Séminaire Delange-Pisot-Poitou. Théorie des nombres

Gregory V. Choodnovsky
Values of meromorphic functions of order 2
Séminaire Delange-Pisot-Poitou. Théorie des nombres, tome 19, n ${ }^{\circ} 2$ (1977-1978), exp. ${ }^{\circ}$ 45, p. 1-18
http://www.numdam.org/item?id=SDPP_1977-1978__19_2_A19_0

© Séminaire Delange-Pisot-Poitou. Théorie des nombres
(Secrétariat mathématique, Paris), 1977-1978, tous droits réservés.
L'accès aux archives de la collection « Séminaire Delange-Pisot-Poitou. Théorie des nombres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

VALUES OF MEROMORPHIC FUNCTIONS OF ORDER 2

by Gregory V. CHOODNOVSKY (*)

Résumé. - Soit $f(z)$ une fonction méromorphe sur c^{n}, transcendante et d'ordre fini f. On étudie l'ensemble $S_{\bar{Q}}$ des points de $\underset{\sim}{\underline{Z}} \sim$, où f, ainsi que toutes ses dérivées, prennent des valeurs entières. Il est contenu dons une hypersurface. Si $\rho<2$ (ou si $n=1$), on obtient de bonnes majorations pour le degré de cette hypersurface.

O. Introduction.

We are here interested in the srithmetic nature of the values of meromorphic functions and their derivatives, for functions of arbitrary finite order. Functions of order <2 play a special role.

Given an arbitrary function f, analytic in the neighbourhood of a point $w \in \mathbb{C}$, we call the point w
algebraic, if $w \in \bar{Q}$, and all the derivatives $f^{(k)}(w)$ are algebraic, $f^{(\bar{k})(w) \in \bar{Q}}$, for all $k \geqslant 0$,
algebraic in the weak sense (or rational), if $w \in \underline{\mathcal{Q}}$ and $f^{(k)}(w) \in \underline{\mathcal{Q}}$, for all $k \geqslant 0$,
algebraic in the weakest sense (or integral), if $w \in \underset{\sim}{\bar{Q}}$ and $f^{(k)}(w) \in \underset{\sim}{Z}$, for all $k \geqslant 0$.

A general problem for arbitrary meromorphic functions of finite order can be formulated as follows.

PROBLENi 0. - Suppose f is a transcendental function, meromorphic of finite order $\leqslant \rho$. Is the set of rational points associated to f finite? If so, can one obtain a upper bound for its cardinality only in term of ρ ?

There are important conjectures of BOMBIERI and WALDSCHIIDT on the number of algebraic points associated to f. According to the conjecture in [12], there are at most ρ such points. Unfortunately, this is not the case in čeneral, as many examples show for $p<1$. Simply consider

$$
f(z)=\sum_{n=0}^{+\infty} \frac{a_{n}}{n!} z^{n},
$$

with $a_{n} \in \underset{\sim}{\mathbb{Q}},\left|a_{n}\right| \leqslant(n!)^{p-1}, \rho<1$.
In this paper, we shall first describe the situation for algebraic points, and
prove some results on integral points both in one dimensional and mitidimensional situations. We shall also mention diophantine estinaies concerning the approximation of integral points of functions of order <2 by algebraic numbers.

Nothing is known on the algebraic values of f itself, excent in the special case when f satisfies on algebraic differential equation, where we have, as a consequence of the SCHELDER-LANG theorem, the following proposition.

PROPOSITION 1 ([5], [8]). - Let f_{1}, \ldots, f_{n} be meromorphic functions such that the derivative operator $d / d z$ maps $Z\left[f_{1}, \ldots, f_{n}\right]$ into itself. If f_{1} is a transcendental function of order $\leqslant \rho$, and K denotes a number field, there are at most $[K: Q]_{\rho}$ points w in K such that $f_{i}(w) \in K$ for $i=1, \ldots, n$.

There is one particular case in transcendence theory where it is known that an entire function admits only one algebraic point. It is the case of E-functions (their order is $\leqslant 1$) which satisfy a linear differential equation: 0 is their only algebraic point.

Below, we generalize some of SIEGBL's results on E-functions by showing that a transcendental function, which is merornorphic of order <2, has at most one integral point. Moreover, if this function satisfies a polynomial differential equation, the same conclusion holds for its rational points.

THEOREM 2. - Let f denote a meromorphic transcendental function of order <2. There is at most one point w in $\underset{\sim}{\bar{Z}}$ such that $f^{(\underline{1 x})}(\mathrm{w}) \in \underset{\sim}{Z}$, for all $k \in \underset{\sim}{\mathbb{N}}$.

In fact, we could even suppose, as we whall see later on, that, for all integers $k, f^{(k)}(w)$ is a rational number whose denominator divides c^{k}, for some integer C.

THEOREM 3. - Let f denote a meromorphic transcendental function of order <2. Suppose further that f satisfies a polynomial differential equation. Then, there is at most one point w in $\overline{\mathcal{Q}}$ such that $f^{(k)}(w) \in \mathbb{Q}$, for all $k \in \underset{\sim}{N}$.

We now study the set of complex numbers which are simultaneously algebraic points for two algebraically independant functions. By the SCHNEIDER-IANG theorem, we have the following proposition.

PROFOSITION 4 ([5], [8]). - Lct f_{1}, f_{2} be two algebraically independant meromorphic functions, of order $\leqslant \rho_{1}, \rho_{2}$ respectively. Suppose they satisfy a system of algebraic differential equations over \xrightarrow{Q}

$$
P_{i}\left(f_{i}^{1}, f_{1}, f_{2}\right)=0 \quad(i=1,2)
$$

If K denotes a number field, the number of complex numbers w such that $f_{i}^{(k)}(w) \in K$, for all $k \geqslant 0, i=1,2$, is bounded $\mathrm{by}[K: Q]\left(\rho_{1}+\rho_{2}\right)$.

If one of the functions satisfy a law of addition, the method of conjugate func-
tions iescribed below enables one to prove the following stronger statoment.
THEORTM 5. - Suppose all the assumptions of proposition 4 are satisfied, and, fur-

Consequently, if f is a meromorphic function of order $\leqslant \rho$, such that $f(z)$ and $\exp z$ are algebraically independent, there are at most $\rho+1$ algebraic num bers α such that $f^{(k)}(\log \alpha) \in \underset{\sim}{Z}$, for all $k \geqslant 0$. Sinilarly, if $p(z)$ denotes a Weierstrass elliptic function with rational invariants, and if f and p are algebraically independent, there are at most $p+2$ points u such that $p(u) \in \mathbb{Q}$ and $f^{(k)}(u) \in \underset{\sim}{Z}$, for all $k \geqslant 0$.

Of course, it is impossible to prove transcendence results for functions of order $\geqslant 2$, when we know the existence of only one algebraic point : Consider, for instance, the function $f(z)=\exp (z(z-1) \ldots(z-n+1))$, which has order n, and n integral points. Thus, for functions of order $<n$, we have to assume the existence of $n-1$ integral points. The proof of the corresponding transcendence result does not follow from former methods, and new ideas are needed. Indeed, in the theorem of SCHNEIDER-LANG ([5], [8]), STRAUS [10] and others (see e. g. [1]), the dependence on the degree of integral points is essential.

We avoid this difficulty by introducing a new type of argument. From the usual auxiliary function

$$
F(z)=P(z, f(z))
$$

constructed by SIEGEL's lomma with zeroes of high multiplicity at some integral points w_{1}, \ldots, w_{h}, we pass to functions of the form

$$
F_{j}(z)=P\left(z+\lambda_{j}, f(z)\right)
$$

for some set $\left\{\lambda_{j}\right\}$ of elements of the number field $Q_{(}\left(W_{1}, \ldots, W_{h}\right)$. These functions also have zeroes of high multiplicities at the points w_{1}, \ldots, w_{h}. A system of inequalities connecting the multiplicities of zeroes of the different auxiliary functions provides an upper bound for h.

