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45-01

VALUES OF MEROMORPHIC FUNCTIONS OF ORDER 2

by Gregory V. CHOODNOVSKY (*)

Séminaire DELANGE-PISOT-POITOU
(Theorie des Nombres)
19e annee, 1977/78, n° 45, 18 p.

Soit f(z) une fonction meronorphe sur transcendante et d’ordre
On étudie 1’ ensemble de s point s de ou f, ainsi que toutes se s

dérivées, prennent des valeurs entières. Il est contenu dans une hypersurface. Si
p  2 (ou si n = 1 ), on obtient de bonne s majarations pour le degré de cette
hypersurf ace.

0. Introduction.

We are here interested in the nature of the values of meromorphic iunc-

tions and their derivatives, for functions of arbitrary finite order. Functions of

order  2 play a special role.

Given an arbitrary function f , analytic in the neighbourhood of a point 
we call the point w

algebraic, if w ~ Q , and the derivatives (w) are algebraic ,
f(k) (w) ~ Q , for all k 0 ,

algebraic in the weak sense (or rational), if w E Q and f (w) ~ Q , for all

k  0 ,

algebraic in the weakest sense (or integral), it w ~ R and f (w) E Z , for

all 

A general problem for arbitrary meromorphic functions of finite order can be for-

mulated as follows.

PROBLEM C..- Suppose f is a transcendental function meromorphic of finite order

p . IS the set of rational points associated to f finite ? one obtain

a upper bound for its cardinality only in term of p ?

There are important conjectures of BOMBIERI and WALDSCHMIDT on the number of alge-
brai c points associated to f . According to the conjecture in C ~ 2~ , there are at

most p such points. Unfortunately, is not the case in as many exam-

ples show for 03C1  1 . Simply consider

with % e~, (n~)~ , pl .

In this paper, we shall first describe the situation for algebraic points, and

(*) Get exposé, fait dans le cadre du Séminaire Delange-Pisot-Poitou, a. ete prononce
a Orsay, en octobre 1977.



prove some results on integral points both in one dimensional ?nd multidimensional

situations. Me shall also mention diophantine estimates concerning the approximation
of integral points of functions of order  2 by algebraic numbers.

Nothing is known on the algebraic values of f itself except in the special case

when f satisfies on algebraic differential equation, where we have, as a consequen-

ce of the SCHNEIDER-LANG theorem, the following proposition.

PROPOSITION 1 ([5]y [8]). - Let f1 , ... , f be meromorphic functions such that

the derivative operator d/dz maps ... , f ] into f1 is a

transcendental function of order  p , and K denotes a number field, there are at

most [K : Qjp points w in K such that f. (w) e K , 

There is one particular case in transcendence theory where it is known that an

entire function admits only one algebraic point. It is the case of E-functions

(their order is , 1 ) which satisfy a linear differential equation : 0 is their

only algebraic point.

Below, we generalize some of SIEGEL’s results on E-functions by showing that a

transcendental function, which is meromorphic of order  2 , has at most one inte-

gral point. Moreover, if this function satisfies a polynomial differential equation,

the same conclusion holds for its rational points.

THEOREM 2. - Let f denote a meromorphic transcendental function of order  2 .

There is at most one point w such that (w) ~ Z , for all k e N .

In fact, we could even suppose, we whall see later on, that, for all integers

k ~ (w) is a rational number whose denominator divides for some integer

C .

THEOREM 3. - Let f denote a meromorphic transcendental function of order  2 .

Suppose further that f satisfies a polynomial differential equation. Then there is

most one point w in Q such that = Q , for all k e N .

now study the set of complex numbers which are simultaneously algebraic points

for two algebraically independant functions. By the SCHNEIDER-LANG theorem, we have

the following proposition. 
°

PROPOSITION 4 ([5], [8]). - Let f2 be two algebraically independant mero-

morphic fUnctions of order  03C12 respectively. Suppose they satisfy a sys-
tem of algebraic differential equations over Q

If K denotes a number field, the number of complex numbers w such that

for all i= 1 , 2 , is bounded by [K: + p~) .

