = z for all x E I’’I ! then this

z is a zero.

This is theorem 1 of [LT2] (p. 201) ~ where a proof will be found. It applies to

ideals in associative rings, in view of the following result.

THEOREM 2. - Let L be any l -demigroup. Then right-ideal elements of L ,
the left-ideal elements of L ~ and the (two-sided)-ideal elements of L are



m-sublattices.

PROOF, - The case of right-ideal elements is typical. If a and b are right-
ideal elements, then by (1) ..

(a n b) x ~ ax ~ a and (a n b) x ~ bx ~ b
for all x e L ; hence

(an b) xan b .

Also, by (~.) ~

(au b) .

Finally, by associativity,

(ab) x = a (bx) ~ ab .

3. Divisibility in semigroups.

The most deeply studied posets are the commutative and associative semigroups
associated with multiplication in certain classical integral domains. The funda.mental
ideas involved can be stated very simply 3 ~ but the m-posets in question are
not generally lattices.

Let G be any commutative semigroup with unity 1 . Define ajb to mean that

ax = b for some x E G ; this relation is a quasi-ordering of G . Now define

a ru b (read " a and b are associated) to mean that a b and b a ; a ru b if

and only if b = au , where u is a "unit", or divisor of 1. The relation pj

is an equivalence relation, whose equivalence classes form a partly ordered set
P (G) (as in Ch. 2). Moreover a N b is a congruence relation for multiplication.
For if ax = b , then (ac) x = (ax) c = be for all c ~ G ; hence ajb implies
ac|be . Likewise, bja implie s bc|ac , and so b implies ac  be for all

c E G , as asserted. Finally, 1|a for all a E G . This proves that P ( G) is an

integral m-poset ; it is evidently a commutative po-demigroup as, well. One can
prove more.

THEOREM 3. - In any commutative semigroup G with unity, the relation afb
defines an integral po-semigroup P (G) on the sets of associated elements. For
each a E P (G) , the mapping x -~ ax is an order-isomorphism of P ( G) onto. the

( ) See : BIRKHOFF (G.) and MMIANE (S.). - Survey of modern algebra, rev. ed. -New York, MacMillan Company, 1954 ; Ch. III, § 7,
See also : DUBREIL (P.) et DUBREIL-JACOTIN (M.-L.). - Legons d’algebre moderne, -

Paris, Dunod, 1961 (Collection universitaire de Mathématiques, 6) ; Ch. IV, § 6.



lattice ideal A of elements c ~ a .

To prove that the po-demigroup P (G) is a po-semigroup is to show that

ay implies x rj y . But ax ~ ay implies ay = ya = xaz = axz for some

z e G , whence y = xz by the cancellation law in G ; therefore ax) ay implies

x)y . Likewise, ay) ax implies y~x ~ from which the cancellation law in P(G)
f ollows. To summarize the preceding results, we make the

DEFINITION. - A commutative integral po-semigroup in which a ~ b if and only

if a b is called a divisibility po-semi group. If it is a lattice under a ~ b ~
it is called a divisibility l-semigroup.

The po-semigroup P (G) in theorem 1 is 2Y divisibility po-semigroup ; considered

as a semigroup alone y P(P(G)) ’-P(G) .
Now let G be the multiplicative semigroup of the nonzero elements of an

integral domain D . Then a N b is equivalent to the statement that a and b

generate the same nonzero principal ideal (a) == (b) of D . We have the

COROLLARY. - The nonzero principal ideals of any integral domain D form a

divisibility semigroup S (D) .

Referring back to theorem 1 ~ we see that if S (D) is a lattice (i. e. ~ if any

two elements, a ~ bED have a g. c. d. and 1. c. mo in D), then the
correspondence x -~ ax preserves joins and meets (which are necessarily in A

for any ax and ay ). This proves

THEOREM 4. - If a divisibility po-semigroup is a lattice under the relation

then for all a 9 b , c :

(9) ~~ (b u c) = ab u ac and a (b n c) = ab n ae .

4. Prime factorization.

In classical algebra, attention is focussed on two particular families of integral

domains, and .specifically on proving that the elements of these domains admit of

unique fa ctorization into rimes. The integral domains E in question are the

following

EXAMPLE 6. - Let F = R(e) be an algebraic extension of the rational field R

of finite degree, and let E be the domain of all algebraic integers of F .



EXAMPIE 7. - Let F = K(x , ... , x ) be the field of all rational forms in

r variables x. with coefficients in a given base field let

E = K[x1 , ... , xr] be the domain (subring) of polynomial forms in the

xi ... .

We now define generally three closely related concepts, which are effectively

equivalent when unique factorization into primes is possible.

DEFINITION. - Let be any integral m-poset. An clement m e M is called

maximal if it is covered by 2 9 an element p  1 such that p implies

s,  p or b p is called prime ; an element p  1 such that ab = p implies

~! = p or b = p is called indecomposable.

COROLLARY. - In a divisibility po-sennigroup, p is a prime if and only if

p|ab implies pja or p|b .

LEMMA 1. - In a divisibility po-semigroup, any prime element is an

clement is maximal if and only if it is indecomposable.

PROOF. - Let m be maximal in any integral m-poset, and that xy = m . Then

x = m or x = 1 since m = xy ,~ x~. = x and m is maximal ; likewise , y = m

or y = 1 . Since x = y == 1 would imply xy = 1 , either x = m or y = m ~ and

so m is indecomposable.