We shall now prove a general result in this direction.

1. A general theorem on integral points.

THEOREM 6. - Let $f(z)$ be a meromorphic transcendentel function of order $\leqslant \rho$. Then, there are at most ρ algebraic points $w \in \mathbb{Q}$ such that $f(z)$ is analytic at $z=w$, and $f^{(k)}(w) \in \underset{\sim}{\underset{\sim}{2}}$, for all $k \geqslant 0$.

There is now a report of E. REYSSAT [7] devoted to the exposition of the proof of this result of mine. However I want to present another version of the proof. This variant can be considered as the refinement of the usual proof of the STRAUS-SCHINEIDER theorem.

Let $S=\left\{w_{1}, \ldots, w_{n}\right\}$ be a set of integral points of $f(z)$ and $n>p$. Then, for some Galois field K, containing S, we have
(1.1) $f(z)$ is analytic in a neighbourhood of $w_{i}, i=1, \ldots, n$;
(1.2) K is a Galois field with Galois group G, and

$$
[\mathrm{K}: \underline{Q}]=|\mathrm{G}|=\mathrm{d} ;
$$

(1.4) $w_{i} \in K, i=1, \ldots, n$.

As in the ordinary proof, we consider an auxiliary function of the form

$$
F(z)=P(z, f(z)),
$$

where $P(x, y) \in \underset{\sim}{Z}[x, y], \operatorname{deg}_{x}(P) \leqslant L_{1}, \operatorname{deg}_{y}(P) \leqslant L_{2}$. We consider a parameter L sufficiently large with respect to $(n-\rho)^{-1}, n, d$, $\max H\left(w_{i}\right) \ldots$ Then by SIEGEL's lemma, we can find a non-zero polynomial $P(x, y) \in \underset{\sim}{Z}[x, y]$,
$\operatorname{deg}_{x}(P) \leqslant L_{1}, \operatorname{deg}_{y}(P) \leqslant L_{2}$ such that
(1.5) $L_{1}=\left[L(\log L)^{-(1 / 4)}\right], L_{2}=\left[(\log L)^{3 / 4}\right]$.

Then

$$
\begin{equation*}
H(P) \leqslant \exp \left(C_{1} L\left(\log L_{1}\right)^{1 / 2}\right), \tag{1.6}
\end{equation*}
$$

for $C_{1}=C_{1}(d, n)>0$, and, for the auxiliary function

$$
\begin{equation*}
F(z)=P(z, f(z)), \tag{1.7}
\end{equation*}
$$

we have

$$
\begin{equation*}
F^{(k)}\left(w_{i}\right)=0, \tag{1.8}
\end{equation*}
$$

for any $k=0,1, \ldots, \mathrm{~L}-1$, and $\mathrm{i}=1, \ldots, \mathrm{n}$.
Now together with the already constructed function $F(z)$, we sholl consider a system of auxiliary functions of the form

$$
F_{j}(z)=P\left(z+\lambda_{j}, f(z)\right),
$$

for a special system $\left\{\lambda_{j}\right\}$ of algebraic numbers in K.
Let $\underset{\sim}{Z}[G]$ be a group ring of G, and $\underset{\sim}{Z}[G]$ be an ideal in $\underset{\sim}{Z}[G]$ of elements of zero trace

$$
\begin{equation*}
{\underset{Z}{0}}^{z_{0}}[G]=\left\{\alpha=\sum_{g \in G} n_{g} g: \sum_{g \in G} n_{g}=0\right\} \tag{1.9}
\end{equation*}
$$

Our main objet is the ring $J_{0}={\underset{J}{0}}^{[}[G]^{n}$. Let
(1.10) $\quad J_{0}={\underset{J}{0}}^{Z}[G]^{n}, C=G \backslash\{1\}, J=C \times\{1, \ldots, n\}=C \times n$.

There exists on isomorphism between $J_{0}=\underset{\sim}{z}[G]^{n}$ and $\underset{\sim}{\underset{\sim}{J}}={\underset{\sim}{z}}^{\text {Z }} \times$ n :

$$
\begin{equation*}
v:{\underset{\sim}{0}}^{Z_{0}}[G]^{n} \rightarrow Z^{\top} \tag{1.1I}
\end{equation*}
$$

We define v explicitly : If $\mathfrak{U}=\left(\theta_{1}, \ldots, \theta_{n}\right) \in \mathcal{J}_{0}$, and

$$
\theta_{i}=\sum_{g \in G} n(g, i) g \in \underset{\sim}{Z}[G], i=1, \ldots, n,
$$

then we set
(1.12) $\quad v(\underline{q})=(n(g, i) ; g \in G \backslash\{1\}, i=1, \ldots, n)$

$$
=\left(n(g, i) ;\left(g_{g}, i\right) \in J\right) \in \underset{\sim}{\underset{\sim}{J}} \text {. }
$$

Now we define the set $\left\{\lambda_{j}\right\}$ of elements of K. Let $\sum_{i}=\left(\sigma_{1}, \ldots, \theta_{n}\right) \in J_{0}$, and $\theta_{i}=\sum_{g \in G} n(g, i) g \in{\underset{J}{0}}\left[G_{j}^{-}, i=1, \ldots, n\right.$. Then, we define (1.13)

$$
\lambda(\mathfrak{I})=\sum_{i=1}^{n} \sum_{g \in G} n(g, i) w_{i}(g) \in K .
$$

By the isomorphism v (1.11), we transfer the definition of $\lambda(\vec{n})$ to all the elements $\vec{n} \in \mathscr{Z}^{\top}$

$$
\begin{equation*}
\lambda(\vec{n})=\lambda\left(v^{-1}(\vec{n})\right) \in \mathbb{K}, \quad \vec{n} \in \underset{\sim}{\underset{\sim}{\sim}} . \tag{1.14}
\end{equation*}
$$

Now the following basic property of the sequence $\left\{\lambda(\mathfrak{i}) ; \underline{d} \in \mathcal{J}_{0}\right\}$ can be easily shown. Any number conjugate to $w_{i}+\lambda(\mathfrak{k})$, and $\left\{\in J_{0}, i=1, \ldots, n\right.$ also, has the fomn $w_{i}+\lambda\left(\Omega_{1}\right)$, for some $\Re_{1} \in J_{0}$.

Suppose that $g \neq 1$, i. e. $g \in C$. We put

$$
\begin{equation*}
\theta_{j}^{1}=\theta_{j} g, j=1, \ldots, n, \quad j \neq i ; \tag{1.15}
\end{equation*}
$$

$$
\begin{equation*}
\theta_{i}^{1}=\theta_{i} g+g-1 \tag{1.16}
\end{equation*}
$$

So, we have
(1.17) $\quad \theta_{j}^{1} \in \underset{\sim}{Z}[G], j=1, \ldots, n$ and $\left\{_{1}=\left(\partial_{1}^{1}, \ldots, \theta_{n}^{1}\right) \in \mathfrak{J}_{0}\right.$.

