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SETS OF INTEGERS COMPOSED OF FEW PRIME NUMBERS

by Jan TURK (*)

Séminaire DELANGE-PISOT-POITOU
(Théorie des nombres)
19e année, 1977/78, nO 44, 6 p. 12 juin 1978

1. Introduction and statement of the results.

For any finite set X of positive integers, we denote the number of elements of

X by N(X) , and the number of distinct primes of which the integers of X are

composed by u~ ~l~) .

In [2J, RAMACHANDRA, SHOREY and TIJDEMAN proved, in connection with a conjecture of
C. A. GRIMM [1], the following theorem ( log2 n = log log n , etc.).

THEOREM A. - Let n ~ k be positive integers, n >. 3 . If the interval

[n , n + k) contains a set X of integers, with 03C9(X)  N(X) , then
. ~ _ ~0

In theorem A~ c~ denotes an absolute positive constant* The proof of theorem A

uses the theory of linear forms in logarithms of rational numbers with rational coef-"

ficients and two arithmetical lemmas of an elementary nature. These lemmas, essen-

tially, suffice to obtain a lower bound for the length of an interval which contains
a set X which satisfies a stronger condition on uj(X) than in theorem A.

THEOREM 1.

(a) For every 0  c  1 ~ there exists a number c. > 0 ~ depending only on c ~
such that, if n , k are positive integers, with n  3 with the property that

( n , n + k) contains a set X of integers with co(X)  then

(b) For every 0  03B1  1 , there exists a number c 2 > 0 , depending only on 03B1 ,

such that, if n , k are positive integers, with n  3 with the property that

(n , n+k) contains a set X of integers with ~N(X) )~ ~ then

where c = 2o~ + 1 .

Using a generalization of one of the above mentioned lemmas (see lemma 3), we can
prove the following refinement.

THEOREM 2. - For every 0  q  1 ~ there exists a number c~>0 ~ depending only
~ such that, if n ~ k are positive integers, with n ~ 3 with the property
that n+k) contains a set X of integers with cj(X)  (N(X))03B1 , then

(*) Partially supported by the Netherlands Organization for the Advancement of Pure
Research (Z. W. 0.).



k > c~ (log n n , where c = + ~ 4~~~ » ~~ .

For a  2/3 , this improves upon the lower bound for k of theorem 1 (b) ; for
small values of the lower bound of theorem 2 is about the square of the lower

bound of theorem 1 (b). Theorem 2 is not valid any longer if one replaces the lower
bound for k by exp ~ (log n)-~~) in view of the following result.

For every 0 ~ ~ ~ ~ ~ there exists a number c 5 > 0 , depending only on a , such

that there exist infinitely many integers n (>, 3) with the property that

(n ~ n + k(n)) contains a set X of integers with w(X)  ~I~ (X) ) ~ ~ where
k(n) = exp(c5(log n log2 n)1/2) . The method of theorem 2 also works for small func-
tions of N(X) other than small powers. For larger functions of N(X) , the method
of theorem A can be generalised, provided that also an appropriate upper bound for

P (X) , the largest prime occuring in the prime decomposition of the integers ~f X ~
is given. These results will appear in the author’ s thesis.

2. Proofs.

Notation. - Let X be a finite subset of N , the set of positive integers. We de-
note the number of elements of X by N(X) , and the set of primes which divide
at leats one element of X We write w(X) for lv(~ (X) ) . For integers
x and primes p ~ we denote the exponent of p in the prime decomposition of x

by v (x) . For real numbers y ~ we denote the largest integer not exceeding y

by [y] ~ 
~ ~ n ~ Y

Let n > 1 . Let X b e a f i nit e s et o f integers whi ch are not smaller
than n . For every prime p and every positive integer , j , we denote

N x E divides x) - 1) by N(p~) . Then 
’~

The sum over p is over the prime numbers, the sum over j over the positive in-
tegers ; of course, there are only finitely many pairs (p, j) with 0 .