. Conversely, unless p is 1 > q > p for some q. Since q > p implies

p = qr where (evidently) r  ~ . Moreover r ~ p since (by theorem 1)

q  l and r,~ p would together imply qr  p . Hence p cannot be prime unless

it is maximal. Since r ~ p and q ~ p , it cannot be indecomposable either.

The classical divisibility semigroups defined by the nonzero clements of examples
6 and 7 satisfy the ascending chain condition. This follows from the corollary of

theorem 1 , since (i) the ideals of the corresponding integral domains satisfy the

ascending chain condition (Ch. VII), and (ii) hence so does the subset of principal
ideals a fortiori. 

,

2. - In any integral po-semigroup satisfying the ascending chain condition,
every element c ~ 1 is a product of indecomposable (= maximal) factors.

PROOF. - If the conclusion fils, then the nonvoid set of all elements not so

decomposable must contain a maximal member c. This c cannot be indecomposable



(i. e. ~ covered by ~) i or the conclusion would hold trivially. But if c is

decomposable, then c = ab where a > c and b > c . Since c was maximal

among elements not products of indecomposable factors, we have a = p1 ... pr
and b = qi ... whence c = pZ ... Pr = qi ... giving a contradiction.

The following example shows that one cannot prove more, without making a further

assumption.

EXAMPLE 7. - Let G be the additive semigroup of pairs ~r~ ~ n) of nonpositive

integers whose sum m + n is even. Then (- 2 , 0) + (0 , - 2)~ (- 1 , - 1) , and
so ~- ~ ~ .~ 1) is maximal but not prime. Also, since

(- 2 , - 2) = (- 2 , 0) + (0 , - 2) = (- 1 , - 1) + (- 1 , - 1) , one need not
have a unique factorization theorem.

Actually, the relevant assumption is precisely the lattice hypothesis of § 2,

as we now show.

LEMMA 3. - In any integral m-lattice L ~ every maximal element is prime and

indecomposable.

PROOF. - Let m be Unless Hence if xy ~ In. , but

x ~ m , the n

y = ly = (xu m) y~ ,

so that m is a prime. To prove indecomposability, one proceeds as in lemma 1.

COROLLARY. - In a divisibility the concepts of prime element
indecomposable element, 2nd element are mutually equivalent.

THEOREM 5. - In any divisibility l-semigroup which satisfies the a scending chain

condition, every element c ~ ~ can be uniquely factored into prime factors.

PROOF. - By the preceding corollary, the words prime, indecomposable, and maximal
are mutually interchangeable. By lemma 2, at least one factorization into prime
factors are any two such 

then by the first corollary of § 3 and induction, p)q. for some j . Hence, p

being Pi = q.. Cancelling, one can prove uniqueness by induction
on r ; we omit the details.



APPLICATION. - Theorem 5 has an immediate application to algebraic number theory.

It is known (5) that factorization into primes is unique in a domain E = E (e) of

algebraic integers if and only if every ideal of E is principal. But the set of

all ideals of any ring is a lattice; hence, if the unique factorization theorem

holds in E (8) ~ its principal ideals form an £-semigroup; 9 hence the same is

true of its divisibility po-semigroup, as in the corollary of theorem 3. By

theorem 5, and the remarks preceding it, the converse is also true. In conclusion,

we have the following result ( ).
COROLLARY. - The nonzero integers of an algebraic number field F = R(e) satisfy

the unique factorization theorem if and only if their divisibility po-semigroup
is a lattice.

It is actually sufficient that the divisibility po-semigroup be a semilattice

under g. c. d. For a reasonably practical necessary and sufficient test for this,

see POLLARD , theorem 9. 5 .

6~ Integral m-lattices.

An integral m-poset which is a lattice with respect to its order relation is

called an integral m-lattice. The two-sided ideals of any ring with unity form

such a (modular) integral m-lattice. Indeed, the main advantage of .considering
ideals instead of elements, in algebraic number theory, is to ensure the existence

of g. c. d. and 1. c. m., that is, that one has a (commutative, modular, integral)
In general rings, one sacrifices the cancellation law to gain this

advantage.

In any integral m-lattice, one defines two elements a and b to be coprime
when a u b = 1 (this is the dual of disj ointness, for positive elements in an

2-group) . Such coprime elements have a number of interesting general properties,
proved in ~LT2~ ~ (Ch. 3). From this source we quote only onc isolated
result.

THEOREM 6. - Every complemented integral m-lattice is a. Boolean algebra, in

which xy = x n y .

( ) POLLARD (Harry). - The theory of algebraic numbers. - New York J. Miley and
Sons, 1950 (The Carus mathematical Monographs, 9) ; theorem 9.4. This book will be
referred to below simply as POLLARD.

( ) JAFFARD (Paul). - Les systèmes d’ideaux. - Paris, D unod, 1960 (Travaux et
Recherches mathématiques, 4) ; p: 81, théorème 4).



7. Residuation.

One of the most important concepts in the theory of multiplicative lattices is

that of residual, defined as follows.

