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VALUES OF MEROMORPHIC FUNCTIONS OF ORDER 2

by Gregory V. CHOODNOVSKY (™)

o)

Résumé. - Soit f(z) une fonction méromorphe sur_ o™ , transcendante et d'ordre
fini , o On étudie 1l'ensemble S-@ des points de Q@7, ou f , ainsi que toutes ses

dérivées, prennent des valeurs entiéres. Il est contenu dans une hypersurface. 351
p <2 (ou si n=1), on obtient de bonnes majorations pour le degré de cette
hypersurface.

O« Introduction.

We are here interested in the srithmetic nature of the values of meromorphic fun#—
tions and their derivatives, for functions of arbitrary finite order. Functions of
order <« 2 play a special role.

Given an arbitrary function f , analytic in the neighbourhood of a point w €C,

we call the point w

algebraic, if we §, and all the derivatives f(k)(w) are algebraic ,
f(E)(w) €3, forall k30,

algebraic in the weak sense (or rational), if we @ and f(k)(w) € Q, for all
k50,

algebraic in the weakest semse (or integral), if we § and f(k)(w) € 2, for
all k>0.

A general problem for arbitrary meromorphic functions of finite order can be for-

milated as follows.

PROBLEM Oo = Suppose f is a transcendental function, meromorphic of finite order

p o Is the set of rational points associated to f <finite ? If so, can one obtain

<
a upper bound for its cardinality only in term of , ?

There are important conjectures of BOIBIERI and WALDSCHMIDT on the number of alge-
braic points associated to f . According to the conjecture in [12], there are at
most p such pointse. Unfortunately, this is not the case in genersl, as many exam-

ples show for [ <1 o Simply consider

a,

HORERMSE L
. -1

with a €Q, Iahl < @)P™T, o<l

In this paper, we shall first describe the situation for algebraic points, and

(*) Cet exposéd, fait dans le cadre du Séminaire Delange-Pisot-Podltou, a été prononcé

a4 Orsey, en octobre 1977.
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prove some results on integral points both in one dimensional end wuitidimensional
situationse We shall also mention diophantine estimates concerning the spproximation

of integral points of functions of order <« 2 by algebraic mmbers.

FWothing is known on the algebraic values of f itsell, except in the special case
when f satisfies on algebraic differential equation, where we have, as a consequen—
ce of the SCHILIDER-LANG theorem, the following proposition.

PROPOSITION 1 ([5], [8])e = Let £ eeey £ be meromorphic functions such that
the derivative operator d/dz mnaps z[f1 s oo g fn] into itselfs If f, is a
transcendental function of order <, , and K denotes a nuuber field, there are at

most [K : Q]p points w in K such that f,(w) €K, for i =1, es, 0.

There is one particular case in transcendence theory where it 1s known that an
entire function admits only one algebraic point. It is the cese of E-functions
(their order is <1 ) which satisfy a linear differential equation : O is their

only algebraic pcinte.

Below, we generalize some of SIEGEL's results on E-functions by showing that a
transcendental function, which is merémorphic of order < 2 , has at most one inte-
gral point. Moreover, if this function setisfies a polynowial differential equation,

the same conclusion holds for its rational points.

THEOREM 2. - Let f denotc a meromorphic transcendental function of order <« 2 .

- T
There is at most one point w in Q such that f(&)(w) €2, for all kel

o~

In fact, we could even suppose, us we whall see later on, that, for all integers

k, f(k)(w) is = rational number whose denominsztor divides ok , for some integer

n
U e

THEOREM 3. — Let f denote a meromorphic transcendenta%nggggtion of order < 2 o«

B

Suppose further that f satisfies a polynomial differential equations Then, there is
at most one point w in 3 such that f(k)(w) € Q, for 211 ke N .

"~

We now study the set of complex numbers which are simultaneoucly algebraic points
for two algebraically independant functions. By the SCHNEIDER~LANG theorem, we have
the following proposition. '

PROFOSITION 4 ([5], [8])s = Let £, , f, be two algebraically independant mero-

morphic functions, of order <« P s Po respectively « Suppose they satisfy a sys-

tem of algebraic differential eguations over Q

P, (£}, £, f,) =0 (1=1,2) .
If K denotes & number field, the number of complex numbers w such that

f§Ey(w) €K, forall k>0, i=1, 2, is bounded by [K ¢ EJ(pl + 92) .

If one of the functions satisfy a law of addition, the method of conjugate func-
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tions described below enebles one to nrove the following stronger stabtoment.

THEOREM 5+ = Supnose all the asswaptions of proposition 4 are satisfied, ond, fur-

ther, that f, satisfies a law of addition over Q . Then, there are at most

py *+ pp Somplex rumbers w such that fik)(w) €eq, fék)(w) €%, for 11 k0.