If one of the functions satisfy a law of addition, the method of conjugate func-



tions described below enables one to .prove following stronger statement.

THEOREM 5 . - ,Suppo se £LI assumptions of proposition 4 _§g£ satisfied, and, fur-

ther, that £, satisfies a law oi addition o%ver ? . Then, there are at most
pi + pz complex numbers w such that T°;.> e £ , f2k I;> ’e z , _l _or ;ai k z ° .

Consequently, if f is a, meromorphic function of order  03C1 , such that f(z)
raid exp z are algebraically independent, there are at most ,j + I algebraic num-

bers a such that f(k) (log q) e Z , for all k > 0 . Similarly, if p (z) d-enotes
- 

/

a Weierstrass elliptic £unction with rational invariants, and if £ and p are

algebraically independent, there are most p + 2 points u such that p (u) e iii
and f~~~ (u) e Z , for all k ~ 0 . 

-

-

Of course, it is impossible to prove transcendence results for functions of order

> 2 , when ve know the existence of only one algebraic point : Consider, for instan-
, ,

ce, the function f(z) = exp (z (z - I) ... (z - n + I) ) , which has order n , and n

integral points. Thus, for functions of order  n , iJe have .to assume the existence

of n - I integral points. The proof of the corresponding transcendence result does

not follow from former methods, and new ideas are needed. Indeed, in the theorem of
SCHNEIDER-LANG ( [ 5 ] , [ 8 ] ) , STRAUS [ 1 0 ] and other s (see e , g . [ I ] ) , the dependence
on the degree of integral points is essential.

Ne avoid this difficulty by introducing a new type of argument. From the usual

auxiliary function

constructed by SIEGEL’ s lemma with zeroes of multiplicity at some integral

points w~ ~ ... ~ w~1 s we pass to functions of the form

for some set {03BBj} of elements of the number field Q(w1 , ... s w ) . These func-
tions also have zeroes of high multiplicities at the points w1 , ... , wh . A sys-

tem of inequalities connecting, the multipliciti es of zeroes of the different auxilia-

ry functions provides an upper bound for h .

We shall now prove a general result in this direction.

1. ~ general theorem on integral points.
’ 

THEOREM 6. - Let f(z) be a meromorphic transcendental function of order ~ ~ .
Then~ there are at most p algebraic points w ~ ~ such that f(z) is analytic
at z = w , and (w) E Z , for all k > 0 . 

"

There is now a report of E. REYSSAT [7] devoted to the exposition of the proof of
this result of mine. However I want to present another version of the proof. This

variant can be considered as the refinernent of the usual proof of the STRAUS-SCHNEI-

DER theorem.



Let S = fw ~ i ’ .... , ’ be a set of integral points of f(z) and n > p . Then,

for some Galois field K ~ containing S ~ we have

(1,.~) f(z) is analytic in s,. neighbourhood of i = 1 ~ ... ~ n ~

(1.2) K is a Galois field with Galois group G , and

As in the ordinary proof, we consider an auxiliary function of the form

where P(x , y) ~ Z[x , y] , degx(P)  L1 , degy(P)  L2 . We consider a parameter
L sufficiently large with respect to (n - 03C1)-1 , n y d , max H(wi) ... Then by

SIEGEL’s lemma, we can find a non-zero polynomial P(x y y) = Z[x , y] y
 L~ such that

~ / ~ ~ / .

for C = C (d , n) > 0 , and, for the auxiliary function

for any k = 0 , 1 , ... , L - 1 , and i_~ ~ ... , n .

Now together with the already constructed function F(z) , we shall consider a

system of auxiliary functions of the form

for a special system ~~, ~ ~ of algebraic numbers in K .