DEFINITION. - Let L be any m-poset. The right-residual a .. b of a by b

is the largest x (if it exists) such that bx  a ; the left-residual a .. b

of a by b is the largest y such that yb  a . A residuated lattice is an

m-lattice L in which a .~ b and a 8. b exist for any a ~ b E L 9 a

residuated l-demigroup is an associative residuated lattice.

Any po-group is residuated ; moreover x.. y = y ~~‘ x is the operation written

x/y in Ch. ’V ‘ 10, = is the operation written xBy there.

Since residuals in l-groups are definable in terms of group multiplication alone

their discussion belongs properly to pure group theory, and will not be given

here.

THEOREM 7. - In any residuated lattice , we have

(10) (a n b) .* c = (a  c) n (b  c) and symmetrically,

(11) a  (b u c) = (a . . b) n (a .8 c) and symmetrically,

(12) b  c . . a ~ and a ~,~ c 8. b are equivalent, .

(13) (ab) ..8 a p b and (ab) 8. b ~. a .

In any residuated .e -demigroup

(14) (a .8 b) *. c = (a *. c) .’ b is the largest x such that bxc = a ,

and .

(15) a .. (be) = (a .. b) .8 c and a ’ . (be) = (a .8 c) ’ . b .

Proofs of these results are given in In equations (10) and (11) , the
. existence of the left side implies that of the right side.

Almost trivially, we have the following result.

LEMMA 1. - In any m-poset, the functions a 8 ~ b and a ’ . b are isotone in

a and antitone in b .

This result implies a.8 (b n a . ’ b and a : (b n c) ~ a .* c. By the
definition of u as least upper bound, there follows the inequality (16) of



LEMMA 2. - In any residuated lattice, we have

(16) a .. (b n c~ > (a . " b) u (a .’ c) and symmetrically

(17) b~a~* (a ’* . b) and 8. ’. ~a .’ b) ..

The first inequality follows from the definition of a.8 (a ’. b) , since

(a ’. b) b ~ a by definition of a *. b .

COROLLARY. - Any integral element a of a residuated lattice with unity

satisfies

(18) (1 *. a)~ 1 and a ~ 1 ’. (1 ~ a)~ 1 .

PROOF. -Since 
’

~. ". a ~ 1 ’ . 1 = 1 ;

hence by lemma 1,

1 .’ ~1~. a~,~~.’ 1 =1 , 

.

On the other hand, since

~~.’. a) a,~1 ~ ~ .’ ~i’. a) >a ,

completing the proof of the first inequality. The second follows by symmetry.

8. Residuation and Galois connections.

The two binary operations of left-and right-residuation define a class of Galois

connections with many diverse .. applications (7). ~c~ have

THEOREM 8. - For any fixed element c of any residuated lattice L ~ the

correspondences x ~ C .8 x ~ x~‘ and y w c .. y = yl define a Galois connection

on L .

PROOF. - By definition (Ch. ’~~ ~ this means that the correspondences in

question are anti tone, and that

x ~ c . 8 (c ~ , x) and x c .. (c *’ x) for all x .

These results were proved in the last section.

For applications, the choices c = 0 and c = 1 are the most interesting.

f. ~~ See : DUBREIL (P.) et CROISOT ~,.) . ~ Proprietes generales de la residuation
en liaison avec les correspondances de Galois, Collectanea Mathematica, t. 7, 1954,
p. 193-203 (Seminario matematico de Barcelona) . 

’



Moreover for applications, one wants to pursue the implications of theorem 8

somewhat further.

LEMMA 1. - Under any Galois connection, we have

The correspondences x -~ (x*)t and x -~ (xt)* are closure operations. The closed

elements ~. (x~)~ form a lattice , and so do the x = and meets .°

are defined in this lattice by

We omit the proof, which belongs in Ch. 7. The above results have an

obvious corollary.

DEFINITION. - For any L a residuated lattice, an element x ~ L is

right c-closed if and only if and left c-closed if and

only if x=c~(c~x)~

COROLLARY ~. ~» An element x E L is right c-closed if and only if x = c . , y

for some y ~ and left a-closed if and only if x = c ~ y for some y.

The fact that the meet of any two right c-closed elements is right c-closed

f ollows since (a u b) = n b* . On the other hand, the j oin of two right
c-closed elements need not be right c-closed.

Note also the condition of P. The c-closures of x are defined

by the equations x = cx ‘" c and xl = ex 8. c , respectively.

The preceding definitions can be applied to the l-demigroup L of all modules

A , B , C ~ ‘.. of an associative ring R (example 4 of § 1~ . In this example,
the Galois connection defined by X ~ C ~ X and ’~ -~ C ~ Y can also be derived

concretely from the polarity (Ch. VIII, § 6) defined by the binary relation

xyeC.If C is a right-ideal, then so is C .’ X ; if C is a left-ideal, then

so is C . ~ Y . Hence we have :

( ) DUBREIL (Paul). - Contribution a la théorie des demi-groupes, III., Bull.
Soc. math. France, t. 81, 1953, p. 289-306 ; LESIEUR (L60nce) . - Sur les demi-
groupes reticules sa.tisfaisant a une condition de chaîne, Bull. Soc. math. France,
t. 83, 1955, p. 161-193.



COROLLARY 2. - If C is a (two-sided)-ideal of an associative ring R , then

the right C-closed modules are right-ideals of R , and the left C-closed modules

are left-ideals.

