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p-ADIC L-FUNCTIONS ATTACHED TO CHARACTERS OF p-POWER ORDER

par Kenneth A. RIBET

Séminaire DELÂNGE-PISOT-POITOU
(Théorie des nombres)
19e année, 1977/78, n° 9, 8 p. 14 novembre 1977

SOMMAIRE. - L’objet de ce papier (rédigé en anglais) est d’étudier la. fonction
L p-adique ( p impair) attachée à un caractère ~ d’ordre une puissance de p
dont le conducteur n’est pas une puissance de p . On donne un critère pour la non-
trivialité de cette fonction. On trouve aussi que, si l’on remplace e par le pro-
duit de e et une puissance paire et non triviale du caractère de Teichmüller
mod p , la fonction L qu’on obtient est toujours non triviale.

1. As is well known, the values at negative integers of the L-series attached

to a function e : ~fZ -~-~ C are given by universal formulas as rational linear

combinations of the values of e . This fact permits us to define, when e is a

periodic function on ~ with values in a Q-vector space V, elements

L( 1 - k , 9 e) EV, p for k ~ 1 . One is especially interested in the case where V

is a number field or, after completion, a p-adic field.

If E is a character --~ Q* (extended by 0 to a function on Z/fZ ),
there are well known necessary and sufficient conditions for the integrality of a

number L ( 1 - k , e) E Q ([C], [F], 9 In this paper, we shall recall a proof
of thé sufficiency of the conditions in the case p ~ 2 . At the same time, we find

a criterion for the valuation of certain numbers L(1 - k , e) to be strictly po-
sitive.

Our tools are the "Kummer congruences"1 as given by ~h~i~ (and [K], [L])y and

the (consequent) theory of p-adic L-functions. These can be used to prove as well

some trivial divisibilities’’ of L-values for p = 2 (cf. and also, of

course 9 the necessity of the conditions for integrality, not merely their sufficien-

cy. Our motivation in recalling the deduction of integrality theorems for the

L(1 - k , E~ from the Kummer congruences was that these L-values occur as the

constant terms in the q-expansions of certain Eisenstein series for congru-

ence subgroups of One can ask if more generally modular forms of the same
as a G k, ~ will have constant terms enjoying the same integrality proper-

ties as the corresponding L( 1 - k , E) if their non-constant terms are intégral.
An example given in the last paragraph shows that this is not the case.

2. Given a periodic function ~ : Z ~ V as in § 1 and an élément c e *,
we let e be the function x ~ e(cx) . For k  1 , we set

where c 
p 

is the imà.ge of c under the projection * ~ Zx .
The Kummer congruences that we need maybe stated as follows. Let e y ...y e



be periodic functions on Z with values in Q ~ , and let k~ , , .. , y 1 . Sup-

pose that, for n ~ 1 , we have

Then we have

Equivalently, we may regard periodic functions on Z as the locally constant

functions on Z . The Kummer congruences state that the map E ~ p c (0 9 y e) is a

measure c on Z with values in Z P 
such that

for all k > 1 , y and all locally constant ~ . (Hère again, x 
P 

is the projection
fonction  ~ Z . )

Suppose that 6 is a character of conductor f >, 1 with values in where

p is an odd prime. Let K be the finite extension of Qp generated by the values

and let R be the integer ring of K . When is a value L( 1 - k , E) an

élément of R (i. e.9 integral) ? Using the fact that the values of E lie in R

( which is a free Z -module), we find by the Kummer congruenees the integrality

for each c E * . This implies that L( 1 - k , e) is itself integral, except per-
haps in the special case where the product of ~ and the k-th power of the

TeichmUller character is a character of p-power order. (Recall that the Teich-
mUller character is the uhique character ~ Z* which satisfies

= x mod p , for all x ~ (~Z/RZ)~ .) 
!2 _. -- 

--p

Said differently, if the order of E is divisible by a prime other than p, ~Te

have

for k J 1 . On the other hand, suppose that the order of E is a power of p ;

this implies, incidentally, that e is an even character since p is odd. One

then finds in the literature, the additional statement that a number L(1 - k, 
lies in R if (and only if) the conductor of e is divisible by some prime
different from p .