Proof. -For every p in ~~X) a let n(p) be some element of X with

v ~n~p) ) >. v P ~x) ~ for every x in X . Let X’ be the set of those elements x

in X, with n(p) , for every p We have ~~ ~Xi ) > N(X) - c~~ (X) . We
denote the number of elements of X’ which are divisible by p~ with M(pj) , for
every prime p and every positive integer j . We have

From the definition of X’ follows immediately that M(p~ ) ~ for every

prime p and every positive integer j . Thus 
’



COROLLARY. - Let n , k be positive integers with n  2 , and let X be a set

cf integers contained in the interval ~n ~ n + k~. ~hen

Proofs - The number of integers in (n , n + k) divisible by p~ is at most

[kp*~] + 1 . It follows that  for every prime p and every positi-
ve integer j . We infer from (l) that

2..- Let n, k be integers gre ater than Z i and let X be a set o~’ inte-

gers contained in the interval (n , n + k) . If then

(log n)(log k~ ’"~, ~ If + C C~~ ~~~ ~ ~/ ’~ J  N(X), then

Proof. - For every finite set Y of positive integers, we have

where LCM(y) is the least common multiple of the elements of Y , and GCD(y1 , y2)
is the greatest common divisor of y. and y~ $ The product is over all pairs

(y. ~ y~) ~ with y., ~ Vn in Y and Vi  Define the integers n(p) ~ p

from and the set X’ as in the proof ~f lemma 1~ We say already that the

number of elements of X’ divisible by p is at most for every prime p

and every positive integer j . It follows that, for every x ~ X’ and every prime

p , we have  k ~ hence LCM(Y)  k ~ for every subset Y of X’ . 

ry common divisor of two distinct integers in n + k) divides the absolute

value of their difference, which is one of the integers 1~2~~~~k. Therefore

y )  k , for every 7i  7~ y? in Y for every subset Y of

We infer that :N(Y) log n ~ (~(Y) + (l/2)N(Y)(N(Y) - 1) )log k , for every 
hence (~)(x)/N(Y)) + (l/2)(N(Y) - (log n)(log k)"~ ~ for every Y c X’ . If

w(X)  N(X) , then X’ has at least one element, and we choose for Y a subset of

X’ with N(Y) = 1 elements This gives o(X) ~ (log n)(log 
uj(w) + [(2~(X))-~j  N(X) , then we take for Y a subset of with

N(Y) = 1 + [(2o)(X))~j elements. This gives (j(X) > (1/2) (log n)~ log k)"~ .
Proof of theorem 1.

(a) Let y > 1 be given. Suppose n ~ k are positive intergers, n > 3 , with
the property that n + k) contains a set X of integers with  N(X) .
Then k ~2 . From (2) we deduce that k ~ (y - (log n) (log k)"~ . If

~5 ~ where § is an appropriate constant depending only on y (for example,
b = 2(y - 1)"~ then N(X) > ~.~(X) + [(2o)(X))~] ~ hence, by the second part



of lemma 2, 03C9(X) > (l/2)(log n)2 (log k)-2 and therefore

If  6 , then, by the first part of lemma 2, k ~ Both inequalities

imply for a ’ suitable constant ~ which depends only on

y .

(b) Let p > 1 be given. Suppose n, k are positive integers, n ~ 3 , with the

property that (n , n + k) contains a set X of integers with (o(X))  N(X) .
Then k ~2 . From (2) we deduce that (m(X))~ (l - (.)(X))~)(log n)(log k)’ .

If § ~ where § is an appropriate constant ( > 2 ) depending only 
on p ,

then N(X) > + [(2~(X))~] , hence, by the second part of lemma 2,
> (1/2) (log n)~ (log k)"~ , and therefore

- -- , /r~  B

If w(X)  b , then, by the first part oi lemma 2 , k > n5 . Both inequalities

imply k > C2(1°g n)~~~~ (1°g2 ~)~~~~~~~ for a suitable positive number °2 ’ which

depends only on fl .