Consequently, if f is a meromorphic function of order < ; , such that £(z)
and exp z are algebraicelly independent, there are at most , + 1 algebraic num-
bers « such that f<k)(log @) € Z, for all k >0 « Sinllarly, if p(z) denotes
a vWelerstrass elliptic function wigg rationsl invariants, and if f and p are
algebraicelly independent, there are at most , + 2 points u such that p(u) € §

and £ () ez, forall k0.

Of course, it is impossible to prove transcendence results for functions of order
> 2 , when we know the existence of only one algebraic point : Consider, for instan-
ce, the function f(z) = exp(z(z = 1) eee (z =n+ 1)) , vhich has order n, and n
integral points. Thus, for functions of order <« n , we have to assume the existence
of n -1 integral pointss The proof of the corresponding transcendence result does
not follow from former methods, and new ideas are needed. Indeed, in the theorem of
SCHNEIDER~-LANG ([5], [8]), STRAUS [10] and others (see e. g [1]), the dependence

on the degree of integrel points is essenticl.

We avoid this difficulty by introducing a new type of argument. From the usual

auxiliary function
F(z) =P(z , £(z))

constructed by SIEGEL's lomma with zeroes of high multiplicity at some integral

points Wiy eee s W, We pass to functions of the form

Fj(z) =P(z + hj y ©(2)) ,

for some set {xj} of elements of the number field Q(w coe o wh) « These funce

1 ?

tions also have zeroes of high multiplicities gt the points w sse o W, o A Sys-

1?2 h
tem of inequalities connecting the multiplicities of zeroes of the different auxilia-

ry functions provides an upper bound for h .

We shall now prove a general result in this direction.

le A general theorem on integral points.

THEOREM 6. = Let f(z) be a meromorphic transcendentel function of order <poe
Then, there arve at most [, algebraic points w€ Q such that f£(z) is analytic
at z=w, and f(ia(w)ez,forall k>0.

There is now a report of E. REYSSAT [7] devoted to the exposition of the proof of
this result of mine. However I want to present another version of the proof. This
variant can be considerec as the refinement of the usual proof of the STRAUS-SCHNEI-
DER theoremn.
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Let S={w , s, w} beasetof integral points of f(z) and n > p « Then,

for some Galois field K , containing S , we have

(1.1) £(2) is analytic in a neighbourhood of w, , 1 =1, eee y 03

(1.2) K is a Galois field with Galois group G , and
[K:Q]=1G =d;

(1.3) f(k)(wi) €Z, forany k>0, 1=1, «e,n;

(144) w, €K, i=1, eee,mn.

As in the ordinary proof, we consider an auxiliary function of the form

F(z) = P(z , £(2)) ,

where P(x, y) € Z[x, vl , degX(P) <L, degy(P) < L, « e consider a parameter
L sufficiently large with respect to (n - p)_l , n, d, nax H(wi) ess Then by
SIEGEL's lemma, we can find a non-zero polymomial P(x, y) € 2[x, v],

degX(P) <L degy(P) <L, such that

(1.5) 1 1 = (Lo 1", 1, = [(og ¥4 .
Then

(1.6) B(P) < om(0, Litog 1)Y?)

for G, =G, (@, n) >0, and, for the auxiliary function

(1.7) F(z) = P(z , £(2)) ,

we have

(1.8) P () =0,

forany k=0, 1, eee y b =1, and i=1, eeo , 0o

Now together with the already constructed function F(z) , we shell consider a
system of auxdliary functions of the form

Fj(z) = P(z + A oo £(z)) ,
for a special system {)‘j} of algebraic numbers in X .

Let Z[G] be a group ring of G , ang EO[G] be an ideel in Z[G] of elements of
zero trace

. = oy = _ n gs <« n = .
(1.9) 2,[6] 2 2 0]
Our main objet is the ring 3, = EO[GJn . Let
(1410) Sg=5C]", 6=G\(1}, J=0Cx{l, eee,n}=Cxm.
There exists an isomorphism between ;= ZO[G]n and 7 =2
(111) v : gD[G]n — 7.

We define v explicitly : If g = (el g see en) €3y, and
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8; = zéeG n(g , i)g € EO[G] , 1=1, eee yn,

then we set

1

(1412) v(g) = (n(g, 1) 5 ge G\ {1}, 1

g, D @,ede? .

1, eee 4 0)

Now we define the set {).} of elements of K . Let ¢ = (@1 s wev o en) € 50 ’
and 9 = de(} n(g , i)ge 2[6Gi, i=1, .., n . Then, ue define
. - .. (2)
(1.13) Ze) = 22:1 Zoet n(g , 1)w;>" e K o

By the isomorphism v (l.11), we ‘ransfer the definition of A(n) to &ll the

elements n GZ?
(1.14) A1) = A(v-l(ﬁ)) ek, ne ZJ .

Now the following basic property of the sequence {A(ﬁ) 5 € 80} can be easily
shown. Any number conjugate to Wy + A 5 and g€ ao y 1=1, ees y n also, has

the form w, + x(ml) , for some oy € 3 .