Let be a group ring of G , be an ideal in of eleme nts of

zero trace

Our main objet is the ring S.. = Let

There exists an isomorphism between Yo = and ZJ = 

We define v explicitly : If ~,~ = ~ p ~ ... ~ p ~ and



then we set

Now we define the set (B..j of elements of K . Let U = (03B81 , ... , 03B8n) e J0 ,
and e~ = n(g ~ i = 1 , ... , no.. Then, define

By the isomorphism v (1.11), we transfer the definition () to all the

elements n E’

Now the following basic property of the sequence (B(~) ; ~ e can be easily

shown. Any number conjugate to wi + 03BB() , and U ~ J0 , i = 1 , ... , n also, has

the form w. + 03BB(1) , for some 1 ~ J0 .

Suppose that g ~ 1 , i. e. g E C . We put

So, we have

Then, as it can be easily verified from (1.13), (~.15~ and (~.1~~ 3 we have

where u1 is defined in (1.15)-(1.17). If f.; denotes a vector

(0 , ... ~ 0 , 1 , 0 , ... a 0) of the length n , having unit coordinate at the

i-th place, then ~ can be briefly rewritten in the form

where u,g e 3 , and ~. (g - 1) Then ( 1. ~8~ is replaced by

Now, we consider a (d - 1)n-dimensional cube G(M) in ZJ = Z

and the functions

for N sufficiently large with respect to d , n , (n - p) -1 , and L sufficien-

tly large with respect to N ~



For n~ Z" or  ~ J0 , we denote by u. or ui , the smallest u>0 such

that F(u)n~ (wi) ~ 0 or, correspondingly, F(u)u (wj) ~ 0 .n i 
2014~ 

. 

"- i ,

By the transcendence of f(z) ~ u.  co and the construction of P(x ~ y) ~ ~sce

have

Now applying JENSEN’ s formula, we obtain an analytic Let n E 

and i ~ 1 ! ... ~ n . Then, for c~ > 0 ~

( n) 
_ .

We can connect the numbers F-~ (u~) (w. ) and their conjugates using relation ( L .19) .
From the definition of F r(Z) ~ it follows that

~

From the product formula, we obtain the following system of inequalities, for

N v(~) e C(N) , i = 1 ~ ... , n:

where 0 > L , I = I , ... , n . Because uug+f~i(g-1)j = uj , ve
have, instead of (1 .25),

for  = e C(N) . Now, we apply the mapping v to v : 3 ~ ZJ ,
and consider the basis vector = ’e(g ~ i) of ~ ~ ? = (g , J . Then

and, instead of (1.26) ~ we obtain a new system, for i .~ ~ ~ ~.. ~ n ? and 



2014~ .

Because u. >.L ~ 1 = 1 ~ ... , n , we can show, using (1~27)~ that for

we have

provided n E C(N) .

Thus from (1.28), we obtain jhe main system (W) , connecting different umk . We
have, for i ~ 1 ~ ... ~ n, n E and log log L > e 6 ’1 t

where uni  c-N5 L , jmd c4 , c5 , c/ depend only In this system

(W) ~ the numbers u~ are always ~0 .-£ 2014~
The system (w) for positive u~ i = 1 ~ ... ~ n ~ n e C(N) is inconsistent

for sufficiently large with respect to n ~ d ~ (n - p)" . The inconsistency
of (W) is a consequence of the fact that, in the left side of (W) , we have a
constant factor while~ in the right side of (W) ~ we
have d(n-l) summands.

Thus the system (W) is much more restrictive than the usual scheme of random

walk in 2" . This allows us to use, for instance, the method of generating functions
(see [4]) to show the following lemma.

2014~

LBS’IA 7. - System (w) is inconsistent for non-negative uni , i = 1 , ... , n ,
n~ C(N) , when N  N0(n , d, (n -03C1)-1) .

The complete proof of the lemma 7, with good estimates for d , (n - n) )
is contained in my preprint [3] with another version of proof of theorem 6. Of
course, the paper of E. REY,SSAT [7] gives a shorter proof of lemma 7.

