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ON DIFFERENCE SETS OF SETS OF INTEGERS

by Cam L. STEWART

Séminaire DELANGE-PISOT-POITOU
(Théorie des nombres)
19e année, 1977/78, nO 5, 8 p. 24 octobre 1977

1. Introduction.

Let NO denote the set of non-negative integers. Let A be a, subset of and

let d be any integer. Put and, for convenience, denote
~. n A - d by We define the ordinary-difference set ~ (A~ of ,~ ~ by

Thus, the ordinary-difference set of A is the set of all non-negative integers
which can be written as the difference of two elements of Until recently very
little was known about this set, and this contrasted with the situation, see [3] or
C 5~ ~ for the sum set S(A) of A . S(A) is defined as the set of all non-negative
integers which can be written as the sum of two elements of ~A . In the last few

years, however, several papers have appeared on the subject of ordinary-difference
sets. In this survey, we shall review some of this work~ and we shall also discuss

some results which have been obtained about the related infinite-difference and

density-difference sets.

Let denote the number of elements of A . Me define the infinite-difference

set ~ (A) of A by

Next let be the number of elements of A which are less than x. The upper

density of A is given by d"(A) = lim sup and the lower density of
A by d_(A) = lim infx~~ (|A|x/x). If = d_(A) , then this limit value is
the density d(A) of A. We define the density-difference set C~(A) of A by

In this article, we shall restrict our attention to sets A of positive upper

. 

density. One reason for doing this is that given any subset K of N0 containing

0 ~ it is a straightforward task (see theorem 3 of ~ I4~ } to construct a set A

with d~‘~A) ~ 0 for which 0 (,~) ~ K . Thus we can’t aay anything non-trivial about
knowing only that d»(k} ~ 0 . Further, if d-(A) = 0 , is easi-

ly seen to be empty, When d» ~~,) is positive, however, structure is imposed on

the three types of difference set then have several
common properties.

we remark that interesting problems do arise concerning ~ (~.) when d(A} ~ 0 .
RUZSA [9], for example, has shown that, if A is an infinite set with d(A) = 0 ,
then lim Suprisingly, this is in contrast to the situation



for the sum set S(A) . FREIMAN [3] resolved a conjecture by proving that,
~ 

if A is an infinite set with d~ ~~.) ~ 0 , then

and further that there exists sots A as above for which the inequality in (l) is

actually an equality.

2. The structure of difference sets.

It would be desirable to characterise those sets which are difference sets of sets

of integers. No simple characterisation is known for any of the three types of dif-

ference set . It is known, however, that, if we iterate the operation of forming the

ordinary-difference set of a set of positive upper density that we eventually obtain
. the set of all multiples of a fixed number. Put 0 (A) = 0(A) ~ and 

’

= (k-1(A)) , for k = 2 , 3 , ... The following result is due to STEWART and
TIJDEMAN [15].

THEOREM 1. - Let A have positive upper density e ~ Then~ there exists an inte....

ger k , with 1 ~ k ~ e" ~ such that = for all integers r ,

with r > 2[(log 2] .

Me would conjecture that theorem 1 applies with the lower bound for r sharpened
to r > [(log 2] + 1 and with the operation of forming the ordinary-
difference set replaced by any one of the three operations of forming a difference

set. The example of the set of integers

with h = 6 , say, shows that the lower bound for r cannot be replaced by

[(log 2] for any of the three types of difference set.

According to RUZSA [9], ERDOS and SARKOZY proved that, if d(A) is positive, then
does not have arbitrarily large gaps. In other words, if the elements (A)

are ordered according to size, then the difference between consecutive terms is
bounded. by refining work of and obtained the fol-

lowing improvement of this result.

THEOREM 2. - Let A have positive upper density e . Then~ there exist r 

gers kl ’ ... ~ k such that

This result is best possible as the example Al = {a ; a > 0 and a == 0 (mod l)}
shows, since in this Aae ’ and plainly l shifts are ne-

cessary to cover all of NO . the number of shifts of D (A) required to co-
ver No is bounded in terms of e , it is not the case that the k. ~ ( is

J J
necessarily bounded in terms For let At consist of the integers of the form



3nt + i ~ for i = Z ~ ... , t and n = 0 ~ 1 ~ 2 ~ is

the set of non-negative integers of the form 3nt ~ i ~ for ~. = 0 j ... ~ t and

n = 0 ~ 1 ~ 2 ~ ... ~ and so contains infinitely many gaps o f lenght t . Thus

max. ~t~2~ . On the other hard~ = 1~3 .
J J

Plainly, we ~ 0 ~~~ ~ and it is an immediate consequence of

theorem 2 that~ if d~~~) = E ~ then

Thus, all three difference sets of have lower density .at least the upper den-

sity of A. The following theorem, see ( 15~ ~ is often useful for translating re~
sults about one type of difference set of that of another.