The concept of c-closure can also be applied to the lattice of bounded sub-

harmonic functions on a region R . The 0-closed functions 0 ; x are just the

harmonic functions on R .

9. Brouwerian lattices.

The preceding results can be applied to lattices which are ~lattices with

respect to the multiplication xy = x n y ~ so-called Brouwerian lattices.

Brouwerian lattices are necessarily distributive as lattices and commutative as

lattices. (See also theorem 6~ .

In dealing with these , and with the other commutative residuated lattices to be

discussed in § 9 - § 14, we will write a : b for a.. b = a 8. b . We also have

at = a~‘ for all a . Hence we can suppress the notation at . We first extend the

result of example 3, by proving 
’

THEOREM 9~ - A lattice L is a residuated lattice, when xy is defined as

x n y , if and only if it is a Brouwerian lattice. In this case, L is an

integral commutative l-semigroup.

The proof is almost trivial, since if xy = x ~ y , the definition of relative

pseudo-complement a * b given in Ch. I ~ § 1 3 , coincides when b~ a with that

of b : a given in § 7 above, and that of pseudo-complement a * coincides with

that of 0 : a given in § 7. For the details, see Ch. X, p. ~ E.

THEOREM 10 (GLIVENKO). - If L is a Brouverian lattice , then the correspondence
a ~ a** is a closure operation on L ~ and a lattice-homomorphism of L onto

the Boolean algebra of "closed" elements. Moreover a** = b** if and only if

and = b n d for some "dense" satisfying d** = I .

PROOF. - We first establish, for relative pseudo-complement, that

(21) (c : a) n (c : (c : a~ ~ ,~ c .

To prove (21), c : a as a and c : (c : a) as a** as in § 7. If
b == then b = a * ~ e.* > b since the correspondence x -~ x* is a
dual automorphism of the lattice of c-closed elements. But this implies

b = b n b = bb c , proving (21).



Now suppose x n a n b c in L ~ define n b ~~ . Clearly 
whence yn a ~ b  c , which implies y ~ a  c : b = b yn a  y  b

** 
by

definition of y ~ hence y n a ~ b* n b~~ c by (21). This implies
y  c : a = a* ; but y  a** by its definition ; hence y  a* n a**  c , by
(21). In summary, xn a ~ b  c implies xn a c , or

(an b)~~ (a~~ n b~~) * But the reverse inequality is obvious ; hence
/ ~~ /~ ,~~~(a n b) = (a nb ) .

On the other hand, (a 
* 

u b) =a ** so

(a ~ b)* == (a ((a u b; ) =avb y

where a *  b is the j oin of a* and b* in the lattice of all enclosed

elements of L . For proofs of the other statements of theorem 10 (see [LT2], p.
149).

10. Complete m-lattices.

The majority of residuated lattices are complete, and they satisfy the infinite

distributive laws

This leads us to make the following definitions.

DEFINITION. - A complete or cm-lattice, is a complete lattice with

s, binary multiplication satisfying (22). A complete m-lattice which is an .t-

demigroup is called a cl-demigroup ; if the cancellation law holds, it is called

a ct-semigroup.

Analogs of (15), (16) and (21) hold in any cm-lattice which is residuated (see
theorem 10) .

The modules of a ring (example 4, § 1) constitute a typical cm-lattice ; we omit

the verification of (~~~ g which f ollows from the f act that the operations involved
are finitary (binary) . We now show abstractly that cm-iattices are almost always
residuated.

THEOREM 11. - In any cm-lattice, a  b exists if bx  a for some x , and

a.’, b exists if a for some y.

PROOF. - Let u be the join of all x 
a 

such that a . Then



byr (22) ; hence

u = a .’ b .

The existence of v = b e. a under the stated assumptions can be proved similar-

ly.

COROLLARY 1 ~ .~ Any cm-lattice with zero is residuated. Using theorem 2, we
obtain :

COROLLARY 2. ~. If R is any associative ring, then the complete ~»lattices of

all modules of R and of all two-sided ideals of R are residuated*

Ln fact, if H and K are subrings of R , then H .’ K and H ’ . K are the

and left-quotients of H by K ~ in the sense of ideal theory, The case
H = 0 is of especial importance ; n .’ K is called the right-annihilator of

K , and 0 ’ . K the left-annihilator of K. we will discuss these ideas further

in § l4.

Regular open sets. - We will now derive the general properties of regular open
sets in Hausdorff spaces, as an application of the theory of residuated lattices.

Conversely, the discussion gives some intuitive meaning to theorem 10.

EXAMPLE 9. - Let L be the complete Brouwerian lattice of a ll open sets of any
Hausdorff space I ~ and let c = 0 in the Galois correspondence of § 9. This
makes 

Then a* == 1~ means that a differs from I on a. nowhere dense sot g some of
the properties of nowhere dense sets will be established below. Also, sets such
that a** - a are called regular open sets. In the Hausdorff space defined by the

open interval ~0 ~ ~~ ~ the open intervals ~C ~ ~ ) and (l ~ 2) are re gu.lar
open sets, but their union is not regular This illustrates the fact that, even

. 

if a = ~ * and b = b** are closed in theorem 10, the union a u b = a** u b**
can be smaller than a v b = b)** .

LEMMA 1. - If a * = I and f* = I , then (a n b)** = I .