In fact, let 1 =1, eee ,n, 7€G, and g= (6, , v 0,) € 3 »
8; € EO[G] (L1 =1 56009 n) « If g=1, then (wi # @) =+ A .

Suppose that g # 1, i. e« ge C . We put
1

(1e15) ej=ejg,j=1,...,n,j;éi;
1

(1.16) 6] =0, 8+ 3 =1+

So, we have
(1.17) el e 2 [G] j =1 soe n and ¢, = (al oee 81) € d .

3 0 ’ ’ ’ “1 1?2 ? *n 0
Then, as it can be easily verified from (1.13), (1415) and (1.16), we have
(

(1.18) (w, + 2 () g) _ w, + (e
where g1 is defined in (1.15)-(l.17). If f. denotes a vector

(O, ¢es 0, 1,0, ¢os, 0) of the length n , having unit coordinate at the
i-th place, then 8, can be briefly rewritten in the form
u =ug + £;(g-1) €3y,
vhere g€ 3, , and fi(g - 1) € 3, + Then (1.18) is replaced by
(g)
] Q . b1l = . - Ld Y
(1.19) (g + A (0) w; + g + £5(g - 1))
Now, we consider a (d - 1)n-dimensional cube C(M) in Zg = 70xn
o) = (2 n =1, )Y
and the functions
(1.20) Fﬁ(z) =P(z + \(@ , f(z) ; nec, or
8 Fy(a) =P+ ), £(2)) 5 23, v(y) e c() ,

for N sufficiently large with respect to 4, n, (n - p)—l , and L sufficien~
tly large with respect to U .
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For N e ZJ or g € 3y, we denote by q* or u s the smallest u > 0 such
that Fi )(w ) # 0 or, correspondlngly, (w

By the transcendence of f(z) , u:.L < o and the construction of P(x, y) , ®e

have
(1021) uSZL,fOI' i-'—"l,oo-,no

Now applying JENSEN's formula, we obtain an analytic inequality : Let n e C(N)

an.d i:l’ooo’noThen,for 02>O

(1.22) PR log un < p(c2 u, (log u. )3/4 + o, L(log L)3/4

J=1 7j n

u;)
+ Cy L(1log L) (1/4) log N + u log u - log[F—» (w, )|)
7
u,
We can connect the mumbers Fo + (wi) and their conjugstes using relation (1419).

From the definition of F ,(z) , it follows that

k -~k
(1023) (Fé )(‘wi))(g) = Q(Ing (g l) (Wi) ’ k >,O Iy 1 g e o n, {E go Iy
and also (6=1)
gg+f. (g=1
(1024) u%_l.‘-"ui—‘l » i:l,-..,n, QESO.

From the product formula, we obtain the following system of inequalities, for
ae&o,v(gj) €C(N) , i=1, eeoyn:

(1.25) alp - o + o u(10g ufy~(/4)

C
¢ —2— (L(2og 1% + L(20g 1”9 (10g )
log uy ug+f, (g-1)
> 2gea 1, i1 % S
0 ug+f; (g-1) m+£i—£j-fig"l+£jg'l
where ui>/L, i=1, «ee y n . Because uJ "'j s WE

have, instead of (1.25),

(1.26) a(p - 1)11%_{ + og u 4(1log ) ~-(1/4)

, c
+ (L(1og L)3/ + L(log L)™ ~(1/4) (Log 1))
log u“
Yt+f. =f. =L . g+1,
s W fy el
=~ "geG Ti=1,J#1 7] 4
for g €3y, v(g) € C(N) . Now, we apply the mepping v to s v 3 ""'}..Z,J ,

and consider the basis vector €(3) =38(g , i) of A s 3J=1(, 1) €J . Then
v+ -fy-f e+ 58 =v@ ~S(, 1) +e(g, ), for g#1,

and, instead of (1.26), we obtain 2 new system, for i =1, eee , n, and 1 € G(N),
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(1.27) d(p - l)u;ﬁ + oy u?(log u?)—(1/4)

C
+ —2— (L(20g 0¥, Litog 1)~ 100 1)
1o un
g Uy
me(g,,])-e(b,l) fl n .
> “geC =1, 341 U J=1,3#41 )

ol

Because u; >L, i=1, «es , n, we can show, using (1.27), that for

1
(log L) 1/4 5 (603 2 d2)2ndN ,

we have

(1.28) w2 s (b, n

2 2\ =2ndN
5> 3 d) L

provided 1 e C(N)

Thus from (1.28), we obtain Fhe main system (W) , connecting different u{‘{l o We
have, for i =1, ess yn, ne CN) and log log L > ¢, N :

w  alp - 1)ur11 + o, B(10g o )-(1/4)

5 S s u+e(e)=(e,1)

31,3761 J=1,J#1 TgeC ~j

—

where un > c';N L, and c c, depend only on n, d . In this system

4 ’ 5 ’
(w) , the numbers u1 are always >0 .