Then, as it can be easily verified from (1.13), (1.15) and (1.16), we have

$$
\begin{equation*}
\left(w_{i}+\lambda(\mathfrak{2})\right)(g)=w_{i}+\lambda\left(g_{1}\right) \tag{1.18}
\end{equation*}
$$

where M_{1} is defined in (1.15)-(1.17). If f_{i} denotes a vector ($0, \ldots, 0,1,0, \ldots, 0$) of the length n, having unit coordinate at the i-th place, then \mathfrak{s}_{1} can be briefly rewritten in the form

$$
\mathfrak{\mu}_{1}=\Omega g+\underset{\sim}{f}(g-1) \in \mathfrak{J}_{0},
$$

where $\mathfrak{q} \in \mathcal{J}_{0}$, and $f_{\mathfrak{j}}(g-1) \in \mathcal{J}_{0}$. Then (1.18) is replaced by

$$
\begin{equation*}
\left(w_{i}+\lambda\left(\mathfrak{2}_{i}\right)\right)^{(g)}=w_{i}+\lambda\left(\mathfrak{M g}+\underset{f_{i}}{ }(g-1)\right) \tag{1.19}
\end{equation*}
$$

Now, we consider a $(\mathrm{d}-1)$ n-dimensional cube $\mathrm{C}(\mathrm{M})$ in $\underset{\sim}{\underset{\sim}{J}}={\underset{\sim}{2}}^{\mathrm{C} \times n}$

$$
C(M)=(\underset{\sim}{Z} \cap(-M, H))^{J},
$$

and the functions
(1.20) $\quad \underset{\vec{n}}{F}(z)=P(z+\lambda(\vec{n}), f(z) ; \vec{n} \in C(\mathbb{N})$, or

$$
F_{\mathfrak{Y}}(z)=P(z+\lambda(\mathfrak{q}), f(z)) ; \Omega \in J_{0}, \quad v(\mathfrak{q}) \in C(\mathbb{N}),
$$

for \mathbb{N} sufficiently large with respect to $d, n,(n-\rho)^{-1}$, and I sufficiently large with respect to N.

For $\vec{n} \in \underset{\sim}{Z}$ or $\tilde{U}_{i} \in J_{0}$ ，we denote by $\vec{u}_{i}^{\vec{n}}$ or u_{i}^{n} ，the snallest $u \geqslant 0$ such

By the transcendence of $f(z), \vec{u}_{i}<\infty$ and the construction of $P(x, y)$ ，we have

$$
\begin{equation*}
u_{i}^{\vec{O}} \geqslant L, \text { for } i=1, \ldots, n \tag{1.21}
\end{equation*}
$$

Now applying JENSEN＇s formula，we obtain an analytic inacuality ：Let $\overrightarrow{\mathrm{n}} \in \mathrm{C}(\mathbb{N})$ and $i=1, \ldots, n$ ．Then，for $c_{2} \geqslant 0$ ，
（1．22）$\sum_{j=1}^{n} u_{j}^{\vec{n}} \log u_{i}^{\vec{n}} \leqslant \rho\left(c_{2} u_{i}^{\vec{n}}\left(\log u_{i}\right)^{3 / 4}+c_{2} L(\log L)^{3 / 4}\right.$

$$
\begin{aligned}
& u_{i} \leqslant \rho\left(c_{2} u_{i}\left(\log u_{i}\right)+c_{2} L(\log L)\right. \\
& \left.+c_{2} L(\log L)-(1 / 4) \quad \log N+\vec{n}_{i} \log \vec{n}_{i}^{n}-\log \left|F_{\vec{n}}^{\left(u_{i}\right)}\left(w_{i}\right)\right|\right)
\end{aligned}
$$

We can connect the numbers $\underset{\vec{n}}{\left(u_{i}^{n}\right)}\left(w_{i}\right)$ and their conjugates using relation（1．19）． From the definition of $\mathrm{F}_{\mathrm{s},}(z)$ ，it follows that
 and also

$$
\begin{equation*}
u_{i}^{\mathfrak{M}}=u_{i}^{\mathfrak{M g}+f_{i}(g-1)}, i=1, \ldots, n, \quad \dot{\Omega} \in J_{0} \tag{1.24}
\end{equation*}
$$

From the product formula，we obtain the following system of inequalities，for $\mathfrak{M} \in \mathcal{J}_{0}, v(\mathfrak{M}) \in C(\mathbb{N}), i=1, \ldots, n:$ （1．25）$d(\rho-1) u_{i}^{M}+c_{3} u_{i}^{\mathfrak{N}}\left(\log u_{i}^{\text {Ni }}\right)-(1 / 4)$

$$
\begin{aligned}
&+\frac{c_{3}}{\log u_{i}^{n}}\left(L(\log L)^{3 / 4}+L(\log L)^{-(1 / 4)}(\log N)\right) \\
& \geqslant \sum_{g \in G} \sum_{j=1, j \neq i_{j}^{n}}^{u_{j}^{n}+f_{i}(g-1)},
\end{aligned}
$$

where $\vec{u}_{i}^{\overrightarrow{0}} \geqslant L, i=1$ ，．．．n ．Because $u_{j}^{\operatorname{sig}+f_{i}(g-1)}=u_{j}{ }_{j}+f_{i}-f_{j}-f_{i} g^{-1}+f_{j} g^{-1}$ ，we have，instead of（1．25），

$$
\begin{aligned}
& \text { (1.26) } d(p-1) u_{i}^{5 i}+c_{3} u_{i}^{\text {立 }}\left(\log u_{i}^{\text {i }}\right)^{-(1 / 4)} \\
& +\frac{c_{3}}{\log u_{i}^{n i}}\left(L(\log L)^{3 / 4}+L(\log L)^{-(1 / 4)}(\log N)\right) \\
& \geqslant \sum_{g \in G} \sum_{j=1, j \neq i}^{n} u_{j}{ }_{j+f_{i}-f_{j}-f_{i} g+f_{j} g},
\end{aligned}
$$

for $\mathfrak{M} \in \mathcal{J}_{0}, v(\mathfrak{A}) \in C(N)$ ．Now，we apply the mepping v to $J_{0}, v: J \rightarrow \mathbb{Z}^{\top}$ ， and consider the basis vector $\vec{e}(\vec{j})=\vec{e}(g, i)$ of $\underset{\sim}{\text { 可 }}, \vec{j}=(g, i) \in J$ ．Then

$$
v\left(\mathfrak{d}+{\underset{\sim}{i}}-{\underset{\sim}{f}}_{j}-{\underset{\sim}{i}} g+{\underset{\sim}{f}}_{j} g\right)=v(\mathfrak{j})-\vec{e}(g, i)+\vec{e}(g, j), \text { for } g \neq 1,
$$

and，instead of（1．26），we obtain a new system，for $i=1, \ldots, n$ ，and $\vec{n} \in C(N)$ ，
(1.27) $d(\rho-1) u_{i}^{\vec{n}}+c_{3} u_{i}^{\vec{n}}\left(\log \vec{u}_{i}\right)-(1 / 4)$

$$
+\frac{c_{3}}{\log u_{i}^{\mathrm{n}}}\left(\mathrm{~L}(\log \mathrm{~L})^{3 / 4}+L(\log L)^{-(1 / 4)} \log \mathrm{N}\right)
$$

$$
\geqslant \sum_{g \in C} \sum_{j=1, j \neq i}^{n} \vec{u}_{j}^{\vec{n}}+\vec{e}(g, j)-\vec{e}(g, i)+\sum_{j=1, j \neq i}^{n} \vec{n}_{j}^{\vec{n}} \cdot
$$

Because $\vec{u}_{i}^{\overrightarrow{0}} \geqslant L, i=1, \ldots, n$, we can show, using (1.27), that for

$$
(\log L)^{1 / 4} \geqslant\left(6 c_{3} n^{2} d^{2}\right)^{2 n d i N}
$$

we have
(1.28)

$$
u_{i}^{\vec{n}} \geqslant\left(6 c_{3} n^{2} d^{2}\right)^{-2 n d \sqrt{x}} L
$$

provided $\overrightarrow{\mathrm{n}} \in \mathrm{C}(\mathbb{N})$.
Thus from (1.28), we obtain the main system (W), connecting different $\vec{u}_{k}^{\vec{m}}$. We have, for $i=1, \ldots, n, \vec{n} \in C(N)$ and $\log \log L \geqslant c_{6}^{N}$:

$$
\begin{align*}
& d(p-1) u_{i}^{\vec{n}}+c_{4} u_{i}^{\vec{n}}\left(\log u_{i}^{\vec{n}}\right)-(1 / 4) \tag{V}\\
& \quad \geqslant \sum_{j=1, j \neq i}^{n} u_{j}^{\vec{n}}+\sum_{j=1, j \neq i}^{n} \sum_{g \in C} u_{j}^{\vec{n}+\vec{e}(g, j)-\vec{e}(g, i)},
\end{align*}
$$

where $u_{i}^{\vec{n}} \geqslant c_{5}^{-N} L$, and c_{4}, c_{5}, c_{6} depend only on n, d. In this system (W), the numbers $\vec{u}_{k}^{\vec{m}}$ are always $\geqslant 0$.