PROOF. - In any integral residuated la ttice ~ C~ ; 1 ; 0 9 hence the hypothesis
of lemma 1 is equivalent to a n x = 0 implies x = 0 and b n x = 0 implies
x = 0 (i* e., a = f = 0 = I* = 0 ). But the above conditions yield



in turn that (anb) n x =0 lilies an (b n x) = 0 , hence bnx=0 , and

hence x=0 . This is (anb) = 0 .

LEMMA 2. - Every a ~ L satisfies a = a n k , where k* = 0 . Conversely,

if k*=0 ~ then a~= (an k)* .

PROOF. - Set k = a u a* . Then k* = (a U = a~ n a** = 0 y by definition
of a** = (a*)* . Also

k =a"* n (a ua*) = a) v (a**n a ) = a u 0=a ,

since s**~a 0 Finally, if k*=0 y then knx=0 implies x=0 . Hence

(a () k) n x=0 (or k n = 0) implies an x = 0 , and so 

But (a n k)* $. a* trivially ; hence a* = (a n k)"’ y completing the proof.

COROLLARY. - In L , a* =b* if and only if a =c nh and b =cn k for

some c ~ where h* ==k ~ =0 

PR00Fn - If a* = b* , then a** = b** = c . By lemma 2, a = c nh and

b = c n k , where h* = = 0 . The converse follows from lemma 2 similarly.

Me have shown that two open sets have the same "regLilar" completion if and

only if they differ by a nowhere dense set. Finally, we state without proof :

THEOREM 12o - A Brouwerian lattice L is isomorphic with the lattice of all

open sets of a Hausdorff space if and only if it is complete, and every element

of L is a meet of maximal elements ("dual points")*

The second condition is a transfinite analog of factorization into primes.

11. Fundamental theorem of ideal theory.

Residuals (or "ideal quotients" ? see the remark after theorem 11~ corollary 2)
an important role in modern proofs of the fundamental theorem of ideal

theory. This theorem is concerned specifically with E-modules of an arbitrary

algebraic number field R(9) ~ where E is the domain (subring) of all integers
of F . One can easily generalize theorem 2, to show that the set of all such

E....modules is a commutative l-demigroup, and an m-sublattice of the looodemigroup

of all modules of F o

Such an E-module A is a Dedekind ideal of F if and only if



(i) A is nonzero ,

and

(ii) nA c E for some rational integer n . 
,

(Using the concept of inte gral basis, it easy tO show that an E-module A is

a Dedekind ideal if and only if E u A/E n A is finite ; the trick is to show

that every integral ideal contains a rational integer it f(6~) ..)

One of the main conclusions of algebraic number theory is the result that

Dedekind ideals of F form an (atomistic) The unique factorization

theorem for integral ideals follows as a corollary of this group property, as in

Ch. XI. However, this group property is not easily established.

Actually, the fundamental theorem of ideal theory can be best proved using two

special properties of the commutative residuated l-demigroup with unity of all

nonzero E-modules of F , viz :

I. If A is a nonzero integral E-module, then all chains between A and E

have finite length (Finite Chain Condition).

II. If P is a maximal proper integral E-module of F , then P (I : P) = 1 .

THEOREM 13. - Let L be any commutative residuated l-demigroup with unity, in

which : .

(1) 0  a  1 implies that all chains between a and 1 are finite, and

(II) p(l : p) =1 for every maximal proper integral element p . Then every

element a E L with 0  a  1 has a unique factorization into maximal p.  1 .

We approach the proof through a series of three 

LEMMA 1. -If 1 ~ p and p(l : p) = 1 , then

giving a contradiction. The proof that 1  (1 : p)  (1 : 2  ... is similar.



PROOF... Since p > a ~ 1 = (1 : p) p ~ ~~. : p) a . Moreover 1 = (1 : p) a

would imply p == pi = p(l : p) a = la = a , contrary to hypothesis. Likewise,
since (1 : p) > ~ ~ (1 : p) a ~ la = a o Moreover (1 : p) a = a would imply

a = la = p) a = pa , and hence

=p ? (pa) ==p 3 a= ~....
Since 1 ~ a , this would imply a = p~ a ~ p~ 1 = p for all r o Hence, by

(23), we would have an infinite chain of elements {pr} between 1 and a , again

contrary to hypothesis-

COROLLARYo - Under the hypotheses of theorem 15, every prime nonzero integral
element is maximal.

PROOF. - Let a be any non-zero non-maximal integral element. Then a  p  1

for some maximal p  1 . Hence q = ~ 1 : p) a > a by lemma 2, so that p > a .

But pq = p(l : p) a = a since p(l : p) =1 ; hence a is nonprime.

3. - If 4  a  1 ~ then a is a product of elements p~ covered by
1 (primes).

PROOF. - By the finite chain condition, either the conclusion holds or there is

a maximal element a for which it failse This maximal element cannot be covered

by 1 ~ because the conclusion holds trivially for elements covered by 1 . Hence,
by the corollary of lemma 2, a = pr where 1 > p > a and 1 > r > a . By induction,

P = Pi ... pr ... q s y where the p. 1. and q. J are covered by 1 .
Hence which we wanted to prove.