The system (W) for positive u;l y i=1, eeey,n, ne ) is inconsistent

for N, sufficiently large with respect to n, d, (n - p).'l

« The incongistency
of (W) is a consequence of the fact that, in the left side of (W)., we have a
constant factor d(p - 1) <x < d(n - 1) , while, in the right side of (W) , we

have d(n = 1) swmands.

Thus the system (W) is much more restrictive than the usual scheme of random
walk in ZJ « This allows us to use, for instance, the method of generating functions
(see [4 _,) to show the following lemmae

=13

LEMA 7. - System (W) is inconsistent for non-negative u
n € C(N) , when N >/N0(n yd, (n = p)—l) .

,i=1’uno,n,

)

The complete proof of the lemma 7, with good estimates for No(n yd, (n- p)—l)
is contained in my preprint [3] with another version of proof of theorem 6. Of
course, the peper of E. REYSSAT [7] gives a shorter proof of lemma 7.

—

Because all u;l are > 0 (as multiplicities of zeroes), it follows from lemms 7
that n ¢ p « Thus theorem 6 is proved. Theorems 2 and 3 follow from theorem 6.

2. Various generallzatlons for one-and multidimensional situations.

e

N e ~— e~

In fact, the method of proof of theorem 6 can be easily generslized to the case of
two functions fl(z) and fz(z) , when one of these functions (say fl (z) ) satis-
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fies an algebraic law of addition over Q, ie €6 fl(z) =2z, ©Xp 2z OT p(Z) ’
where ;(z) has rationgl invariants, see theorem 5 of § O The method of conjugate
functions, used in the proof of theorem 6, gives also the possibility to generalize
all previous results (see [11], [5], [8], [12]) in the case when one of the functions

satisfies an algebraic law of addition.

We shall give here one interesting generalization of beamtiful results of D. BER~-
TRAND [1] and M. WALDSCEMIDT [11] (only in one-dimensional situation).

In order to state these results, we use the following definition of D. BERTRAND
[1] of well-behaved points.

Let fl(z) , fz(z) be slgebraically independent meromorphic functions of orders
<Py » pp » We consider algebraic points w of {fl(z) , fz(z)} with the follow-
ing properties :

(i) All the numbers ffk) W) , fék) (@) , for k30, lie in a fixed slgebraic
mmber field K. ; &, = [Kw.: Eﬁ ; '

(ii) The sizes of these algebraic numbers satisfy

loglfém)(;;l

im su e c
1 P~ m log m < %y

i=1,2;
(iii) For the denominators of these algebraic numbers, we have : _
4an
1 W oL\ : . . .
d? [a! m)¢] fé )(w) (mew, i=1,2 fixed 4 _, d', & ) are algebraic
integerse.

If fl(z) satisfies a law of addition over ‘9 , then we can replace assumption
(1) by

(i) ffk)(w) are algebraic numbers, k > O , and the field
—_ ! H
Lw —_E(fg(w) , fz(w) s oos)

has finite degree [Lw : Eﬂ =y, -

DEFINITION 8.
(a) When properties (i),(ii), (iii) are satisfied for an algecbraic point w of
{fl(z) , f2(z)} , then w 1is called a well-behaved point of {fl(z) ’ fz(z)} .

(b) 1f fl(z) satisfies an algebraic law of addition over Q , an algebraic point

w of {fl(z) , fz(z)} satisfying (i'), (ii), (iii) is called a well-behaved point
of {£,(2) , £,(2)} .

The one-dimensional result of D. BERTRAND [1] (sec M. WALDSCIRIDT [11] for a mul-
tidimensional generalization) can be formulated as follows.

THEOREM 9 [1]. - For algebraically independent fl(z) , fz(z) , the following
sum Z% over all well-behaved a%gebraic points w of {fliz) ’ f?(z)} ’

e gl an e e (K : @ - Do)



45-09

converges to a limit not exceeding oy * pp

However, if we suppose that fl(z) adnits a law of addition over _@ (i. ee
fl(z) =2, expz, un(z), where y(z) has rational invariants), and we consider
well-behaved points in the sense of (i'), (ii), (iii), then we obtain the following

theorem.

THEOREM 10. - Assume that the hypotheses of theorem © are satisfied, and that

fl(z) sabisfies a law of addition over Q . Then as w ranges over all well-behaved

~

points of {fl(z) s fz(z)} , the following sum converges to a limit not exceeding

Py * P2
-1
1 11 -
Za(xw dw dw + 1 + (lw l)cw) <oyt g

where Xw = L@(fz(w) R fé(W) ’ fg(W) ’ ...) : Eg .

The proof of theorem 10 differs only in a few points from the proof of theorem 6.

For all the details of such kind of proofs, see expositions in ([11], [1])«

Now we shall consider some possible generalizations of theorem 6 for meromorphic

functions in Cn of order <« 2 .