The system (W) for positive $u_{i}^{\vec{n}}, i=1, \ldots, n, \vec{n} \in C(\mathbb{N})$ is inconsistent for N, sufficiently large with respect to $n, d,(n-\rho)^{-1}$. The inconsistency of (W) is a consequence of the fact that, in the left side of (W), we have a constant factor $d(\rho-1) \leqslant x<d(n-1)$, while, in the right side of (W), we have $d(n-1)$ summands.

Thus the system (W) is much more restrictive than the usual scheme of random walk in ${\underset{\sim}{\underset{J}{J}}}^{\top}$. This allows us to use, for instance, the rethod of generating functions (see [4]) to show the following lerma.

LEMA 7. - System (W) is inconsistent for non-negative $u_{i}^{\vec{n}}, i=1, \ldots, n$, $\overrightarrow{\mathrm{n}} \in \mathrm{C}(\mathbb{N})$, when $\mathrm{N} \geqslant \mathrm{N}_{0}\left(\mathrm{n}, \mathrm{d},(\mathrm{n}-\mathrm{p})^{-1}\right)$.

The complete proof of the lemin 7, with good estimates for $N_{0}\left(n, d,(n-\rho)^{-1}\right)$ is contained in my preprint [3] with another version of proof of theorem 6. Of course, the paper of E. REYSSAT [7] gives a shorter proof of lemma 7.
Because all $\vec{u}_{i}^{\vec{n}}$ are $\geqslant 0$ (as multiplicities of zeroes), it follows from lemma 7 that $n \leqslant \rho$. Thus theorem 6 is proved. Theorems 2 and 3 follow from theorem 6 .
2. Various generalizations for one-and multidimensional situations.

In fact, the method of proof of theorem 6 can be easily generalized to the case of two functions $f_{1}(z)$ and $f_{2}(z)$, when one of these functions (say $f_{1}(z)$) satis-
fies an algebraic law of addition over $\underset{\sim}{Q}$, i. e. $f_{1}(z)=z, \exp z$ or $p(z)$, where $j(z)$ has rational invariants, see theorem 5 of $\S 0$. Tho method of conjugate functions, used in the proof of theorem 6, gives also the possibility to generalize all previous results (see [11], [5], [8], [12]) in the case when one of the functions satisfies an algebraic law of addition.

We shall give here one interesting generalization of beautiful results of D. BERm TRATD [1] and M. WALDSCEMIDT [11] (only in one-dimensional situation).

In order to state these results, we use the following definition of D. BERTRAND [1] of well-behaved points.

Let $f_{1}(z), f_{2}(z)$ be algebraically independent meromorphic functions of orders $\leqslant \rho_{1}$, ρ_{2}. We consider algebraic points w of $\left\{f_{1}(z), f_{2}(z)\right\}$ with the following properties :
(i) All the numbers $f_{1}^{(k)}(w), f_{2}^{(k)}(w)$, for $k \geqslant 0$, lie in a fixed algebraic number field $\mathrm{K}_{\mathrm{W}} ; \delta_{\mathrm{W}}=\left[\mathrm{K}_{\mathrm{W}}: Q\right]$;
(ii) The sizes of these algebraic numbers satisfy

$$
\lim \sup _{m \rightarrow+\infty} \frac{\log \left|f_{1}^{(m)}(w)\right|}{m \log m} \leqslant c_{w}, i=1,2 ;
$$

(iii) For the denominators of these algebraic numbers, we have :
$\left.d_{W}^{[+1}\left[d_{W}^{\prime} m\right)!\right]^{d_{W}^{\prime \prime}} f_{i}^{(m)}(w) \quad\left(m \in \mathbb{N}, i=1,2\right.$ fixed $\left.d_{w}, d_{w}^{\prime}, d_{W}^{\prime \prime}\right)$ are algebraic integers.

If $f_{1}(z)$ satisfies a law of addition over $\underset{\sim}{\mathcal{Q}}$, then we can replace assumption (i) by
(i') $f_{1}^{(k)}(w)$ are algebraic numbers, $k \geqslant 0$, and the field

$$
L_{W}=Q\left(f_{2}(w), f_{2}^{\prime}(w), \ldots\right)
$$

has finite degree $\left[L_{W}: Q\right]=\lambda_{W}$.

DEFINITION 8.
(a) When properties (i), (ii), (iii) are satisfied for an algebraic point w of $\left\{f_{1}(z), f_{2}(z)\right\}$, then w is called a well-behaved point of $\left\{f_{1}(z), f_{2}(z)\right\}$.
(b) If $f_{1}(z)$ satisfies an algebraic law of addition over Q, on algebraic point w of $\left\{f_{1}(z), f_{2}(z)\right\}$ satisfying (i^{\prime}), (ii), (iii) is called a well-behaved point of $\left\{f_{1}(z), f_{2}(z)\right\}$.

The one-dimensional result of D. BERTRAMD [1] (see M. WALDSCHIIDT [11] for a mulltidimensional generalization) can be formulated as follows.

THEOREM 9 [1]. - For algebraically independent $f_{1}(z), f_{2}(z)$, the following sum \sum_{W} over all well-behaved algebraic points w of $\left\{f_{1}(z), f_{2}(z)\right\}$, $\sum_{W}\left(\left[K_{W}: Q\right] d_{W}^{!} d_{W}^{n}+1+\left(\left[K_{W}: Q\right]-1\right) c_{W}\right)^{-1}$,
converges to a limit not exceeding $\rho_{1}+\rho_{2}$.
However, if we suppose that $f_{1}(z)$ adnits a law of addition over \mathbb{Q} (i. e. $f_{1}(z)=z, \exp z, p(z)$, where $p(z)$ has rational invariants), and we consider well-behaved points in the sense of (i'), (ii), (iii), then we obtain the following theorem.

THEOREM 10. - Assume that the hypotheses of theorem 9 are satisfied, and that $f_{1}(z)$ satisfies a law of addition over Q. Then as w ranges over all well-behaved points of $\left\{f_{1}(z), f_{2}(z)\right\}$, the following sum converges to a linit not exceeding $\rho_{1}+\rho_{2}$

$$
\sum_{w}\left(\lambda_{w} d_{w}^{\prime} d_{w}^{\prime \prime}+1+\left(\lambda_{w}-1\right) c_{w}\right)^{-1} \leqslant \rho_{1}+\rho_{2},
$$

where $\lambda_{W}=\left[\underset{2}{Q}\left(f_{2}(w), f_{2}^{\prime}(w), f_{2}^{\prime \prime}(w), \cdots\right): Q\right]$.
The proof of theoren 10 differs only in a few points from the proof of theorem 6. For all the details of such kind of proofs, see expositions in ([11], [1]).

Now we shall consider some possible generalizations of theorem 6 for meromorphic functions in ${\underset{\sim}{C}}^{\mathrm{n}}$ of order <2.

The situation in ${\underset{\sim}{c}}^{\text {n }}$ differs fron that of ${\underset{\sim}{C}}^{1}$. First, the algebraic points may form not a discrete set, but some subvariety of codimension 1 : For

$$
f\left(z_{1}, z_{2}\right)=\exp \left(z_{1}-z_{2}\right),
$$

the line $z_{1}=z_{2}$ gives the set of integral points of $f\left(z_{1}, z_{2}\right)$.
Nice results of E. BOMBIERI [2] end M. WALDSCHNIDT ([11], [12]) give us estimates for degree of hypersurfaces in C^{n}, containing all; algebraic points of meromorphic transcendental function $f(\underset{\sim}{z})$ in ${\underset{\sim}{C}}^{N}$.