2014~

Because all u_ are  0 (as multiplicities of zeroes), it follows from lemma 7
that n : p . Thus theorem 6 is proved. Theorems 2 and 3 follow from theorem 6.

2. Various generalizations for one-and multidimensional situations.

In fact, the method of proof of theorem 6 can be easily generalized to the case of
two functions f. (z) and f~(z) ~ when one of these functions (say f. (z) ) sati s-



fies an algebraic law of addition over Q ~ i. e. = ~ or p (z) ,
where ;,(z) has rational invariants, see theorem 5 of § 0. The method of conjugate

functions, used in the proof of theorem 6, gives also the possibility to generalize

all previous results (see [ll]~ [5]~ [8]~ [l2]) in the case when one of the functions

satisfies an algebraic law of addition.

We shall give here one interesting generalization of beautiful results of D. BER-

TRAND [l] and H. WALDSCHMIDT [ll] (only in one-dimensional situation).

In order to state these results, we use the following definition of D. BERTRAND

[l] of well-behaved points.

Let f (z) , f (z) be algebraically independent meromorphic functions of orders

03C11 , p? * We consider algebraic points w of {f1(z) , f2(z)} with the follow-

ing properties :

(i) All the numbers (w), f~~ (w) ~ for k ~ 0 , lie in a fixed algebraic
number field 5~ = [K. : Q] ; 

’

(ii) The sizes of these algebraic numbers satisfy

(ill) For the denominators of these algebraic numbers, we have :

( m~ N , i =1 , 2 fixed dw , d’w , d"w ) are algebraic

integers.

If f (z) satisfies a law of addition over Q , then we ca.n replace assumption

(i) by

(i’) f(k)1 (w) are algebraic numbers, k  0 , and the field

has finite degree [L : Q] = X- *
W - w .

DEFINITION 8.

(a) When properties (i)~(ii)~ (iii) are satisfied for an algebraic point w of

~f (z) ~ is called a well-behaved point of j[t~(z) ~ 
(b) rC~ f (z) satisfies an algebraic law of addition over Q~ an algebraic point

w (z) ~ satisfying (i’)~ (it ) , (iii) is called a well-behaved point

c~ (f~(z) , 
. The one-dimensional result of D. BERTRAND [l] (see M WALDSCHMIDT [ll] for a mul-
tidimensional generalization) can be formulated as follows.

THEOREM 9 [l]~ - For algebraically independent f (z) ~ f (z) ~ the following
over all well-behaved algebraic points w of f~(z)) ~



converges to a limit not exceeding p + pp .

However, if we suppose that f (z) admits a law of addition Over £ (i. e.

f.(z) = z , exp z , ’o(z) ~ where p (z) has rational invariants)~ and we consider

well-behaved points in the sense of (i~)~ (it) , (iii) , then we obtain the following
theorem.

THEOREM 10. - Assume that the hypotheses of theorem 9 ar~ satisfied~ and that

f (z) satisfies a law of addJ.tioE  . Then as w ranges over all well-behwed

points of ff (z) , f2(z)} , the following sum converges to a limit not exceeding

Pl+ P2

where B = [Q(f2(w) , f’(w) , f"(w) , ...) : Q] .
The proof of theorem 10 differs only in a few points from the proof of theorem 6*

For all the details of such kind of proofs, see expositions in ([11], [l])*

Now we shall consider some possible generalizations of theorem 6 for meromorphic
functions in C of order 2 .

The situation in C~ differs from that of C . First, the algebraic points may
"~ *~.

form not a discrete set, but some subvariety of codimension 1 : For

~2~ ~ 
the line z = z~ gives the set of integral points of z~) .

Nice results of E. BOMBIERI [2] and M. WALDSCHMIDT ([11], [l2J) give us estimates
for degree of hypersurfaces in C ~ containing aU; algebraic points of meromorphic
transcendental function f(z) in C .