_—

The situation in € differs from that of ct . First, the algebraic points may

form not a discrete set, but some subvariety of codimension 1 : For
( = -
f‘Zl , 22) = exp(z1 22) s
the line 4, = 2g gives the set of integral points of f(zl ’ 22) .
Nice results of E., BOMBIERI [2] end M. WALDSCHMIDT ([11], [12]) give us estimates
for degree of hypersurfaces in ct , containing all; algebraic points of meromorphic

transcendental function f(z) in C' .

We mention in particular the following theoren.

THEOREM 11 ([11], [12])e = Let f(z) be a transcendental meromorphic function
of order < 1in " , and let K be an algebraic number ficld. The set SK of

e

Qgints E € Kn such that

k
S~ r(w) ez, ke

End -~ ~

is contained iu an algebraic hypersurface of degree < np[K : Q) .

It is natural to propose the following conjecture.

CONJECTURE 12 = In theorem 11, the bound np[K ¢ Q] , for the degree of the hyper-

surface containing SK » @an be sharpened to , .

Below we give a partial answer to conjecture 12 only for function of order of
growth < 1 « Conjecture i2 is unclear for arbitrary p . Probably, the most diffi-
cult part will be the removing of factor n in product np[X : QJ .

First of all, we reaall 1. WALDSCHMIDT'sresult [12], for =1 .
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PROPOSITION 13 ([12], [9])s = Let f(z) be an entire transcendental function of

order 1 in Cn « Then the set S§ of points w € Qn such thg&

~

k n
3 f(w) € 2 for all ke N

S~

. . . . . n
is contained in an algebraic hypersurface in C° of degree < n

We can considerably improve proposition 13.

THEOREM 14. - Let f(z) be an entire transcendental function of order 1 1in
¢" . Then, the set 55 Of points w e 7" such that
~ k
S f(w) € 2 for all ke N

is containing in an algebraic hyperplane £ (of degree 1 ) in .

Before giving the proof of this result, we shall present some auxiliary results
on algebraic functions of one varisble having several algebraic (well-behaved)

pointse

We shall use the following remark : The method of proof of theorems 2 and 10 can
be used in the reverse direction. Instead of considering transcendental functions and,
then, obtaining the bounds for the number of algebraic points, we can consider
meromorphic function having a lot of algebraic points and, then prove that this func-

tion is algebraic (znd obtain bounds for its degree).

Let's consider e. g. the situation in theorem 9, with fl(z) =z o Let f(z) be
an arbitrary meromorphic function of order of growth <, , and W be a finite set,
W< §, of well-behaved points of {z , £(z)} such that

> t gn - -1
o (6w dl dt 4 1+ (5w l)cw) >p e

Then f£(z) is algebraic, i. e. satisfy an equation P(z , £(z)) = O . Moreover
h
deg(P) depends only on W and on the constants of growth of f£(z). If £(z) =-§%§%
where h(z) , g(z) are entire functions, then

log|hiR <&’ + b, loglgly < cR® + d,
where a, b, ¢, d are the constants of growth of f(z) . We shall give a pre-

cise result only for entire functions.

PROPOSITION 15. — Let f(z) be an entire function in C of order of growth < o ,
and let W be a finite set, ¥ < Q , of well-behaved points of {z , £(z)} in the

‘sense of (i) and (iii), such that

Z 1 1 - -]
e (8 &y A+ 1+ (5, = 1)ep)™ >

Then, f(z) is a polynomial. }oreover, if

1og|f|R <aR’ +b for any R>0,
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L log L > Cyla , WD,

where Co(a , W) >0 is a constant depending only on a and W, then

deg(f) <L.

Proof. - We consider the usual scheme of proof of theorem 9 (see [11], [1] or

proof of theorem 6). Wo take the suxiliary function T(z) in the form
F(z) = P(z, £(z)) , Plx,y) e dx,y], deg(P) cL; , deg (P) <1,
and
-(1/2
L, = [LL2( / )] s L= [L2] s
L is sufficiently big number and L2 is & constent depending only on a and W .

By SIEGEL's lemme [8], there exists P(x, y) e Z[x, y] , P(x, y) #0, such
that, for F(z) = P(z , £(z)) , we have

F(k)(W):O, k:o’l’.o.,L—l and. ‘4\,6“\,’
where log H(P) < LE(I/B) L log L .
Now we choose L, (or L ) so that
L, log L, >¢c L, b, long>02(a, W) ,

for c, = cl(W) > 0 , depending only on W « Then SCHWARZ lemma together with consi-
derations of D. BERTRAND (see [1]) shows that F(z) =0 or P(z, f(z)) =0 .

Thus, f(z) is polynomial and
deg(f).aegy(P) < degX(P) .
In particular,
deg(f) <L, »
Proposition 15 can elso be formuliated as follows.