We mention in particular the following theorem.
THEOREM 11 ([11], [12]). - Let $f(z)$ be a transcendental meromorphic function of order $\leqslant \rho$ in ${\underset{\sim}{n}}^{n}$, and let K be an algebraic number field. The set S_{K} of points $\underset{\sim}{w} \in K^{n}$ such that

$$
\partial^{\underline{k}} \underset{\sim}{f}(\underset{\sim}{w}) \in \underset{\sim}{Z}, \underset{\sim}{k} \in{\underset{\sim}{N}}^{n}
$$

is contained in an algebraic hypersurface of degree $\leqslant n_{p}[K: Q]$.
It is natural to propose the following conjecture.
CONJECTURE 12. - In theorem 11, the bound $n_{\rho}[K: Q]$, for the degree of the hypersurface containing S_{K}, aan be sharpened to ρ •

Below we give a partial answer to conjecture 12 only for function of order of growth $\leqslant 1$. Conjecture 12 is unclear for arbitrary ρ. Probably, the most difficult part will be the removing of factor n in product $n_{p}[K: Q]$.

First of all, we reaall li. WALDSCHIDT's result [12], for $\rho=1$ •

PROPOSITION 13 ([12], [9]). - Let $f(z)$ be an entire transcendental function of order 1 in ${\underset{\sim}{C}}^{n}$. Then the set $S_{\bar{Q}}$ of points $\underset{\sim}{W} \in{\underset{\sim}{Q}}^{\text {n }}$ such that

$$
\partial^{k} f(\underset{\sim}{w}) \in \underset{\sim}{Z} \text { for all } \underset{\sim}{k} \in{\underset{\sim}{\mathbb{N}}}^{n}
$$

is contained in an algebraic hypersurface in ${\underset{\sim}{c}}^{\text {n }}$ of degree $\leqslant n$.
We can considerably improve proposition 13.
THEOREM 14. - Let $f(\underset{\sim}{z})$ be an entire transcendental function of order 1 in

is containing in an algebraic hyperplane \mathcal{L} (of degree 1) in ${\underset{\sim}{n}}^{n}$.
Before giving the proof of this result, we shall present sore auxiliary results on algebraic functions of one variable having several algebraic (well-behaved) points.

We shall use the following remark : The method of proof of theorems 2 and 10 can be used in the reverse direction. Instead of considering transcendental functions and, then, obtaining the bounds for the number of algebraic points, we can consider meromorphic function having a lot of algebraic points and, then prove that this function is algebraic (and obtain bounds for its degree).

Let's consider e. g. the situation in theorem 9, with $f_{1}(z)=z$. Let $f(z)$ be an arbitrary meromorphic function of order of growth $\leqslant \rho$, and Q be a finite set, $\eta \subset \underset{\sim}{\bar{Q}}$, of well-behaved points of $\{z, f(z)\}$ such that

$$
\sum_{W \in W}\left(\delta_{W} d_{W}^{\prime} d_{W}^{\prime \prime}+1+\left(\delta_{W}-1\right) c_{W}\right)^{-1}>\rho \cdot
$$

Then $f(z)$ is algebraic, i. e. satisfy an equation $P(z, f(z)) \equiv 0$. Moreover $\operatorname{deg}(P)$ depends only on W and on the constants of growth of $f(z)$. If $f(z)=\frac{h(z)}{g(z)}$ where $h(z), g(z)$ are entire functions, then

$$
\log |h|_{R} \leqslant a R^{p}+b, \quad \log |g|_{R} \leqslant c R^{\rho}+d,
$$

where a, b, c, d are the constants of growth of $f(z)$. We shall give a precise result only for entire functions.

PROPOSITION 15. - Let $f(z)$ be an entire function in $\underset{\sim}{C}$ of order of growth $\leqslant \rho$, and let W be a finite set, $W \subset \underline{\bar{Q}}$, of well-behaved points of $\{z, f(z)\}$ in the sense of (i) and (iii), such that

$$
\sum_{W \in W}\left(\delta_{W} d_{W}^{\prime} \frac{d}{W}+1+\left(\delta_{W}-1\right) c_{W}\right)^{-1}>\rho 0
$$

Then, $f(z)$ is a polynomial. Horeover, if

$$
\log |f|_{R} \leqslant a R^{\rho}+b \text { for any } R>0,
$$

$$
L \operatorname{Iog} L>C_{0}(a, W) b
$$

where $C_{0}(a, W)>0$ is a constant depending only on and a, then

$$
\operatorname{deg}(f) \leqslant L
$$

Proof. - We consider the usual scheme of proof of theorem 9 (see [11], [1] or proof of theorem 6). Wo take the auxiliary function $F(z)$ in the form

$$
F(z)=P(z, f(z)), P(x, y) \in \underset{Z}{Z}[x, y], \operatorname{deg}_{x}(P) \leqslant L_{1}, \operatorname{deg}_{y}(P) \leqslant L_{2}
$$

and

$$
L_{1}=\left[\mathrm{LL}_{2}^{-(1 / 2)}\right], \quad L_{2}=\left[L_{2}\right],
$$

L is sufficiently big number and L_{2} is a constant depending only on a and W. By SIEGEL's lemma [8], there exists $P(x, y) \in \underset{\sim}{Z}[x, y], P(x, y) \neq 0$, such that, for $F(z)=P(z, f(z))$, we have

$$
F^{(k)}(w)=0, k=0,1, \ldots, L-1 \text { and } w \in W \text {, }
$$

where $\log H(P) \leqslant L_{2}^{-(1 / 3)} L \log L$.
Now we choose L_{1} (or L) so that

$$
L_{1} \log L_{1}>c_{1} L_{2} b, \log L_{1}>c_{2}(a, W),
$$

for $c_{1}=c_{1}(W)>0$, depending only on W. Then SCHWARZ lemna together with considerations of D. BERTRAND (see [1]) shows that $F(z) \equiv 0$ or $P(z, f(z)) \equiv 0$.

Thus, $f(z)$ is polynomial and

$$
\operatorname{deg}(f) \cdot \operatorname{deg}_{y}(P) \leq \operatorname{deg}_{x}(P) \cdot
$$

In particular,

$$
\operatorname{deg}(f) \leqslant L_{1}
$$

Proposition 15 can also be formulated as follows.
PROPOSITION 15^{\prime}. - Let $f(z)$ be an entire function in C of order $\leqslant \rho$ and W, $W \subset \bar{Q}$, be finite set of well-behaved points of $\{z, f(z)\}$ such that

$$
\sum_{W \in W}\left(\delta_{W} d_{W}^{\prime} d_{W}^{\prime \prime}+1+\left(\delta_{W}-1\right) c_{W}\right)^{-1}>\rho \geqslant 1
$$

(for definition 8(a)), or

$$
\sum_{W \in W}\left(\lambda_{W} d_{W}^{\prime} d_{W}^{\prime \prime}+1+\left(\lambda_{W}-1\right) c_{W}\right)^{-1}>\rho \geqslant 1
$$

(for definition 8(b)).
Then $f(z)$ is polynomial. If $\log |f|_{R} \leqslant R^{\rho}$, for $R \geqslant R_{0}$, and $L \log L>f_{0}(W) R_{0}^{\rho}$ then

$$
\operatorname{deg}(f) \leqslant L
$$

We shall use proposition 15 or proposition 15^{\prime} only for well-behaved points in the sense of definition $8(\mathrm{a})$.

Proof of theorem 14. - Let $f(\underset{\sim}{z})$ be an entire transcendental function in ${\underset{\sim}{c}}^{n}$ of order 1 , and suppose $S_{\vec{Q}}=S_{\bar{Q}}(\tilde{f})$ is not contained in an hyperplane in ${\underset{\sim}{C}}^{n}$. Then,
 are linearly independent over $\underset{\sim}{\sim}$.