3. The theory of p-adic L-functions provides a proof of the integrality.
Indeed, let e , once again, be a character of p-power order whose conductor f

is not a p-power. Since e is non-trivial y there is a continuous function

Lp(s , e) on Z whose value at 1 - k is

The factor multiplying L(l - k , e"" ) is trivial unless p - llk ; hence it is
in ail cases a unit. Thus the integrality of L~(l - k , e~) is équivalent to



thatof L(l - k , 

Let (x) be thé function x ~ xu)(x)" on Z* . We view it alternately as a
~ ~

function on Z* via thé projection x ~ x . As we shall recall in § 5 y there

is~ for each c e ~ ~ a power séries F (T) e such that

for all s ~ Z . (The appearance of the quantity 1 + p in this représentation

arises from the choice of an isomorphism of Z -modules

such that x = ( 1 + p)03B1(x) for all x in the multipli ative group 1. + pZp . or

simplicity, we write again 03B1(x) for thP function a( x>) on Z (or *).)
Since j~e have on the other hand

we can "represent" L (s , e) by a quotient of two power series with coefficients

in R . Now the point is that, although the individual séries representing the

"fudge factors" 1 - ~( c ~ ~c ) 1-s are not invertible in R[[T]] , i t is easy to see

that their greatest common divisor in is 1 ([CL], p. 540). Hence there

is an F E R~ ~T ~~ such that 
° .

In particular, the values L (l - k , y e) belong to R 9 which is what we wanted

t o 

4. A différent proof of the integrality may be given using the measures
of § 2. We view and ou as characters of (~/fpZ~)~ * Thèse give rise to
two functions on whose values are zéro on the non-invertible éléments. 

regard them as functions 03C61 and 03C62 on f, which are constant mod pf . If

is the maximal ideal of R , we have

for all x E Z . Multiplying this congruence b xk-1 and integrating, we find theY
Kummer congruence

The first of these two numbers is simply ( 1 - k , The

second is

(the factors ~ are understood to be primes) because in r~ 2 ;.re have artificially
given ca the value 0 on all primes dividing pf . Now it is clear that any

J f p which divides f is congruent to 1 mod p , 9 and s o in the product (which
by hypothesis is non empty) every term is divisible b~r p . Since on the other hand



the term multiplying the product is intégral (again by a Kummer congruence, for
example), the rigllt hand side of the above Kummer congruence is divisible by ~’ .

Looking now at the left side of the congruence, choose a c such that e(c)
generates the group of values of e . We then have 4~ ~ lI 1 - implying the

integrality of L*( 1 - k , note that our congruence noir reads ~~ _ 0 ;
we cannot obtain from it the value of L’~( 1 ~. k , mod P .

As a variant, let us replace E by Ewi, where i ~ 0 (mod p - 1) is even.

We obtain as above the congruence

Since i is non trivial, we may choose c so that the tlfudge factor" is inver-
tible mod P . This implies the ("trivial") divisibility by P of the L*-value.
The passage from L to L* just me ans multiplying by an Euler factor at p ; as

before we see that this factor i,~ trivial for k = 1 , and hence a unit for all

k . The conclusion is that we have

for ail 

2. obtain a congruence mod @ for the numbers L(l - k , by combi-

ning the techniques of § 3 and § 4. The point is that we have a ( term by term)
congruence of séries Fc _ G mod P y where F is the séries of § 3 representing

and G represents similarly the regularized p-adic zeta function

which has been stripped of its l-Euler factors for primes (The idea of look-
ing at such congruences of séries was suggested by Lichtenbaum.) The congruence is
easy to prove, once we remember that we can construct the séries F 

c 
and G 

c 
by

regarding A(s) and B(s) as p-adic Mellin transfonns of measures. Indeed , we

have .

with the convention that the integrand is given the value 0 for x such that

Z.’’ , (To prove this identity, we note that the integral is continuous in sP "

and, by the defining properties of c , coïncides with for s = 1 - k ,
k  1 .) 3imilarly, we have

A

where the integral is again taken over the subset S of Z consisting those x

with x s Z~ , and where ~r is the characteristic function inp ~ ../ ...
For x ES, the binomial theorem gives



where y = (1-+ p)"~ - 1 . Putting this into the integrals, we find

where

both integrals are taken over S . Now E ~ 03C8 mod P , and hence a -. b mod P
n n

, 
for each n 9 this is exactly the congruence required,

Zet c be an element of Z* such that ~c ~ = 1 + p , i. e., such that = 1.

The first factor in the expression for B(s ~ , namely ( 1 - ~c ~ ~~ ~ ~ ( ~ , s may be
P

written in thP form H (y ~ , for some series H coefficients in t~ . It is
c s c

easy to see that Hc is invertible, for ~e have more precisely the congruence

The remaining factors in the expression for B(s) are also represented by power
séries : we have

with the product as usual taken over the prime~ ~ dividing f and different from

p . Since (c)= 1 + p and =1 ~ae havé

Hence, we obtain finally

This formula shows that not all coefficients of F(T) are divisible by @ (we
have ~~~, = and enables one to compute the lleierstrass degree of F .