THEOREM 3. - Given a set A ç N0 , there exists a set B s N0 , with d_(B)  d-(A)
such that p (B) c 

The above results suggest that difference sets possess a great deal of regularity.

Theorems 1 and 2 might lead one to suppose that, if d~~~,) is positivo, 
contains an infinite arithmetical progression. The next which is a conse-

quence of theorem 6 of [ 14], shows that this is not the case.

THEOREM 4. - Let 6 be any countable set of infinite sets of positive integers

and let a be any number between 0 and 1 . There exists a set ~~ ~ density

fo r which

On taking 6 to be the set of all infinite arithmetical progressions and a to

be any number between 0 and 1/2 , we find that there exists a set ~~ of density
a whose difference set contains no infinite arithmetical progression.

3. The union and intersection of difference sets.

Neither the union nor the intersection of two ordinary-difference sets need be an

ordinary-difference set. For exaraple, on putting

and

we readily check n ~ ( B ) ~ ~~ ~ and that there is no set C ~ with (0(0) ~ ~~ ~
on putting

and



we see that there is no set C ~ ~C~ ~ a ~A) (B) . This is not the case
with infinite-difference sets as the next theorem (see ( ~4~ ~ shows. Let D denote

the collection of all infinite-difference sets associated with sets of positive up-
per density.

THEOREM 5. w D is a filter of the set of all subsets of 

D is not an ultrafilter since there exist disjoint sets possessing arbitrarily
large gaps whose union is and by theorem 2, the infinite-difference set of

positive upper density has only bounded gaps. Since D is a filter both the union

and the intersection of two infinite-difference sets associated with sets of positi-
ve upper density is again an infinite-difference set associated with a set of positi..

. 

ve upper density. Further, if A has positive upper density, and if NO and

S (A) c B , then there exists a set C of positive upper density, H .~

Neither the collection of ordinary-difference sets nor that of density-difference
sets has the above superset property. Let E denote the non-negative even integers.
We E . Plainly E u ~~ ~ is not the ordinary-difference set
of any set. Similarly, see there is no set A such E u 

Both the union and the intersection, see ( 15~ ~ of two density-difference sets is
again a density-difference set. It is a consequence of the next theorem, see ( 15~ ~
that the intersection of any two difference sets associated with sets of positive
upper density must itself have a large positive upper density.

THEOREM 6. - If A and B are sub set s of then the re exists a set C z No
such and such that for

every d E No °

On taking d = 0 in theorem 6 and recalling ~2) ~ we see that .

This inequality, which is best possible, see [14], has also been proved by RUZSA
[10].

4. Lacunary sequences.

In the next two sections, we shall discuss the following problem. For what sequen-
ces of positive integers K does there exist a set of positive upper density having
no terms of K in its ordinary-difference set ? In this section, we shall discuss
a condition on the rate of growth of K which ensures the existence of a suitable

set A . If K = is lacunary, then k exists. More precisely, if, for some
positive integer h ~ we have lim ~k . ~+ k . ) > 1 , then there exists a set
A , with positive upper density for which for j = 1 , 2 , ... This

condition is critical, see theorem 8 of [ 14] , since, if K is an increasing sequen-
ce of positive integers satisfying lim infj~~((kj+h/kj) = 1 , for every positive
integer h ~ then there exists an increasing sequence of positive integers



every set A of positive upper density, the ordinary-difference se t of k contains

terms of E . The following theorem, see ~24~ ~ puts the above condition in a more

quantitative form.

THEOREM 7. - Let k. ~ k ! ... be a sequence of positive integers. If, for a

positive integer h and for real numbers c i ... ~ c~ larger than ~ ~ we have

for i - 1 ! ... , h and j = 0 , 1 , 2 , ... , then there exists a set 

ving a density, with

for which k . ~ 4~ (~) ~ for j = 1 , 2 , ...
" J -

Observe that if (kj+l/kj)  03B1 > 1 , for j = 1 , 2 , ... , and g is an integer

with g ~ (log then 3 , for j = 1 , 2 , ... , and we may

apply theorem 7, with h = g~ ~ and c2 = ... ~ c~ = 3 to obtain the condition

mentioned previously.

Let , for example, k , ... , be the sequence of factorials 1~? ~ za ~ ...
It follows from theorem ~’s on c. = 6 and c~ ~ ~ z ~ that there
exists a set A with density at least ~/11 which does not have a factorial as

the difference of two terms.