For any $i, j=1, \ldots, n+1, i \neq j$, we consider the line connecting ${\underset{\sim}{w}}^{w}$ and ${\underset{\sim}{j}}_{j}$. Because $\underset{\sim}{W_{i}} \in{\underset{\sim}{Q}}^{n}$, the equation of $L_{i, j}$ can be written in the form

$$
L_{i, j}: z_{1}=\alpha_{i, j}^{1} t+\beta_{i, j}^{1}, \cdots, z_{n}=\alpha_{i, j}^{n} t+\beta_{i, j}^{n},
$$

where $\alpha_{i, j}^{k}, \beta_{i, j}^{k}$ are algebraic integers $, k=1, \ldots, n$ and $i, j=1, \ldots, n+1, i \neq j$.

We consider the restriction of derivatives $\partial_{k}^{k} f(\underset{\sim}{z})$ of $f(\underline{z})$ on the line $L_{i, j}$ $g_{\underset{\sim}{i}, j}^{j}(t)=\partial^{k} f\left(\alpha_{i j}^{1} t+\beta_{i j}^{1}, \cdots, \alpha_{i j}^{n} t+\beta_{i j}^{n}\right)$,
for $\underset{\sim}{k} \in{\underset{\sim}{\mathbb{N}}}^{n}, i, \tilde{j}=1, \ldots, n+1, i \neq j$. The coordinates $t=0$ and $t=1$ correspond to $\underset{\sim}{z}={\underset{\sim}{w}}^{w}$ and $\underset{\sim}{z}=\underset{\sim}{w}$ j on the line $L_{i, j}, i, j=1, \ldots, n+1$, $i \neq j$.

LENA 16. - For any $\underset{\sim}{k} \in{\underset{\sim}{\mathbb{N}}}^{n}$, i, $j=1, \ldots, n+1, i \neq j, g_{k}^{i, j}(t)$ is a polynomial in t of degree $\leqslant c_{2}|\underline{k}|$, for $c_{2}=c_{2}\left(w_{i}, w_{j}\right)>0$, Having algebraic coefficients.

Proof of lemina 16. - For any $\underset{\sim}{k} \in{\underset{N}{N}}^{n}$, i, $j=1, \ldots, n+1, i \neq j, g_{\underline{z}}^{i, j}(t)$ is an entire function of order $\tilde{1}$. If K is a number field such that $w_{i} \in K^{\frac{N}{n}}$, $c_{i j}^{k}, \beta_{i j}^{k} \in K,{ }_{i}, j=1, \ldots, n+1, k=1, \ldots, n$, then, by definition of $L_{i, j}$ and $\xi_{k}^{i, j}(t)$, we have

$$
\mathrm{g}_{\underset{k}{i, j}(\mathrm{j})}{ }^{(L)} \in K \text { for any } L \geqslant 0 \text { at } t=0,1,
$$

when $\underset{\sim}{k} \in \mathbb{N}^{n}, i, j=1, \ldots, n+1$. Moreover, each of the points $t=0,1$ is the weII-behaved point of $g_{\underset{\sim}{i}}^{i}, j(t)$ such that

$$
d^{\prime}=d^{\prime \prime}=0, \quad \delta=\left[\begin{array}{ll}
K & \underset{\sim}{Q}], \quad C=0, \\
\end{array}\right.
$$

because

$$
{\underset{\partial}{\sim}}_{\underline{\ell}}^{f}\left(\underset{\sim}{w_{i}}\right) \in \underset{\sim}{Z},{\underset{\sim}{2}}_{\ell}^{\underset{\sim}{\mathbb{N}}}{ }^{n}, i=1, \ldots, n+1,
$$

and $f(\underset{\sim}{z})$ has order 1 (see [11], lemrie. 3). Thus by theoren $9, g_{k}^{i, j}(t)$ is a polynomial for any $\underset{\sim}{k} \in \mathbb{N}^{n}$, $i, j=1, \ldots, n+1, i \neq j$. In order to obtain the bound for the degree of ${\underset{k}{k}}_{i}^{i} j(t)$, we use propositions 15 and 15'.

From Cauchy's integral formula for $\tilde{f}(\underset{\sim}{z})$, we obtain an estirnate for $\log \left|g_{k}^{i} j\right|_{R}$

$$
\log \left|g_{\underset{\sim}{k}}^{i}, j\right|_{R} \&|\underset{\sim}{k}| \log |\underset{\sim}{k}|+|f|_{R} .
$$

Then propositions 15 and 15^{\prime} give us $\alpha\left(g_{\underset{k}{i}, j}^{j}\right) \leqslant c_{2}|\underline{\sim}|$, for $\underset{\sim}{k} \in{\underset{\sim}{N}}^{n}$. Finally, since $g_{k}^{i, j}(t)$ has algebraic derivatives (in K) at $t=0$, then

$$
{\underset{\sim}{\underline{k}}}_{i}^{i}, j(t) \in K[t]
$$

This proves lemma 16.
LENAR17. - Let $\underset{\sim}{k} \in{\underset{N}{N}}^{n}, i, j=1, \ldots, n+1, i \neq j$. Then any algebraic point $z_{0} \in{\underset{\sim}{2}}^{n}$ on $L_{i, j}$ is cwell-behaved point of $f(z)$ in the sense that, for the algebraic number field $K_{z_{0}}=K\left(z_{0}\right)$, we have
$1^{0}{\underset{\sim}{z}}_{0} \in K_{z_{0}}^{n}, \quad \partial^{m} f\left(z_{0}\right) \in K_{z_{0}}^{0}$, for all $\underset{\sim}{m} \in{\underset{\sim}{n}}_{n}^{n}$;

3_{m}^{30} There exists $d_{1}=d_{1}\left(z_{0}\right)$ such that $d_{1} \xrightarrow{\mid m}\left(c_{3} \mid \underset{\sim}{|m|}\right)$ is a denominator of $\partial_{\sim}^{m} f\left(z_{0}\right)$ for any $\underset{\sim}{m} \in{\underset{\sim}{N}}^{n}$.

This lema follows irmediatly from the previous one and the lemmae of $\delta 3$ from [11].
According to theorem 1 (and lemma 7) from [11] for any given δ, the set $S[\delta]$ of points ${\underset{z}{0}}^{z_{0}} \underset{\sim}{\underline{Z}}$, satisfying $1^{\circ}, 2^{0}, 3^{\circ}$ with $\left[K\left(z_{0}\right): Q\right] \leqslant \delta$ is contained in a hypersurface of degree $\leqslant n\left(c_{2} \delta+1\right)$. From lemma 17, it follows that, for any $L \supset K,[I: Q] \leqslant \delta$,

$$
U_{i, j=1}, \ldots, n+1, i \neq j L_{i, j} \cap L^{n} \subset S[\delta]
$$

Now let $\underset{\sim}{2}$ be any line in $\underset{\sim}{C^{n}}$ connecting $\underset{\sim}{w}$ with eny element from $S[\delta]$. Then along this line, the function $f(z)$, as well as all its dorivatives, is algebraic.