We mention in particular the following theorem.

THEOREM 11 ([11], [12]). - Let f(z) be a transcendental meromorphic function
of order  p in C ~ and let K be an algebraic number fields The set S, of
points w eK 

n 
such that 

1.

is contained in an algebraic hypersurface of degree  n03C1[K : Q] .

It is natural to propose the following conjecture.

CONJECTURE 12. - In theorem 11, the bound np[K : Q] , for the degree of the hyper-
surface containing SK , can be sharpened to p .

Below we give a partial answer to conjecture 12 only for function of order of

growth  1 . Conjecture 12 is unclear for arbitrary p . the most diffi-

cult part will be the removing of factor n in product 

First of all, we reaall H. WALDSCHMIDT’s result [12], for p = 1 .



PROPOSITION 13 ([12], [9]). - Let be an entire transcendental function of

order 1 in Then the set S.. of points w ~ Qn such 

contained in an algebraic hypersurface in C of degree  n .

We can considerably improve proposition 13*

THEOREM 14. - Let f(z) be an entire transcendental function of order 1 in

C . Then, the set S-? of points w e Q such that

is containing in an algebraic hyperplane  (of degree 1 ) in G~’ .

Before giving the proof of this result, we shall present some auxiliary results

on algebraic functions of one variable having several algebraic (well-behaved)

points.

We shall use the following remark : The method of proof of theorems 2 and 10 can

be used in the reverse direction. Instead of considering transcendental functions and,

then, obtaining the bounds for the number of algebraic points, ve can consider

meromorphic function having a lot of algebraic points and, then prove that this func-

tion is algebraic obtain bounds for its degree).

Let’ s consider e. g . the situation in theorem 9, with f 1 (z) = z . Let be

an arbitrary meromorphic function of order of growth  p , and be a finite set,
Y~l ~= (~ ~ of well-behaved points of ~ z , f ~z) ~ such that

Then f(z) is algebrai c, i~ e. satisfy an equation P(z ~ f ( z ) ) z 0 . Groover

deg(P) depends only on W and on the constants of growth of f(z)* If f(z) ==2014r--r’
where h(z) , g(z) are entire functions, then

where a~ a ~ c ~ d are the constants of growth of f (z) . We shall give a pre-
ci se result only for entire functions.

PROPOSITION 15. - Let f(z) be an entire function in C of order of growth $ P ,
and let W be a finite c: ~ ~ of wel l-behaved points of ~z ~ f ~z) ~ in the

sense of (i) and (iii), such that

Then, f(z) is a polynomial. Moreover, if

for any R > o ~

and



where G (a , w) > C is a constant depending only on a W , then

Proof. - We consider the usual scheme of proof of theorem 9 (see C 1 ~ ~ ~ ~ I j or

proof of theorem 6). We take tho auxiliary function F(z) in the form

L is sufficiently big number and h is a constant depending only on a and W .

By SIEGEL’s lemma [8], there exists P(x , y) e y] , P(x , y) ~ 0 , such

that, for F(z) == P(z s f ~z) ~ ~ W e have
r,

where log L log L .

Now we choose L1 (or L ) so that

for c 1 = c > 0 , depending only on i~J . Then SCHWARZ lemma together with consi"-

derations of D. BERTRAND (see [1]) shows that F ( z) - 0 or P ( z ! f(z)) = 0 .

Thus, f(z) i s polynomial and

In particular,

Proposition 15 can also be formulated as follows.

PROPOSITION 15’. - Let f(z) be an entire function in C of order  03C1 and W ,
be finite set of well-behaved points of {z , f(z)) such that

~or definition 8(a))~ or

(for definition 8 (b) ) .

Then is polynomial. If for and L log L 

then

shall use proposition 15 or proposition 15’ only for well-behaved points in the

sense of definition 8 ( a) ~



Proo f o f theorem 14. - Let be an entire transcendental function in Cn of

order 1 s and suppose S- = SQ(f) is not contained in an hyperplane in C . Then,
there ... , ~’"~-.(f} such that the vectors w. w~, ~ ... ~ w. w
are linearly independent over C’‘’.