More precisely, we find that F(T) is the product of an invertible power series
with a distinguished polynomial W(T) of degree

where means the p-part of an integer n, and f’ is the prime to p part
of f. In particular, we have 03BB > 0 ~ p2|03C6(f1) , where 03C6 is the Euler func-

tion. Another way to say that w(T) is of positive degree is to say that is

divisible by G~ . It is exactly divisible by 6~ if and only if is a;n

Eisenstein polynomial. (Observe that if is an Eisenstein polynomial and
À > 1 , then the roots of W(T) do not lie in K. This is rather the opposite of
what occurs in thé familiar situation of a p-adic L-function attached to a power

of w , where in all examples s o far we have À = 0 or 1. I have no conjecture
concerning the precise values of the roots.) A final remark is that we have the
congruence



for all se Z . A number L ~ - ( k , ~ is thus divisible ~’ if andonly

if p 2 i ~( f’ ~ ~p . For comparison, we recall that the numbers L ( 1 - k , ( i
even and i ~ 0 mod p - 1 ) are always divisible by 6~’ .

The number F(o) == L(û y occurs in the formula for the relative class num-

ber of the (imaginary) abelian field corresponding to the kernel of Provi-

ded that the degree of this field is no bigler than 256, we can décide the power of

P dividing F(0) by consulting the table [SR]. For p = 3 and

we have Il , except in the case where f = 133 and ~ is of order 9 , in

which case This extra divisibility cah be explained by an argument simi-

lar to the above, which bénins with the observation that E is congruent mod P3
to a character of order 9 mod 19 . As far as I can see, it is only an accident

that one gets exactly the divisibilities which are a priori predictable. In an ana-

logous series of examples, we take p = 5 and look at values 6(u) y with E

of order 5 and conductor f = 11 , 31 , 41 , 61 . Hère ~~e find a trivial divisi-

bility Ew) and no further divisibility except in the case f = 31 , when

~2 L(0 , EU» . This extra divisibility seems 

6. As mentioned just above, our trivial divisibilities for L-values give di-

visibilities for relative class numbers of certain imaginary abelian fields. For

example, if p ~ 5 y and N i s a product of distinct primes congruent to 1 mod p,

the field of pN-th roots of 1 has a relative class number divisible by p .

On hearing of these results, LENSTRA, GREENBERG and GRAS each pointed out that

there is a simple algebraic interpretation. In the example of roots of 1 ,

the ideal classes generated by the (ramified) primes dividing N in are

non trivial and highly independent. GRAS suggests that the existence of these ideal

classes may be predicted by Chevalley’s theory of ambiguous classes in cyclic

extensions ([Ch], p. 402-406) , wilich has recently been refined in 

7. The connection ldth modular forms is the following. Let E be a character

mod f with values in Q*p , and let g = 03A3n0 an qn be a modular form of weight k

and character with coefficients in Q . Sup,~ose that the a . with n > 0,
/ ~ 

""P n

are ( p-adically) integral. Then for each c ~. 1 prime to pf one can show that

is intégralité in. § 2, it follows from this "Kummer congruences" that a0
is integral if E is not of p-power order. If e has p-power order and p-power

conductor, then aO will not,in general, be integral ; this is seen from the exam-

ple of the Eisenstein series



where ’~ ~ .

The remaining case is that where E has p-power order but not p-power conductor.

Then as have seen, the constant term of Gk , £ is integral, and this integrality
can be directly traced to Kummer congruences. This leads one to speculate that, mo-

re generally, the term a0 might always be intégral.

Hère is an example where this is not true. We take p = 3 and k = 2 , so that

in particular will have E = Let f be a prime congruent to 1 mod 3

but not mod 9 . Let ~ be one of the two characters mod f of order 3 , with

values in K = Q3( 3) . Let g be the difference between G2, E and the ("other")
Eisenstein series

of weight 2 and character E . B~T the results of § 5, the constant coefficient

L(- 1 , e)/2 of g is a unit in K since 903C6(f) . (This can also be checked di-

rectly by using the formula for an L(- 1) . ) On the other hand, we shall see that

. 

the higher coefficients of the q-expansion of g are divisible by the maximal

ideal P of the integer ring of K .

To prove this, since both and H2 , E are eigenforms for the Hecke opera-

tors, y it is enough to check the congruence

for each prime ,~ . This is of course a consequence of the congruence E = 1 mod ~’ ~

except f , in which case 0 . But in the case £ = f , the congru-

ence to be proved reads 1 = f ; it is true mod P because true mod 3 .
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