LEMAA 18. - Let $\underset{\sim}{\mathcal{Z}}$ be any line in ${\underset{\sim}{C}}^{n}$ containing $\underset{\sim}{w}$ and another point $\underline{w}^{\mathbf{d}} \in S[\delta]$, for $\delta<\omega$, and denote its equation by

$$
\underline{\sim}: z_{i}=\alpha_{i} t+\beta_{i}, i=1, \ldots, n
$$

is a polynomial of degree $\leqslant c_{2} \mid \underset{\sim}{|k|}$, having coefficients in the field

$$
K\left[{\underset{\sim}{w}}^{\prime}, \alpha_{i}, \beta_{i}, i=1, \ldots, n\right] .
$$

Proof of lemme 18. - For $\underset{\sim}{k} \in{\underset{\sim}{N}}^{n}$, the function $\underset{g_{k}^{2}}{\approx}(t)$ ia an entire of order 1 . Because ${\underset{W}{W}}^{\mathbf{W}} \in S[\delta]$, i. e. satisfies 1° and $\underset{\sim}{30}$ of lemma 17 , the points ${\underset{\sim}{w}}^{w}$ and ${\underset{\sim}{w}}^{1}$ correspond to well-behaved points of $\left\{t, \hat{s}_{k}^{2}(t)\right\}$. Let the parameters $\hat{t}=0$ and $t=1$ correspond to $\underset{\sim}{w}$ i. and $\underset{\sim}{v^{\prime}}$, respectively. Then, we have

$$
\begin{aligned}
& d_{0}^{\prime}=d_{0}^{\prime \prime}=0, \quad \delta_{0}=\left[\mathrm{K}: \underset{\sim}{Q]}, \quad c_{0}=0,\right. \\
& d_{1}^{\prime}=c_{2}, d_{1}^{\prime \prime}=0, \quad \delta_{1}=\delta, \quad c_{1}=0 .
\end{aligned}
$$

By theorem 9, the function $\underset{\sim}{\underset{k}{\alpha}} \underset{\sim}{\chi}(t)$ is algebraic. A bound for the degree of ${\underset{\sim}{k}}_{\underset{k}{\hat{\alpha}}}^{\hat{\alpha}}(t)$
follows immediately from propositions 15 and 15' and Cauchy's formula. It is clear that the coefficients of $\frac{g}{k}(t)$ lie in $K\left[w^{4}, \alpha_{i}, \beta_{i}, i=1, \ldots, n\right]$ because all the derivatives of $g_{\bar{k}}^{\ell}(t)$ at $t=0$ Iie in this ficid. Lumo is is proved.

From lemma 18 and [11], we obtain (ef. lemma 17) the following corollary.
COROLIARY 19. - Let $\underset{\sim}{\ell}$ be any line in ${\underset{\sim}{C}}^{n}$, containing ${\underset{i}{i}}$ and another point ${\underset{\sim}{W}}^{\mathbf{W}} \in S[\delta]$, for any $\delta<\infty$. Then, any algebraic point $z_{0} \in{\underset{\sim}{\mathbb{Q}}}^{\underline{n}}$, lying on $\underset{\sim}{\text { satis- }}$ fy all the conditions $1^{\circ}, 2^{\circ}, 3^{\circ}$ of lemma 17. In particular, for $I \rho K,[L: Q] \leqslant \delta$,

$$
\underset{\sim}{\ell} \cap \mathrm{L}^{\mathrm{n}} \subseteq \mathrm{~S}[\delta] \cdot
$$

From this corollary, lemal 17 and the choice of ${\underset{i}{i}}, i=1, \ldots, n+1$, it follows that, for $\delta \geqslant[\mathrm{K}: Q]$, the set $S[\delta]$ is not conteined in an algebraic hypersurface of any finite degree. This contradicts theorem 1 [11] (see supra). So, $\xrightarrow[w_{1} w_{2}]{\longrightarrow}, \ldots, \xrightarrow[w_{1} w_{n+1}]{\rightarrow}$ cannot be lineary independent, and $S_{\underline{Q}}(f)$ is contained in a hyperplane in $\underset{\sim}{n}$.

Using completely different methods, we can prove, for arbitrary meromorphic functions, a much stronger resuit.

THEOREM 20. - Let $f(\underset{\sim}{z})$ be a meromorphic transcendental function in ${\underset{\sim}{n}}^{n}$ of order

is contained in an algebraic hypersurface in ${\underset{\sim}{C}}^{n}$ of degree 1 (i.e. in a hyperi* plane).

The proof of this theorem is exactly the sane as for theorem 6. The only difference is contained in an application of SCHWARZ lemma in $\underset{\sim}{C^{n}}$. We apply a multidimensional SCHWARZ lemma in a very particular form.

LEANA 21. - Let $S_{0} \subset{\underset{\sim}{C}}^{n}$ be a set which is not contained in a hyperplane. Then, there exists $\overline{S C} S_{0},|S|=n+1$, which is also not contained in a hyperplane in C^{n} and such that
(S) For any $\varepsilon>0$, any entire function $F(z)$ in ${\underset{\sim}{C}}^{n}$ having at any point $x_{i} \in S$ zero of order $k_{i}, i=1, \ldots,|s|=n+1$, we have, for $i=1, \ldots, n+1$, $\underset{\sim}{k} \in{\underset{\sim}{n}}^{n},|\underset{\sim}{k}|=k_{i}$,

$$
\left|\partial^{k} F\left(w_{i}\right)\right| \leqslant k_{i} i r^{c \sum_{i=1}^{n+1} k_{i}}|F|_{R}\left(R_{\epsilon} / 6 n r\right)^{-((1-\epsilon) / n) \sum_{i=1}^{n+1} k_{i}},
$$

for $r \geqslant r_{0}(S, n, \varepsilon)>0, c=c(S, n, \varepsilon)>0$ and $R>(5 n r / \varepsilon)$.
The proof of this lemma uses lemma 1 [11].
3. Arithmetical nature of nurbers at which meronorphic functions have integral rational values.
~annman
Here, we collect several results, and open questions connected with the problem of determining the arithmetic nature of numbers $w \in C$ such that $f^{(k)}(w) \in \underset{\sim}{\underset{\sim}{2}}$, for all $k \geqslant 0$, where f is a given meromorphic trenscendental function.

We already know that there are examples of entire functions of order 2 (resp. any given order $n, n \geqslant 2$) possesing 2 integral points (resp. exactly n integral points). We suggest that, in such a situation, there are additional relations between integrel points.

CONJECTURE 22. - If $f(z)$ has order $n \geqslant 1$, and $f(z)$ is a meromorphic function, satisfying algebraic differential equation $R\left(z, f(z), \ldots, f^{(q)}(z)\right) \equiv 0$, then, for n distinct integer points w_{1}, \ldots, w_{n} of $f(z), w_{i} \in \bar{Q}$, $i=1, \ldots, n$, we have

$$
w_{2}-w_{1}, \cdots, w_{n}-w_{1} \in \underset{\sim}{Q} .
$$

On the other hand, not only functions of strict order <2 admit not more than one integer point. For example, like in the proof of theoren 2, we obtain the following proposition.

PROPOSITTON 23. - Let $f(z)$ be an entire transcendental function in C with order of growth

$$
\log |f|_{R} \& R^{2-(\log \log R)^{-1}}, \text { for } R \rightarrow \infty,
$$

or a meromorphic transcendental function having the form $f_{1}(z) / f_{2}(z)$, where f_{1}, f_{-2} are such entire functions. Then, there is at most one integral point of $f(z)$.

Analogically, if we consider, in the scheme of the proof of theorem 6, $p=2-\left(\log \log u_{i}^{2}\right)^{-1}$ and increasing N (cf. (w) supra), we obtain the same result for any ordor of growth.

THEOREN 24. - Let $f(z)$ be an entire transcendental function of growth

$$
\begin{equation*}
\log |f|_{R}<n^{n-(\log \log R)^{-1}}, \text { for } R \rightarrow \infty, n \geqslant 1, \tag{3.1}
\end{equation*}
$$

or a meromorphic transcendental function being the ratio of entire functions with such a growth. Then, there are no more than n integral points of $f(z)$.

In fact, these bounds for order of growth of $|f|_{R}$ can be easily improved. Insteac of formulating such resuits (probably not very inportant), we propose the following problem for meromorphic functions of infinite order of growth.

PROBLEM 25. - Let $f(z)$ be a meromornhic function of infinite order of growth. Le:

$$
S_{Z}=\left\{w \in \underset{Z}{Z}: f^{(k)}(w) \in \underset{\sim}{Z} \text {, for all } k \geqslant 0\right\} ;
$$

What is the density of $S_{Z}:\left|S_{Z} \cap(-R, R)\right|$ in terms of $\log |f|_{R}$, when $R \longrightarrow \infty$?