For any i ~ j ~ 1 , ... ~ n + 1 ~ we consider the line L.. in Cn
connecting w. and Because w. E Qn , the equation of L.. «> can be written

. -JL ~J -JL 2014 

in the form

where 03B1ki,j , 03B2ki,j are algebraic integers , k = 1 , ... , n and

i , j = 1 , ... , n + 1 ,
. k

~te consider the restriction of derivatives a’~ of f(z) on the line L..
~r ..d ...._’

for k ~ Nn , i , j = 1 , ... , n+ 1 , i ~ j . The coordinates t= 0 and t=l

correspond to z=w_ and z=w. on the line = 1 , ... , n+ 1 ,
i~ j .

’"

LEMMA 16. - For any- i , j = 1 , ... , n+ 1 , i ~ j , gi,jk(t) iS
a polynomial of degree  c2 |k| , for c2 = c2(wi , wj >0 , caving 
braic coefficients.

Proof of lemma l6. - For any k ~ Nn , i , j = 1 , ... , n+ 1 , i ~ j , gi,jk (t)
is an entire function of order 1 . If K is a number field such that w. e Kn ,
03B1ki,j , 03B2ki,j ~ K , i , j = 1 , ... , n+ 1 , k = 1 , ... , n , then, by definition
~~ ~ i i/
of L.. and gi,jk(t) , we have

when k~N ~ i ~ j =1 ~ ... ~ n+ 1 .Moreover~ each of the points t=o ~ 1 is

the well-behaved point of gi,jk(t) such that
ic

and f(z) has order 1 (see [ll]~ lemma 3). Thus by theorem 9~ g~~(t) is a

polynomial for any k ~ Nn , i , j = 1 , ... , n+ 1 , i ~ j . In order to ob-
tain the bound for the decree of gi,jk(t) , we use propositions 15 and 15’.
From Cauchy’s integral formula for f(z) , we obtain an estimate for 

~ ~ 

**~ ic it



This proves lemma 16.

LEMMA 17. - Let k e Nn , I , j = I , ... , n + 1 , I / j . Then any algebraic
point z0 G f on L. , ii x, well-behaved point of I(z) in thc sense that, ior
- - - i , j ..... - _ 

-. 

-. ---.

the algebraic number field K, = K(z0) , ve 
m Lo

~~° ~1 ~i ~ ’ ~~3 ’ i °~

° ~ ~~0~ ~°~ " ~’~
This lemma follows immediatly from the previous one and the lemmae of § 3 from [11 ] .

According to theorem 1 (and lemma 7) from [ 11 ] £or any given &#x26; , the set S[ &#x26;]
of points # 

" f , satisfying 1°, 2°, 3° with iK ( y) : Q] / &#x26; is contained in

a hypersurface of degree s 5 + 1) . From lemma 17, it follows that, for any

L > 11 , [L : Q]  b ,. 

- ,

let l be any line in Cn connecting w. with any element from S[03B4] .
- - b

Then along this line, the function f(z) , as well as all its derivatives, is alge-
braic.

18. -. Let l be li ne in Cn containing w. and another point
wi E for 03B4  ~ , and denote its equation by

Then, for any the function

is a polynomial of degree  c2 |k| , haying coefficients in the field

Proof of lemma 18. - For k E Nn , the function glk(t) la an entire of order 1 .

Because w’ E S[03B4] , i. e. satisfies 1° and ’’° of 17, the points wi and wt

carrespond to well-behaved points of’ {t , glk(t)} . Let the parameters t = 0 and
k

t = 2 correspond to wi and , respectively. Then, we haV e

By theorem 9, the function glk(t) is algebraic. A bound for the degree of 
-K JK



follows immediately from propo sitions 15 and 15
i and Cauchy’s formula. It is’ clear

that the coefficien.ts of lie in 03B1i , 03B2i , z = 1 , ... , n] because
~ 

( ~ G 
"’’ , 

~ l , i ~ ~’ f 
. ,

the derivatives of b’~ (t~ at t ~ 0 in this field. is ¿roved.