The proof of theorem 7 proceeds in two stages. First, by means of a construction

of nested intervals, a real number 8. is found, for i ~ ~ ~ ... , h , satisfying

for j ~ 0 ~ ~ ~ ~ ~ ... 9 Here denotes the distance from x to the nearest

integer. Secondly, by means of an averaging argument and Weyl t s criterion for uni-

form distribution (see [14J) an appropriate set A is shown to exist. A has the

form

where 03BB1 , ... , 03BBh are real numbers , g. = (ci - 2)/2(c. - 1) , for i = 1,...,h,
and {x} denotes the fractional part of x. We then have

by our choice of e~ ~ recall (3)~ 0(A) ~ 
required. As an alternative second stage, we can define A_ = (n ~ 0 ~ (~6..)  
for i = 1 , ... , h . In this case, d(A.) ~ and c; ~n ?  

and we may deduce from theorems 3 and 6 that there exists a set B with

g. « with S(B) ~ Apart from the fact that B might
not have a density, this gives another proof of theorem 7.



M 
~

ERDOS and SARKÖZY [2] have proved a similar result to theorem 7. They showed
that, if A > = 1 , 2 , .~ ~ then there exists a set A

with

ior which kj ~ D(A) , and kj ~ S(A) , for j = 1 , 2 , .. , We remark that a slight
modification of the proof of theorem 7 allows one to conclude, with the same assump-
tions on K as in the statement of theorem 7, that there exists a set with

for which kj ~ D(B) , and for j = 1 , 2 , ...This improves the lo-
wer bound given by (4). We construct a set A as before by means of Weyl’s crite-
rion and an averaging argument, but with g. replaced by g./2 . We then have
d(A) ... ~n03B8i~  gi/2, for i=l , ... , h) .On
putting B =0(A) ~ we see that both S(B) and S (B) are contained in

tt~i’)~, for i=l , ... , h) , and, by (2) , d_(B) (gj/2) as

required.

5* Sets which intersect difference sets.

Theorem 7 gives a sufficient condition on K for the existence of a set A of

positive upper density having no terms of K in its ordinary-difference set. Clear-
ly, this condition is not a necessary one since we may take K to be the odd inte-

gers and A to be the even integers. Indeed more generally, if K is any set with

no terms divisible by some fixed integer q , then there exists a set A of po-
sitive upper density with S(A ) n K we just take 

There are several interesting sets K which are not dealt with by theorem 7 or
the above congruence condition. For instance, we can put K = P + 1 ~ P - 1 or the

set of squares ; here P denotes the set of prime numbers. SARKOZY [ll]~ [l2~ [13]
has shown, by means of the Hardy-Littlewood circle method, that, for all three of
the above sets, n whenever A has positive upper density. In facct
he has proved that there exist positive constants c 1 and c~ such that if

then there are two elements of A less than x whose difference is a prime minus
one, and, if

then there are two elements of A less than x whose difference is the square of
a positive integer. FURSTENBERG [4], using ergodic theory, has also shown that, if
K is the set of positive squares, then ~~ whenever d~(A~ is positive.



Let K be a set of positive integers, and define K every positive inte.»
.

ger q ~ by

and let ~k. ). be the sequence formed by ordering the elements of K , accor-

ding to size. KAMAE and MENDES FRANCE, see example 3 and theorem 2 of [7], using
techniques from Fourier analysis, have proved that, if the sequence (k. 03B8}~i=1 is

uniformly distributed modulo 1, for every positive integer q and every irrational

number 03B8 , then S (A) n for every set A of positive upper density. The
above criterion is very useful. For let P(x) be a polynomial of degree at least 2

with integer coefficients and leading coefficient positive, and let e be a positive
irrational number. The sequence (p(n) and, since P (x) has degree at least

2 , the sequences + h)e - P (n) e~~’_ ~ h = ~ ’ ~ , ... , are u. d. mod i (see
theorem 3.2~ p. 27 of [8]). Therefore the sequence (P(qn + is u. d. mod 1 ,
for every positive integer q and non-negative integer r (see theorem 2.1 ~ p. 238
of ~8 j ) . Since the leading coefficient of P(x) is positive the sequence formed by
ordering the elements of the set [P(qn + n > 0 and P (qn + r) > 0) accor-

ding to size is also u. d. mod 1 o Furthermore, since the set

K = {P(n); n > 0 , P(n) > 0 and P(n) = 0 (mod q))
is the union of finitely many sets of the form (P(qn + r) ; n > 0 and P(qn + r) >0}
the sequence (k. 03B8}~i=1 formed from K is u. B. mod 1 , for every irrational e

whenever K 
q 

is non-empty. Note that since the leading coefficient of P(x) is po-
sitive if there exists an integer m with q ) I p(m) , then there exist infinitely
many such integers and thus K 

q 
is may now apply the congruence con-

dition mentioned at the start of this section in conjunction with the criterion of
KAMAE and MENDES FRANCE to deduce the following theorem. We remark that the result is
obvious for polynomials of degree 1 .