3 . - @r every non-negative integer x , iJe have

(3) N(X) $ 03C9(X) 03A303BBj=0 (03C9(X) (log k) (log n)-1)j + k(log k)03BB+1 (log n)-(03BB+1) ,
for any n , k e ?I , with n % 2 and any subset X of (n , n + I , ... , n + k) .

Proof. - By induction on x . For 03BB = 0 , the assertion follows from the corollary

of lemma I . Suppose 03BB0 is a non-negative integer for which the assertion holds.

lwle prove that the assertion also holds for the integer j, + I . Let n , k G N ,

n  2 and X C (n , n + 1 , ... , n + k) . To prove assertion (3) with 03BB replaced

by x + I , ve may assume without loss of generality that k  
n . Let. p G Q (X) ,

and j G N be such that N(pj)  I . Then pj  k since N(pj)  [kp-j] , and
consequently j  [(log k) (log p)-1] . Let j" 

0 

mi  ...  pj 
0 

?I = N(pj) ,
be integers in X which are divisible by Then {m1 , ... , m ) =: Y is con-

tained in I% , mi + i , ... , mi + ] } and mi i > i .

From the induction hypothesis, we infer

From lemma 1 and these inequalities we deduce



which proves (3) with 03BB replaced by 03BB0 + 1 .

Proof of theorem 2. -Let p > 1 . Let n, k be positive integers, n~3 ,

with the property that (n, n + k) contains a set X of intergers with

(u)(X))~  N(X) . We will prove that k > c~(log (l~g~ n)*~ , where
c = max(2fl +1 , 4j3 - 2) , and where c~ is a certain positive number which depends

only on P . Theorem 2 follows by taking j3 = c~ . For 1  p ~ 3/2 the assertion

follows from theorem 1 (b) with ~ = P*~ . Suppose p > 3/2 . Let o~ > 1 ,

0  §  1 be real numbers which satisfy 
’

We assume first that

Clearly k > 2 . From the first part of lemma 2, we obtain, by (5)~ that 3 .

Hence, using 03B2 > 3/2 , we have N(X) >  03C9(X) + [(203C9(X))1/2] . From the
second part of lemma 2, we infer

From (5) and (6) we deduce k) (log n) ^1 >~ cl , hence

So we obtain from lemma 3 that

for every non-negative integer B . Assume that 03BB satisfies

Then we obtain

For convenience, we define the real number a by
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It follows from (6) that a > 2 . We rewrite condition (7) as

Put B = [a(a - l)" (g - 1)] ~ show that (10) is satisfied. Observe that

[j3 - l] . From (5) it follows that (log n) (log > 2 . The exponent of

(log n)(log k)** in the left hand side of (10) is non-negative by the choice of 03BB .

Therefore if X>[i3-l]+l~ then the lefthandside of (10) is greater than

by (4) and (10) is satisfied. If x = L~; - ~~ ~ then the lefthandside of equals

In view of a > 2 ~ p > 3/2 the exponent of (log n) (log k)~’~’ is at least 1

and therefore the lefthandside of (10) is greater than 2~‘~~’’~~~~~’)+1 and, as

before, (10) is satisfied. We conclude from (8) ~ (9) and the choice of B that

where ~a +La(a- 1) (p -l)j +1) . (2~)~
If the assumption (5) is not satisfied, then k ~ n 

~~ 
. Both inequalities im-

ply that k ~ c~((log n)** ) ’" for some suitable positive number c..
which depends only Finally, we observe that

c(p) z infa>2 {03B2a + a(a - 1)-1 (j3 - 1)) = 2p + 2(p - 1 ) = 4p - 2 .

This proves theorem 2.

Remark. - In fact, one has

= 2p + [2(p - 1)] ~ l) ~ [2(p ~ l)])([2(p ~ l)] - (p ~ l))~) ,
for every p > 3/2 . Hence = 4)3 - 2 and only if, p = n/2 ~ for some

m~4. For values of a between 0 and 2/3 which are not of the form

~/m ~ for some m e N ~ m ~ 4 , we have therefore a somewhat better exponent than
403B1-1 - 2 in the lower bound for k.
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