From 1~ we obtain (cf. lemma ~~) the corollary.

COROLLARY 19. - Let l be any line in containing wo to and another point
.~.._..... "" ...~~......._ ~ .-......--.-..--~...~...--

w for any s Then, any algebraic point z0 ~ Qn , lying on l satis-

fy all the conditions 1°, 2°, 3° of lemma 17. In for L ~ K , [L : Q]  03B4 ,

From this corollary, lemma I? and the choice of wi , i == 1 , ... , n + 1 , it

follows that~ for 8 > [K : the set S[§] is not contained in an algebraic

hypersurface of any finite degree. This contradicts theorem 1 [ll] (see supra) * So,

w. w2 , ... , w, w , cannot be independent, and SQ(f) is contained in

a hyperplane in Cn .
""

Using completely different methods, we can prove, for arbitrary meromorphic func-

tions, a much stronger result.

THEOREM 20. - Let f(z) be a meromorphic transcendental- function in C of order

(n + l)/n . Then, the set SQ(f) of w e Qn , such that

is contained in an algebraic hypersurface in Cn o£ degree I (i. _£; in a hgh£g-
plane) .

The proof o£ this theorem is exactly the san:e as £or theorem %. The only difference

is contained, in an application o£ SCHWARZ lemma in We apply a multidimensional

SCHWARZ lemma in a very particular form.

LEMMA ?I . - Let So  Cn be a, set which is not contained iLn a, hyperplane. Then,
there exists S C ) S) = n + 1 , which is also not contained in a hyperplane
in Cn and such that