PROPOSITION 15's = Let f£(z) be an entire function in C of order <o and W,
Wec Q, be finite set of well-behaved points of {z , f£(z)} such that

> t gun - -1
WEW (éw Ay dgr b (éw 1)Cw) >p 2!

for definition 8(a)), or

5 1 gn N -1
“ e (Kw dw dw + 1 + (AW 1)cw) >0 > 1

(for definition 8(b)).

Then f(z) is polynomiale If 1og}f[R < RP, for R > Ry and L logL > go(w)Rg
then

Ye shall use proposition 15 or proposition 15' only for well-behaved points in the
semse of definition 8(a)e
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Proof of theorem 14. - Let £(z) be an entire transcendentazl function in Cn of

order 1 , and suppose S@ = Sﬁ(f) i1s not contained in an hyperplane in C . Then,

me——) T e .%

there exist w G‘Sﬁ(f) such that the vectors w, w

oo W~
17 ? n+l
are linearly independent over G,

1722 w1 n+l

For any 1, j=1, see yn+1, 1i#7J, we consider the line Ll. in C
. =n ) .
connecting vy and Wi e Because w. €q, the equation of Li,j can be wrltten
in the form
1 1 n n
k Li,j. Zl‘a,Jt*-'jlj’..',Zn.—di,jt-FBi,j,
where o, . , BF . are algebraic integers , k=1, eee , n and
. L Lsd 1yd )
1,J=1,.¢-,n+1, l#j'
: k
We consider the restriction of derivatives 3~ £(z) of f(z) on the line L, 3
'y 3 k ~ ?
1,3 -~ (1 !
g, (t) =3 I(Jij t o+ Bij s oo s alj t o+ B ) s

for E,E N° s 1 ,J=1, eee yn+1, 1#7j e The coordinates t =0 and t =1

~

correspond to gz =

i .

and 2z =w, onthe line L. ., 1, J=1, eeo ,n+1,
~ ~ i,]

g (t) is

LEA 16 =For any kel , 4, 3=1, eee,n+1, 1#£35,
) >0, Having alge-

a polynomial in t of degree < ec, |x| , for c, = CZ(Ei

braic coefficientse.

; . . i,j
Proof of lemma 16+ - For any kENn, 1, =1, eoe yn+ 1, l#J’gK.’J(t)

-

is an entire function of order 1 « If K is a number field such that w; € K2,

X K e g , i,3=1, eseyn+l, k=1, eea , n, then, by definition

ij ? Pij

1,3 ,
of Li,j and = (t) , we have

C \
gi’a(t)(L’ €X forany L>0 at t=0,1,

when k € N i,jJ=1, eee yn+ 1 . Moreover, each of the points t =0, 1 1ig

the well-benaved point of g ’J(t) such that

because
f(w.) €z, 4 € Nn , 1=1, eee yn+1,

and fQE) has order 1 (see [11], lemme 3). Thus by theorem 9, gi’J(t) is a
polynomial for any ke N i,3=1, eeo yn+1, 1i#]j.Inorder to ob-
tain the bound for the de"ree of gk’a(t) s we use propositions 15 and 15'.
From Cauchy’s integral formula for £(z) , we obtain an estimate for log]gi:"”R
log| l’Jl < || loglkl + | flg .
Then propositions 15 and 15' give us d(gk ) < e, {k! for ke Nn o Finally,

since gk’J(t) has algebraic derivatives (1n K)at t=0, then
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i,j T
g]_"](t) e K[t! .
This proves lemma 16.

LEMA 17. =Let ke N°, 1, j=1, see,n+1, i#j . Then any algebraic

point gz, € -(-;:n on Li 3 is » well-behaved point of f{z) in thc sense that, for
the algebraic number field XK_ = K(z,) , we have
T 2 o/ » We have
o n ~ of . RS N
1° zyek , 3 f(EO) €K, for all new

o
20 Limy  (log|d™ £(z0) )/ (|m|logfuf) = 0 ;
m
m3° There exists d, =4, (E.O) such that d, (03 |I£|)z‘ is a denominator of
3 f(zo) for any m € N,

This lema follows irmediatly from the previous one and the lemmaeof § 3 from [11].

According to theorem 1 (and lemma 7) from [11] for any given § , the set S[s]
of points 1z € b , satisfying 19, 20,3° vyith [K(EO) : Q] <6 1is contained in

a hypersurface of degree < n(c:2 § + 1) « From lemma 17, it follows that, for any
Lok, [L:_g]gé,

n
Us ., L, .nL <38 .
1,)=1yceeyn+l,i4] "1, o]

Now let 4 be any line in ¢ connecting w, with eny elenent from S[e]
Then along this line, the function f£(z) , as well as all its derivatives, is alge-
braice.

LEMMA 18, = Let 4 be any line in ¢t containing Wy and another point

P~

w' € 5[s] , for § < , and denote its eguation by

43 zizozit+si, i=1, eee yne
Then, for any ke N' , the function

4 k

gi(t) =3 f(al t o+ 51 s eee O t o+ BN)

is a polynomial of degreec < c, |k| , heving coefficients in the field

K[E',ai’Bi’ i:].,ool,n]o

: F)
Proof of lemma 18. — For k € N' , the function g;_’(t) ia an entire of order 1 .