This problem is very interesting espccinlly because of exanples, constructed in [6] for functions of infinite order of growth having $S_{Z}=\underset{\sim}{Z}$ etc. The last part of this paperis devoted to problems of diophentine approxinations of values oí meromorohic functions. We consider the following question for functions of order less than two.

PROBLEM 26. - Let $f(z)$ be a meromorphic transcendental function of order $\rho<2$, and suppose $f(z)$ has one integral point w (we can always take $w=0$ by the change of variable $\left.z \longrightarrow z_{1}+w\right)$. Then, for any $v \in C$ such that $v \neq w, f(z)$ is regular at v, and $f^{(k)}(v) \in \underline{Z}$, for all $k \geqslant 0$, we have by theorem 2 (3.2) v is transcendental.

What is the resure of transcendenoe of v ?
Below we shall give an answer to problem 26 , yielding a mesure of transcendence of v. The basic fact that leads to this estimate is the existence of a good upper bound for the numbors of eeroes of auxiliary functions $P(z)=P(z, f(z))$ in terms of $\operatorname{deg}(P)$. Such estinates can be proved only for functions satisfying algebraic differential equations.

It is real luck that functions $f(z)$ satisfying all assumptions of problem 26 , also satisfy an algebraic differential equation.

PROPOSITION 27. - Let all the hypotheses of problem 26 and (3.2) be satisfied. Then, for some $d \leqslant 2 /(2-\rho)$, the function $f(z)$ satisfy an algebraic differential equation $R\left(f(z), f^{\prime}(z), \ldots, f^{(d)}(z)\right) \equiv 0$, where

$$
R\left(z_{0}, \ldots, z_{\lambda}\right) \in \underset{\sim}{z}\left[z_{0}, \ldots, z_{d}\right] .
$$

Proposition 27 follows imnediately from [12] applied to the system of functions $f(z), f^{\ell}(z), \ldots, f^{(d)}(z)$.

For $f(z)$ satisfying an algebraic differential equation, we use a method of D. W. BROWIAWELL-D. MASSER on estimates for the orders of zeroes (evaluated at $z=0, v)$ of the auxiliary function $F(z)=P(z, f(z))$ for $P(x, y) \in C[x, y]$. This yields the following lemma.

LEENA 28. - Let $f(z)$ be a transcendental function satisiying an algebraic differential equation

$$
R\left(z, f(z), f^{\prime}(z), \ldots, f^{(q)}(z)\right) \equiv 0,
$$

for $R\left(x_{1}, x_{2}, \ldots, x_{q+2}\right) \in C\left[x_{1}, \ldots, x_{q+2}\right]$. If $P(x, y) \in C[x, y]$, $P(x, y) \not \equiv 0$, and $w_{1}, \ldots, w_{m} \in C$, then for the function $F(z)=P(z, f(z))$ and
for the sum $\sum_{i=1}^{m} \operatorname{ord}_{w}(F)$ of orders of zeroes of $F(z)$ at $z=w_{i}$, $i=1, \ldots, m$, we have the bound

$$
\sum_{i=1}^{m i} \operatorname{ord}_{w_{i}}(F) \leqslant c_{1}\left(d_{x}(P) d_{y}(P)+d_{x}(P)+d_{y}(P)\right),
$$

where $c_{1}>0$ depends only on $w_{1}, \ldots, w_{\text {nin }}, f(z), q$ and $R\left(x_{1}, \ldots, x_{q+2}\right)$.
For the proof of lemma 28, we consider $F^{\prime}(z)=P_{X}+P_{y} f^{\prime}, F^{\prime \prime}(z)=\ldots$ etc., and consider resultants (on y) of $P(x, y)$ and some polynomials $R(x, y)$ obtained by differentiating $F(z)$ and taking into account the differential equation for $f(z)$.

For functions of order < 2, we obtain, using lemma 28, proposition 27 and the method of proof of theorem 6, described before (see also [3]), the following first result on the measure of transcendence of v in (3.2).

THEOREM 29. - Let $f(z)$ be a meroinorphic transcendental function of order $\rho<2$, having an integral point $w(w \in \underset{\sim}{\vec{a}})$. If $v \in \underset{\sim}{C}, v \neq w$ and $f^{(k)}(v) \in \underset{\sim}{Z}$, for all $k \geqslant 0$, then, for arbitrary algebraic b of degree $\leqslant d$ and of height $\leqslant H$, we have, for $H \geqslant c_{0}(d)$,

$$
\begin{equation*}
|v-\zeta| \geqslant \exp \left(-c_{1}(d)(\log H)^{2 d /(2-\rho)}\right) \tag{3.3}
\end{equation*}
$$

Analogous results take place also for problem of simultaneous diophantine approxiinations. We use, in the same line, the analogue of proposition 27 and lemma 28. Instead of giving the final result, we formulate only a general but weak estimation.

THEOREM 30. - Let $f(z)$ be a meromorphic transcendental function of order $\rho<n$,

Then, for algebraic ζ_{1}, \ldots, C_{n} of degree $\leqslant d$ and or height $\leqslant H$, we have, for any $\epsilon>0$,

$$
\max _{i=1}, \ldots, n\left|v_{i}-\zeta_{i}\right| \geqslant \exp \left(-\exp (\log F)^{\varepsilon}\right),
$$

provided $H \geqslant c_{1}(d, n, f(z), \varepsilon)>0$.

REFTAEICES

[1] BERTRAND (D.). - A transcendence criterion for meromorohic functions, "Transcendence Theory : Advances and applications" [1976. Cambridge], p. 187-194. - London, Ecademic Press, 1977.
[2] BOMBIERI (E.). - Algebraic values of meromorphic maps, Invent. Math., Berlin, t. 10, 1970, p. 267-287.
[3] CHOODNOSKY [CUDNOUSKIJ] (G. V.). - A new method for the investigations of aritho metical properties of analytic functions, IHES $/ 1 / 77 / 197 /$, 1977 (Preprint).
[4] ITO (K.) and Mckean (H. P.). - Potentials and the randon walk, Illinois J. of liath., t. 4, 1950, p. 110-132.
[5] LAiVG (S.). - Klgebraic values of meromorphic functions, Topology, t. 3, 1965, p. 183-191.
[6] MAHLER (K。). - Lectures on transcendental numbers. - Berlin, Springer-Verlag, 1976 (Lecture Notes in Mathematics, 546).
[7] REYSSAT (E.). - Travaux récents de G. V. CUDNOVSKIJ, Sérinaíre DelangemPisotPoitou : Théorie des Nombres, 18e année, $1576 / 77, \mathrm{n}^{0} 29,7 \mathrm{p} \cdot$
[8] SCFNEIDER (T.). - Einführung in die transzendenten Zahlen. - Berlin, SpringerVerlag, 1957 (Ergebnisse der mathematischen Wissenschaften, 81).
[9] SKODA (H.).-Estimations L^{2} pour I'opérateur $\bar{\partial}$ et appiications arithmétiques.
[10] STRAUS (E. G.). - On entire functions with algebraic derivatives at certain algebraic points, Annals of Niath., 2nd Series, t. 52, 1C50, p. 188-198.
[11] WALDSCHIIDT (M.). - On functions of several variables having algebraic Taylor coefficients, "Transcendence Theory ; Advances and applications" [1976. Cambridge], p. 169-186. - London, Academic Press, 1977.
[12] WALDSCHMDT (M.). - Propriétés arithmótiques de fonctions de plusieurs variables, II, "Séminaire Lelong : Analyse", $16 e$ année, $1075 / 76$, n ${ }^{0} 10$, p. 108-135. - Berlin, Springer-Verlag, 1977 (Lecture Notes in Mathematics, 578).
(Texte reçu le 20 février 1978)

Gregory V. CHOODNO:ISKY
Résidence de l'Ornaille, Pavillon 14
91440 BURES SUR YVETTE