(S) For any e > 0 , any entire £unction in Cn having at any point x. e S

zero oi order ki , I = I , ... , IS 1 = n + I , we have, £or I = I , ... , n + I ;
k e i~ , ( k( = k. ,
~~~~_ ~~-_~ - 1

The prc of of this lemma uses 1 ~ i ~ ~ .



3. Arithmetical nature of numbers at which meromorphic functions have integral ratio-

nal values.

Here, we collect several results, and open questions connected with the problem of

determining the arithmetic nature of numbers w ~ C such that f (w) ~ Z , for

all k ~ 0 , where f is a given meromorphic transcendental function.

We already know that there are examples of entire functions of order 2 (resp. any

given o rder n ~ n ~ 2 ) possesing 2 integral points (resp. exactly n integral

points). We suggest that, in such a situa.tion, there are additional relations bet-

ween integral points.

CONJECTURE 22. - If f(z) has order n  1 , and f(z) is a meromorphic func-

tion, satisfying algebraic differential e uation R(z, f(z) , ... , (z)) .- 0 ,

then, for n distinct integer points w 1 s . Q. ~ w of f (z) ~ Q ~
i = 1 ~ ... ~ n , we have

On the other hand, not only functions of strict order  2 admit not more than

one integer point. For example, like in the proof of theorem 2, we obtain the follow-

ing proposition.

PROPOSITION 23* - Let f(z) be an entire transcendental function in C with

order of growth

’ 

~ R -~

or a meromorphic transcendental function having the form f. (s)/f (z) ~ where f ~
f are such entire functions. Then, there is at most one integral point of f(s) *

Analogically, if we consider~ in the scheme of the proof of theorem 6,
p = 2 - (log log u~)" and increasing N (cf* (w) supra), we obtain the same re-
sult for any order of growth.

THEOREM 24. - Let f(z) be an entire transcendental function of growth

(3.1) n ~ i ,

or a meromorphic transcendental function being the ratio of entire functions with
such a growth. Then, there are no more than n integral points of f(z) .

In fact, these bounds for order of growth of can be easily improved. Instead
of formulating such results (probably not very important)~ we propose the following
problem for meromorphic functions of infinite order of growth.

PROBLEM 25. - Let f(z) be a meromorphic function of infinite order of growth. Le’.



What is the density of 3- : |SZ n (- R , R)j in terms of 

This problem is very interesting especially because of examples, constructed in

[6] for functions of infinite order of growth having S~ = Z etc.

The last part of this paper is devoted to problems of diophantine approximations of

values of meromorphic functions. We consider the following question for functions of

order less than two.

PROBLEM 26. - Let f(z) be a meromorphic transcendental function of order p  2 ,

and suppose f(z) has one integral point w (we can always take w=0 by the

change of variable z ~ z1 +w). Then, for any v ~ C such that f(z)

is regular at v , and f(k)(v) ~ Z , for all k  0 , we have b;y,: theorem 2

(3.2) v is transcendental.

What is the mesure of transcendenoe of v ?

Below we shall give an answer to problem 26 , yielding a mesure of transcendence

of v . The basic fact that leads to this estimate is the existence of a good upper

bound for the numbers of zeroes of auxiliary functions F(z) = P(z , f(z)) in

terms of deg(P) . Such estimates can be proved only for functions satisfying alge-
braic differential equations.

It is real luck that functions f(z) satisfying all assumptions of problem 26,
also satisfy an algebraic differential equation.

PROPOSITION 27. - Let all the hypotheses of problem 26 and (3.2) be satisfied.

Then. for some d  2/(2 - p) , the function f(z) satisfy differen-

tial equation R(f(z) ~ ... , f ’(z)) ~ 0 , where

Proposition 27 follows immediately from ~? 2~ applied to the system of functions

f(z) , f (z) i ... , f (~) (Z) . 
.

For fez) satisfying an algebraic differential equation, we use a method of
~ D. W. MASSER on estimates for the orders of zeroes (evaluated at

z = 0 , v ) of the auxiliary function F(z) = P(z , f(z)) for P (x ~ y) E C[x , y] .
This yields the following lemma.

28. - Let f(z) be a transcendental function satisfying an algebraic diffe-

renti al equation

x~~ ... ~ x ) ... ~ ~ P(x , y) ~C[x , y] ,
P(x, y) ~0 ~ Md .~. w =C ~ then for the function F(z) =P~z~ f(z)) ~nd



jEor the sum 03A3mi=1 ordw (F) of orders of zeroes of F(z) at z = wi ,
i = 1 , ... , m , we have the bound

where c~>0 depends only on ... , f(z) ~ q j~ ... , x ~) .
For the proof of lemma 28, we consider F~(z) = P 

x 
+ P 

y 
F"(z) = ... etc.,

and consider resultants (on y ) of y) and some polynomials R(x , y) ob-

tained by differentiating F(z) and taking into account the differential equation
for f(z) .

For functions of order  2 , we obtain, using lemma 28, proposition 27 and the
method of proof of theorem 6, described before (see also [3])~ the following first
result on the measure of transcendence of v in (3.2).

THEOREM 29. - Let f(z) be a meromorphic transcendental function of order p  2 ,
having an integral point w ~ C , v ~ w and ~ Z , for
all k ~ 0 , then~ for arbitrary algebraic ~ of degree ~ d and of height $ H ,
we have~ 

.Analogous results take place also for problem of simultaneous diophantine approxi-
mations. We use, in the same line, the analogue of proposition 27 and lemma 28.
Instead of giving the final result, we formulate only a general but weak estimation.

THEOREM 30. - Let f(z) be a meromorphic transcendental function of order p  n ~

where n  2 , and let v1 , ... , v n 
be be distinct complex numbers such that

f(k)(vi) e Z , for all k  0 and i == 1 , ... , n .

Then, for algebraic 03BE1 , ... , 03BEn of degree  d and of height  H , we have,
for any e > 0 ~

n , f(z) , g) > o .
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