To prove theorem ~.3 ~ it only remains to prove that the factorization is unique
(up to rearrangement of factors) * This can be proved by the usual arguments If

pr and qs , where the pi and qi are covered by 1 ,
then a = ql ... Hence , by the corollary of lemma 2 and induction,

p~ > q. for Since p~ and are both maximal, Hence

P2 ... Pr = (1 : p) P1 p ~ p .. p r ‘ ~3. ; p ) Z a ~ (l : 

whence uniqueness follows by induction on r ~



12. Discussion ; Artin equivalenceo

Unlike theorem 3 V 3 which is much more elegant in appearance, theorem 13 is really
useful for algebraic number theory’ This is beaause one can prove that assumptions
I and II hold in about five pages ( ) o ’

Act,ually, one can prove much more than assumption I very directlye Since the

lattice of E-modules is modular, all connected chains between a and 1 have the

same length;

That is, one needs only about five pages of technical. reasoning about algebraic
numbers per se to establish the fundamental theorem of ideal theory, if one is

willing to assume the elements of the theory of l -demigroups. Possibly one can

do better, though I doubt if one can replace assumption I by the ascending chain

condition.

The identity p(l : p) == 1 for maximal elements was the key assumption made in

proving theorem 13. Had we the identity x(l : x) = 1 for all x 3 then

we would have assumed in effect that L was an t-group with = 1 : x . For

such t-groups, we know by [LT2] ~3~ ~ that the ascending chain condition
on integral elements does imply unique factorizationo

Artin equivalence. - The identity x~~ a x) == L is related to an interesting

congruence relation introduced by ARTIN into commutative residuated l-demigroups
with unity 1 ~

Two elements a, b of such an l-demigroup L are Artin equivalent when

theorem 8, this is equivalent to saying that a** = b** , where
we define x* - ~ : x ; thus it is analogous to the equivalence relation studied
in the theorem of Glivenkoo It is related to the identity x(l : x) = 1 since this

implies S the identity

a =-= al = a) a)) = ~ ~l : (1 : a~ ~ ; ~ 9 (1 : a) .

If Artin equivalence were a congruence relation for operations, so that the

analog of the theorem of Glivenko held, then the Artin-equivalent elements would

define an l-group. With the ascending chain condition, one could prove unique
factorization into primes.

~y) One must prove lemmas ~ 8d21 ) =. ~ 8~~3 ) of POLLARD. The proof of these uses his
theorem 8~’~ (uevery prime ideal is which imst also be proved since to
assume the corollary to lemma 2 of § 11 would involve circular reasoning.



By theorem 8, Artin equivalence is a congruence relation for joins. It is also

a congruence relation for multiplication, since if a ~ b ~ then
1 ~ ax = (1 : a) : x = (1 : b) ; x - ~ : bx .

For it to be a congruence relation for meets, it is necessary and sufficient that

L be integrally closed) in the sense that ’ a : a == 1 for all a E L ; this is

proved in po 243.

~.3. Applications to algebraic geometryo

The applications of ideal theory to algebraic geometry are very different from

its applications to algebraic number theory. Whereas ideals are needed to obtain

a general unique factorization theorem for domains of algebraic integers, the

opposite is true for polynomial rings.

One therefore expects the application of lattice theory to algebraic geometry
to be very different from those to algebraic number theory. Those to algebraic

geometry are associated with the complete commutative integral I-demigroup of

all ideals of the ring E = ... , x ] of polynomials defined in example

6, § 3.

They stem from the polarity between certain ideals of E and algebraic varieties,
defined by the relation p(x1 , ... , x) == 0 between polynomials and

points x = (x1 , ... , xr) in aff ine r-space A (K) . The dually isomorphic
lattices defined bj; this polarity have as elements the algebraic varieties of

A r (K) p and ideals of E which are their own radicals ~/E y respectively. The
former are obviously a distributive lattice, and the latter satisfy the ascending
chain condition,

These facts have been exploited in [LT2] (Ch. I,~~ ~ 8) ; the discussion will
not be repeated here ~ ~ ~ It can also be shown, at least if K is the real or

complex field, that the dimension of an algebraic variety V is the biggest n

such that V contains a chain whose ordinal number is wn or more (by the .

ascending chain condition? every chain of algebraic varieties is well-ordered).

I know of no complete characterization (up to isomorphism) of the lattice of all

algebraic varieties in the plane (for r = 2 ) , let alone in higher dimensions.
To characterize the l-demigroup of all ideals of ... , x ) up to

For a related discussion, which does not assume the axiom of choice, see :DUBREIL (Po) et DUBREIL-JACOTIN (M.-.L.). - Leçons d’algèbre moderne (Footnote ( )) }
p. 211-223.



isomorhism would seem even more difficult. Offhand, it looks like a major and

every interesting problem.

Since any two complex algebraic curves have at least one point in common, while

the same is not true for real algebraic curves, the characterization will certain-

ly depend on the base field K .

14. Irreducible and primary elements.

The important concepts of the radical of an ideal, of primary ideal, and of

irreducible ideal are easily generalized from ideals in polynomial rings to

elements of any commutative, integral l-demigroup which satisfies the ascending

chain condition.

Namely, the radical B/a of a is defined as the join of all elements x E D

satisfying a for some integer n = n(x) ; ~ also satisfies a

for some N = N(a) .An element q is defined to be primary when ab,~ q implies

that either a  q or that q fbr some finite integer r = r (a , b) . As in

lattices generally, an element a is defined to be (meet-) irreducible when

x n y = a implies x = a or y = a .