THEOREM 8. - Let. P (x) _ a m x + am-l + ... + al x + ap be a non-constant po-

lynomial with integer coefficients and with a positive. Put

K = {P(n) ; n and P(n) positive integers} .
Then K n D(A) ~ Ø , for ev ery set A of upper density if and only if, for

every integer q, there exists an integer m such that q ) I P .

Thus, if P(x) is a monic polynomial with an integer root, then the set
K = ~P (n) 9 n > 0 and P(n) > 0) has the property that K n ~~ (,~) ~ for every
set A of positive upper density whence, in particular, the set K of k-th powers
has the intersection property whene k is a positive integer. There also exist
reductible polynomials which do not have an integer root and yet which have the abo-
ve intersection property. For instance, the polynomial ( x2 ~~ a) (x2 - b) (x~ - ab) ,
where a ~ b and ab are integers which are not squares, has a linear factor mo-
dulo q, for every positive integer q, since a ! b and ab cannot all be qua-
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dratic non-residues modulo q . On the other hand, if P (x) is an irreducible poly-

nomial of degree at lea’~t ~ ~ then there are sets A of positive upper density who-

se intersection with the associated set K is empty since in this case, by a theo-

rem of Frobenius, see theorem 9 of ~b~ ! there is a prime number q for which P(x)

does not have a linear factor modulo q.

Lastly, we remark that theorem 3 shows that D (A) may be replaced by D0 (A) in

the statement of theorem 8.

REFERENCES

[1] ERDÖS (P.) and SARKÖZY (A.). - On differences and sums of integers, I, J. Number
Theory, to appear.

[2] ERDÖS (P.) and SARKÖZY (A.). - On differences and sums of integers, II, to ap-
pear. 

[3] FREIMAN (G. A.). - Foundations of a structural theory of set addition. - Provi-
dence, American mathematical Society, 1973 (Translations of mathematical Mo-
nographs, 37).

[4] FURSTENBERG (H.). - Brgodic behavior of diagonal measures and a theorem of
Szeméredi on arithmetic progressions, J. Analyse math., Jérusalem, t. 31,
1977, p. 204-256.

[5] HALBERSTAM (H.) and ROTH (K.). - Sequences. - Oxford, at the Clarendon Press,
1966.

[6] HEILBRONN (H.). - Zeta-functions and L-functions, "Algebraic number theory
[1965. Brighton]", p. 204-230. - London, Academic Press, 1967.

[7] KAMAE (T.) and MENDES FRANCE (M.). - Van der Corput’s difference theorem,
Israel J. Math., to appear.

[8] KUIPERS (L.) and NIEDERREITER (H.). - Uniform distribution of sequences. - New
York, J. Wiley and Sons, 1974 (Pure and applied Mathematics, Wiley-Interscien-
ce).

[9] RUZSA (I. Z.). - On difference sequences, Acta Arithm., Warszawa, t. 25, 1974,
p. 151-157.

[10] RUZSA (I. Z.). - On difference sets, to appear.
[11] SARKÖZY (A.). - On difference sets of sequence of integers, I, Acta math. Acad.

Sc. Hung., to appear.
[12] SARKÖZY (A.). - On difference sets of sequences of integers, II, Annales Univ.

Sc. Budapest, Eötvös, to appear.
[13] SARKÖZY (A.) . - On difference sets of sequences of integers, III, Acta math.

Acad. Sc. Hung., to appear.

[14] STEWART (C. L.) and TIJDEMAN (R.). - On infinite-difference sets of sequences of
positive integers, Canadian J. Math., to appear.

[15] STEWART (C. L.) and TIJDEMAN (R.). - On density-difference sets of sequences
of integers, to appear.

[16] TIJDEMAN (R.). - Distance sets of sequences of integers, Proceedings of a bi-
centennial conference Wiskundig Genootschap, Math. Centre, Amsterdam, to
appear.

(Texte regu Ie 8 septembre 1978)

Cam L. Dept pure University, WATERLOO, Ont. N2L 3GL (Canada).