Because w' € S[s] , i. e. satisfies 1° and %d of lerma 17, the points w; and W'

correspond to well-behaved points of ({t , g;(t)} o Let the parameters t =0 and

t =1 correspond to s and Lr' s respectivelye Then, we have
¢y =4y =0, 60=[K3E]; cg =0,
t = LU = = o
d1 C, s d1 o, 5, =65 ©Cf 0

4 4
By theorem 9, the function g;{'(t) is algebraice. A bound for the degree of g;(t)

-~
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follows immediately from propositions 15 and 15' and Cauchy's formulae It is clear

that the coefficients of gﬁ(t) lie in K[E' > 059 By s i=1, ese , n] because
4 . s

2ll the derivstives of g%(t) at t =0 1lie in this ficld. Lomeg i€ is oroved.

From lemma 18 and [11], we obtain (cf. lemma 17) the following corollary.

COROLLARY 19+ = Let 4 be any line in C° , containing w; end another point

~ ~

w' € S[s] , for any s < » o Then, any algebraic point z, € T y lying on 4 satis-
fy &1l the conditions 19,29 3° of lemma 17. In particular, for L oK, [L: QJS 8y

&nLn(; Slel

From this corollary, lemma 17 and the choice of Wi s i=1, eseyn+1,it
follows that, for ¢ > [K: Q] , the set S[s] is not conteined in an glgebraic

hypersurface of any finite degree. This contradicts theorem 1 [11] (see supra). So,

- . . .
Wy Wo g eee g W, oW, caxanot be lincary independent, and S:l(f) is contained in

a hyperplcnc in CR ~

~

Using completely different methods, we cean prove, for arbitrary meromorphic func-

tions, a much stronger resuit.

n
THEOREM 20. - Let f(z) be a meromorphic transcendental function in G of order
<(n + 1)/n . Then, the set Sé(f) of we » , such that

X
5 f(w) €%, for all k eX",

_~

. . . . . n . .
is contained in an slgebraic hypersurface in C of degree 1 (i. e. in a hyperw

-~

plane) .

The proof of this theorem is exactly the same as for theorem 6. The only difference
is contained in an application of SCHWARZ lemma in c® . e apply a multidimensional
SCHWARZ lemma in a very particular form.

LEMMA Rle = Let SO c -C_n be a set which is not conteined in a hyperplane. Then,

there exists S < 5y , S| =n+ 1, which is also not contained in a hyperplane

in C" and such that

(S) For any ¢ >0, sny entire function F(z) in C" having at any point x €8
Lor any 2/ in

zero of order k; , 1 =1, eus, S| =n+ 1, we havg for 1 =1, ees , n+ 1,
kew , |k =k, ,

@ 5l k ((1=0)/0)721
i=1 . - —-c n) . k.
7| (Re/6nr) =

for r;ro(s,n,e)>0, c=c(S,n, ¢) >0 and R> (5nr/c) »

k
|a~ F(mrl)l < kii T

The prcof of this lemma uses lemma 1 [11]
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3. Arithmetical nature of nurbers at which meromorphic functions have integral ratio-

B N e B P P N A s T
b e N .. ~ ~

nal values.

—~——~

o

Here, we collect several results, and open questions connected wi?h the problem of
. k
determining the arithmetic nature of muabers w e C such that f (w) G‘E , for

81l k >0, where f is a given meromorphic transcendental function.

We already know that there are examples of entire functions of order 2 (resp. any
given order n, n 3 2 ) vossesing 2 integral points (resp. exactly n integral
points). We suggest that, in such a situation, there are additional relations bet—~

ween integrel points.

CONJECTURE 22. - If f(z) has order n > 1, and f(2) 1is a meromorphic func-
tion, satisfying algebraic differentisl equation R(z , £(z) , eee , f(q) (z)) =0,

then, for n distinct integer points w coe 5 W, of f(z) , Wy E'g ’

1 b

i1=1, eee y n, we have

W2-W1, ono,Y\Tn"'WlEE):

On the other hand, not only functions of strict order <« 2 admit not more than
one integer point. For example, like in the proof of theorem 2, we obtain the follow-

ing proposition.

PROPOSITION 23+ - Let f(z) be an entire transcendental function in C with

order of growth

oy =1
. R2—(loglogR)

log|f]q < , for R —3 5,

or a meromorphic transcendental function having the form fl(z)/fz(z) , where f .,

1
Eé are such entire functions. Then, there is at most one integral point of £(z)

Linalogically, if we consider, in the scheme of the proof of theorem 6,
- 9y =1 . . . - .
p =2 = (log log u;.’_') and increasing M (cf. (¥) suprz), we obtain the same re-

sult for any order of growth.