Many cf the properties of the radical of an idea,l, and of primary and irreducible

ideals are easily proved abstractly in any l-demigroup having the properties

specified. For instance, q is primary if and only if its radical is a prime

element ( ~. ’ a and only if p ~ q ~. p N f or some prime element p) .

However y it is not necessarily true that every irreducible element is primary,
if D is assumed to be a modular lattice ( 4-LB ).

This is another serious shortcoming of the theory of l-demigroups, from the

point of view of applications. .

15. Frobenius condition.

We now turn our attention to applications of the concept of residuation to non-

commutative l-demigroups. We begin by considering the full matrix algebra M 
n (D)

of all nxn matrices with entries in a given division ring D . The linear

associative algebra is isomorphic to the ring of all endomorphisms of the

n-dimensional left vector space V n (D) over D.

(11) WARD (Mxcgan) and DILWORTH (R. P.). - Residuated lattices, Trans. Amer.
math. Soc~ t. 45, ~.939, p. 335-354. 

.



It is easy to verify that if a right-ideal A of Mn (D) contains one endomorphism

with a given S E V n (D) , then it contains all endomorphisms of 
with null-space in S . Further, the set of all such endomorphisms is a right-

ideal J (S) . Likewise, if a left-ideal contains an endomorphism range S ,
then it contains all endomorphisms with range in S ; moreover the set of all

such endomorphisms is a left-ideal Finally, 0 ’ K(S) = J(S) and

0 . J (S) = K(S) . This shows that is a Froben.ius ring, in the sense of

the following definition :

DEFINITION. - A ring in which 0 .~ ~ (0 ° ~ J) = J for all right-ideals J and

o ~,~. (0 ~a ~ K) = K for all left-ideals K is a Frobenius ring. A residuated

m-poset in which © ~ ~ (0 °. h) = h for all right-ideal elements h and

o °~. ~0 ~ ° k) == k for all left-ideal elements k is a Frobenius m-poset.

THEOREM 1~Q .» Let A be any semisimple linear associative algebra of finite order

over a field F c Then the linear subspaces ( F-modules) of A form s, Frobenius

m-lattice ~~~A~ ~ which is also a projective geometry. The right-ideal elements of
M and the left-ideal elements of M are dually isomorphic complemented modular

lattices.

The preceding result is a straightforward application of the Wedderburn theory

of semisimple algebras y in the light of the remarks of paragraph one above. The

Wedderburn theory shows that A is the direct sum of full matrix algebras

A. = r’~ .~ (D.) ~ where the D. are division algebras over F . The right-ideal
elements of the m-lattice form lattices,, which are the direct unions of

those H. = H(Ai) , ior the direct summands Ai . Since each H. is a complemented

modular Frobenius m-lattice, the same is true of their direct union, completing
the proofs

It is easy to construct other Frobenius rings. Thus the nilpotent algebra of all

polynomials in x ~ modulo any x n is a commutative Frobenius ring. Its ideals
are generated by 1 ~ x ~ x ~ ~ ... ~ , n~"~ ~ 0 respectively ; they form a chain

in which 0 : (~) = x ~n .
But it is harder to construct other Frobenius rings whose right-ideals and left-

ideals form complemented (modular) latticeso If A is such a ring, with radical

N , then A must contain a right-ideal H complementary to N. Here H

since H is a right-ideal, and HN ,~ N since N is a Hence

Likewise, A must contain a complementary left-ideal K such

that NK = 0 ..



Re gular rings* - In his study of continuous-dimensional geometries, von NEUMANN

defined a re gular ring as a ring in whi ch every element a has a relative inverse

x such that axa = a . A finite-dimensional linear associative algebra is regular

if and only if it is semisimple ; the equational definition given above has the

advantage of being applicable to rings of operatorso

In any regular ring R 9 aR..: axa R ~ eR ~ where e = ax satisfies

e = (ax) (ax) = (axa) x = ax = e a Conversely  eR == ax aR ; hence aR = eR .

This shows that every principal right-ideal of R is generated by an ’idempotent,.

A similar argument works for left-ideals. Conversely, any ring in which every

principal right-ideal is generated by an idempotent satisfies e = ax where

e2 = ax ax = eax . But we cannot cancel x to set axa = e c

The lattice of principal right-ideals of any regular ring is complemented, since

eR and (1 - e) R have in common only elements y for which ...

(1 ~ e) y = (1 - e) ez = 0 and ey = e(l - e) z = 0 ~ hence for which

y = ly = (1 ~ e) y + ey = 0 . Likewise, the lattice of principal left-ideals of

any regular ring is complemented.

I do not know whether the product of two principal right-ideals of a regular

ring is itself a principal right-ideal..

16. Algebra of relations.

The algebra of all binary relations on an arbitrary set I of elements

03B1 , 03B2 , 03B3 , ... provides a final application of the theory of l-demigroups. A

. binary relation on I may be defined by its re lation matrix I by letting
if the relation holds between a and 03B2 , and letting ra =0 if it

does not. Relation matrices form a Boolean algebra if ~r03B103B2~  ~s03B103B2~ is defined

to mean r03B103B2 s for all a o When multiplied by the rule

(24) r s = t means that = U ray x

one gets an l -demigroup Dn , where n is the cardinality of I .