THEOREM 24. - Let f(z) be an entire transcendental function of growth

-1
(3.1) log| £] < o-(loglogh) ™ o R, ny 1,

or a meromorphic transcendental function being the ratio of entire functions with

such a growths Then, there ave no more than n integral points of £(z) .

In fact, these bounds for order of growth of !fIR can be easily improved. Insteac
of formulating such results (probably not very iuportant), we propose the following

problem for meromorphic functions of infinite order of growth.

PROBLEM 25+ — Let f£(z) be a meromorphic function of infinite order of growth. Le-

SZ ={weiZs: f(k)(w) € Z, for al1 k > 0} ;

~
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What is the density of 35,: |5, n (=R, R)| in terms of log|f|, , when
R e o ?

This problem is very interesting espccinlly because of exsamples, constructed in

[6] for functions of infinite order of growth having S, = Z etce

Z
The last part of this paperis devoted to problems of diophantine approxiiations of
values of meromorvhic functions. We consider the following guestion for functions of

order less than two.

PROBLEM 26+ - Let f(z) be a meromorphic transcendental function of order , <2,

and suppose f(z) has one integral point w (we can alwgys take w =0 by the

change of verisble z — z, + W )+ Then, for any v € C such that v # w, £(z)

is regular at v , and f(k)(v) € %2, for all k > O, we have by theorem 2

(3.2) v 1is transcendentale.

Yhat is the mesure of transcendence of v ?

Below we shall give an answer to problem 26 , yielding a mesure of transcendence
of v . The basic fact that leads to this estimate is the existence of a good upper
bound for the mmbcers of geroes of auxiliary functions F(z) = P(z , £(z)) in
terms of deg(P) . Such estimates can be proved only for functions satisfying alge-

braic differential equations.

It is real luck that functions f(z) satisfying all assumptions of problem 26,
also satisfy an algebraic differential equation.

PROPOSITION 27. - Let all the hypotheses of problem 26 and (3.2) be satisfied.
Then, for some d < 2/(2 - ;) , the function f£(z) satisfy an algebraic differen-
tial equation R(f(z) s T1(2) y eee, f(d)(z)) = 0 , where

R(ZO 9 oo Zd) GE[ZO y eee o Zdj °
roposition 27 follows irmedistely from [12] applied to the system of functions
d
£(s) , £1(2) , ven, £ (2) .

For f(z) satisfyinz an algebraic differential equation, we use a method of

. De We BROWNAWELL-D. MASSER on estimates for the orders of zeroes (evaluated at
z=0, v ) of the auxiliary function F(z) = P(z , £(z)) for P(x, y) €C[x, y] .
This yields the following lemma.

LEMMA 28+ - Let f(z) be a transcendental function satisfying an algebraic diffe-

rential equation

R(z , £(z) 5 £1(5) 5 eee, 2D (@) =0,

oo L sse . P Cl: 1
for R(x1 » Xpp seey yq+2) € G[xl , s xq+2] If P(x, y) eclx, vyl,

P(x,y) #0, and w, , «pe wy €C , then for the function F(z) = P{z , £(z)) and
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for the sum 2?_1 ordw (F) of orders of zeroes of F(z) 2z = g,

i=1, eee y m, we have the bound

~

i ordwi(F) <c (dX(P)dy(P) +d,(?) + 4 (@),

) .

where ¢, > O depends only on Wios ees y W

s T(z) y, a =nd R(x; , e, X142

For the proof of lemma 28, we congider T'(z) = P+ Py f'', F(z) = ... etc.,
and consider resultents (on y ) of P(x , y) and some polynomials R(x , y) ob-
tained by differentiating F(z) and taking into account the differential equation
for f£(z) .

For functions of order <« 2 , we obtain, using lemma 28, proposition 27 and the
method of proof of theorem 6, described before (see also [3]), the following first

result on the measure of transcendence of v in (3.2).

THEOREM 29. - Let f(z) be a meromorphic transcendental function of order p <2,
(RD(

having an integral point w (we3).If veC, v#w and f

# v) € Z, for

~

all k >0, then, for arbitrary algebraic r of degree < d and of height < H ,

we have, for H > co(d),

(3.3) v = ¢l 3 em (-, (a) (Log w3 (20))

knelogous results take place also for problem of simultanecus diophantine approxi-
metions. We use, in the same line, the analogue of proposition 27 and lemms 28.

Instead of giving the final result, we formulate only a genersl but weak estimation.

THEOREM 30e - Let f£(z) be a meromorphic transcendental function of order p<n,

where n > 2 , and let Vs ese , Vo be distinct complex muibers such that

f(k)(vi)ez,forall k?o and i:l,-.-,n.

Then, for algebraic Cios o0 s Oy of degree < d and of height < B, we have,

for eny ¢ >0,
MEX; 1 eayn Vi 7 Gl 2 e (- exp(log B)F)

provided H > cl(d sy, £(z) , ¢) >0
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