This t-demigroup can also be obtained as a special case of example 8~ ~ 4. D n
is isomorphic with the l -demigroup of all j oin-endomorphisms of the Boolean

algebra 2n . It can also be obtained from example 2, § 1 r Let G be the demigroup
of elements e.. and n ~ with the multiplication rules for matrix units :



and e.. 0 = Oe.. =0 . Then 0 
n 

is isomorphic with the l-demigroup of all

subsets of G which contain 0 ; this brings out the analogy with full matrix

algebrao Finally, D n can be defined as the l-demigroup of all l-modules in

the l-ring of all real n x n matrices.

Though the algebra of relations was studied in the nineteenth century, in

connection with the logic of relations, the systematic study of postulates for

relation algebras dates only from 19q.5. The first characterization of relation

algebras as l-demigroups was given in [LT2] (Ch. XIII, § 5- §7)

The l-demigroup Dn has a zero 0 = and a unity e = 03B4ij , as well as an
I = li 1 II . Each r in D has a converse r = The operation of

~J n J J~
conversion can either be considered as a primitive operation peculiar to relation

algebra, or it can be defined from the usual t-demigroup operations as f ollows.

DEFINITION. - A relation algebra is a residuated t-demigroup. L with zero 0

and unity e , which is a Boolean algebra when considered as a lattice. Further,
it is assumed that

li
The element r’ = e ~ i is in fact the converse r of r t

and equations (27)-(28) simply reformulate the identities rs = sr and r = r .

Note that the definition of a relation algebra is only equational if one admits

complementation and residuation as fundamental operations. One can replace the

two binary residuation operations by the unary conversion operation, using two

identities communicated to the author by DAVIDON :

The identities rs = sr an r = r imply e = e ; using them and r ~ s = r ~ s ,

which implies n ~ = r: , one obtains (26)-(28) trivially from

the definitions (29) . This proves

THEOREM 15. - A relation algebra is an l-demigroup L with unary operations of

complementation and conversion such that complementation makes L into a Boolean

algebra.



in which (29) define residuals~ 
’

Since r o ° s can be defined by the identity ~ s ~r . . s~ ~ u r = r and the

identical implication sx u r = r theorem 15

makes possible the application of the concepts of universal 

A simpler, strictly equational definition of a relation algebra has been derived

by TARSKI. TARSKI has shown that the equation

is sufficient to take care of the properties of residuation. In view of ~30) ~ it
is equivalent (writing r = x and s = y’ ) to u y = y , or (using

(29)) to x) ~ y a Hence we have :

THEOREM 16 (TARSKI) o - A relation algebra is an l-demigroup which is a Boolean

algebra with a unary conversion operation satisfying ~30) ~ (3~) .

, 

To apply the concepts of universal algebra (Ch. V) using the above equational

definitions, one must require subalgebras to be closed under residuation and

conversion, and congruence relations to respect residuation. Thus, one must

change the simple concepts of m-sublattice and congruence relation for demigroups

used in the earlier sections of this paper.

170 Continuous relation algebras. - The relation algebras considered in § 16 Gxe

all atomic Boolean when considered as lattices. Since many of the most

interesting Boolean algebras arising in analysis are continuous, it is natural

to try to construct continuous relation algebras* This appears to be difficult,
for the following reason.

Considered as Boolean algebras, finite relation algebras obviously correspond
to the algebra of all subsets of a product space (the space of all entries of
the relation matrix).

Correspondingly, the corrospondences x -~ Ix and x -~ xI proj ect the given
relation algebra R onto two isomorphic Boolean subalgebras of R ~ say A and

A . As a Boolean algebra.’1 then, R is the direct product A x A ; moreover

. 

conversion is an involutory automorphism of R which interchanges A and A .

To reconstruct R as a relation algebra from A = A f it suffices to define
relation multiplication in A x A .



There are various natural ways to define direct products of infinite Boolean

algebras. For instances let A ~ ~ be the Boolean algebra of all Borel subsets

of ~0 ~ ~ ~ , modulo subsets of measure zero. Then one naturally defines
A x A as the set of all Borel subsets of the unit smare 0 ~ x ~ that

is, of all Borel functions r (x , y) having 0 and 1 for values. The natural

definition of the relation product t (x , y) of two such functions r (x , y) and

S ‘~ ! yJ iS t

However, this relation algebra, considered as an group., does not have a

unity 1 in the sense ~3~ s The matrix of the identity function 1 : x = y is

defined by 
’

In analysis, such matrices (or integral kernels) are identified with the matrix
0 ..

The preceding simple discussion indicates a major obstacle to constructing
continuous analogs of relation algebras : providing them with s. multiplicative

unity. If one is willing to forego the existence of a multiplicative unity, one

can construct various kinds of relation algebras from appropriate classes of

Boolean algebras.

Namely~ one can construct an algebraic direct product for any A . If A is a

complete Brouwerian lattice , one can construct A x A 
, 

as a topological direct

product, by analogy with the construction of open sets in a product space from
the open sets in the factor. Finally, if A is a measure algebra, one can

construct A x ~ by analogy with the construction of product measures. We omit

the details, noting only that none of the a;Jove constructions yields a unity in

general.

Some other recent results on the algebra of relations can be found in the Notes

alluded to at the beginning.


